用户名: 密码: 验证码:
海洋声源信息获取与传输技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的海洋声源信息包括运动声源(如舰船、潜艇、无人航行器等)信息和海洋环境噪声信息。这些信息是研究各种水中探测与通信技术乃至研究海洋气候与海洋生态环境的重要理论依据和实验验证的依据。
     本文研究关于在小尺度平台上进行海洋声源信息的获取与传输的技术。小尺度平台,包括锚系平台和运动平台,由于适合大时空跨度的数据测量,近年来引起了国内外的广泛关注。在小尺度平台上获取并传输声源信息,其难点是在复杂的海洋环境噪声背景中对运动声源的低频信号检测、方位估计以及高速水声数据传输。
     本文研究内容主要包括舰船噪声与海洋环境噪声特性,强噪声背景下微弱信号的预警检测,声强向量检测,基于声强向量阵的目标定向定位与尺度估计,海洋声信道特性与信道多径时延估计,通信信道的稀疏均衡与分数间隔均衡,信道的盲均衡等。本文研究涉及的理论基础包括数字信号处理、信号检测与参数估计、声强向量理论、自适应信号处理、阵列及通信信号处理等。
     本文主要研究工作的新进展与创新点包括:
     1.提出了一种任意空间分布任意阵形噪声场的数值模拟方法,用于本文基阵设计及检测定位方法的计算机仿真,也可用于一般阵列和声场的仿真计算。
     2.根据奈曼—皮尔逊准则分析了能量(幅度)统计平均检测、过零检测和功率谱检测等三种预警检测技术的统计性能,给出了实测船噪声的仿真结果。
     3.提出了基于声强向量阵的检测和方位估计方法,以克服常规阵列处理方法对低频声源的检测定位需要的阵列尺度太大的困难。分析得出了该检测方法的处理增益,推导了声强向量的概率密度函数,得到了声强向量阵检测方法的统计性能,并与基于声压的检测方法作了比较。理论分析与半消声室实验均验证了声强向量检测方法相对于声压处理的优越性能。基于声强向量阵的空间指向性,研究了宽带相干干扰背景下线谱和宽带连续谱的检测方法,给出了理论分析和实现方案。分析了方向相反的相干干扰互相抵消的原理,并在实验数据处理中观察到了这一现象。
     4.研究了三轴四元非典型声强向量阵对低频声源全空间定向的方法,以克服三轴六元典型声强向量阵在小尺度平台上难以布设的困难。系统地分析了其定向误差,包括有限差分误差、通道失配误差和环境噪声引起的随机误差。理论分析和计算机仿真均表明,非典型阵可在0.2m的小尺度平台上实现对低频声源的定向,其定向精度在本文实验室条件下可达到2°。
     5.提出了声强向量法和时延估计法的基阵共用技术,用于对体积目标三部位定向定位与尺度估计。理论分析、计算机仿真及实验结果均表明,共用同一小尺度基阵可同时实现对舰船中部、中后部和尾部的定向和区分,并用于估计目标尺度。
     6.结合MODE与带惩罚函数的NLS方法,研究了水声信道高分辨多径时延估计问题。采用混合算法处理了实测海试数据,基于处理结果重建的接收信号波形与实验接收波形吻合较好,从而验证了混合算法的有效性。
     7.提出了基于自适应延迟滤波器的DSPCC算法,通过极性相关序贯估计多径时延,对于确定时延通过自适应滤波估计多径幅度。仿真结果表明,DSPCC算法也具有对多径时延的高分辨能力,且运算量小。最后用该算法处理了海试数据,结果表明它比传统方法有更好的分辨性能。
     8.提出了一种改进的DFE均衡器,用于解决长时延扩展稀疏信道的均衡问题。根据信道冲激响应的前达分量强度,预测反馈滤波器重要抽头的位置,只对这一小部分抽头系数进行迭代运算,因而运算量显著减小,收敛速度加快并因而改善了跟踪信道时变的能力,但均方误差性能几乎没有损失。
     9.提出了一种T/2分数间隔稀疏CFE结构,以避免接收机对于符号定时误差的敏感性,并有效利用长时延扩展多径信道的稀疏性来降低均衡器的复杂度。理论分析与基于实测信道的计算机仿真表明,T/2-SCFE均衡器对符号定时误差保持了稳健性,性能优于符号间隔CFE及分数间隔DFE。
     10.提出了一种基于常数模准则的盲均衡方法ACMA,及ACMA与DFE盲判决反馈的联合均衡方法。采用概率统计和误差性能表面方法分析了其收敛性能,分析结果表明ACMA方法优于通常的CMA2-2方法。对特征值弥散达192的三径信道的仿真结果表明,ACMA-DFE盲均衡算法的最小均方误差较CMA2-2方法约低7dB,有较高的应用价值。
In this dissertation, ocean acoustic information implies the information of moving soundsources (ships, submarines, autonomous vehicles, etc) and the information of sea ambient noise.This information is essentially important to study the underwater signal detection andcommunication, and even to study ocean climate or acoustic environment, both theoretically andexperimentally.
     This dissertation is intended to study the key techniques on ocean acoustic informationacquisition and transmission with a small size platform. Small size platforms, including anchoredand moving platform, have drawn extensive interest all over the world, since they are suitable fordata acquisition of large space-time span. The main difficulties of information acquisition andtransmission with a small platform lie in low frequency weak signal detection, bearing estimationof moving sound sources in complicated sea ambient noise background, and high speed digitaltransmission in multi-path underwater acoustic channels.
     The main topics studied in this dissertation focus on characteristics of ship-radiated noise andsea ambient noise, weak signal detection, detection with acoustic intensity array, bearing and sizeestimation of sound sources, multi-path time delay estimation, sparse equalization, fractionallyspaced equalization, and blind equalization of underwater acoustic communication channels. Thetheoretical basis involved in this dissertation include digital signal processing, signal detectionand estimation, vector acoustic intensity theory, adaptive signal processing, array andcommunication signal processing.
     The main contributions of this dissertation are as follows:
     1. A numerical method for simulating noise field of arbitrary spatial distribution and ofarbitrary array shape is presented. This method is used for the analysis and validation ofperformance of array design, signal detection and bearing estimation in this dissertation.
     2. The statistical detection performance of energy detector, zero-crossing detector and powerspectrum detector is analyzed based on the Neyman-Pearson criterion. Theoretical analysis andsimulations on ship-radiated noise measured at sea show that zero-crossing detector has goodperformance.
     3. A new method of signal detection for low frequency sound sources with vector acousticintensity array (VAIA) of limited aperture is proposed. The spatial-time gain for acoustic signaldetection in isotropic noise is derived, and the ROC (Receiver Operating Characteristic) inGaussian noise is obtained. Both theoretical analysis and experimental results show that acousticintensity detection is superior to sound pressure detection.
     4. A new method of two-dimensional DOA (Direction of Arrival) estimation for low frequencysound source with the non-typical VAIA of small size is proposed. The azimuth and pitch anglesof the sound source can be estimated with the 3 intensity components measured with this array.The estimation errors, including the finite difference approximation error (FDAE), theinstrumentation channel mismatch error (ICME), and error caused by ambient noise, are studiedsystematically. Experiments conducted in semi-anechoic chamber show that, after correcting theFDAE and ICME, the precision of DOA estimation in isotropic ambient noise is about 2°.
     5. A novel scheme is proposed for the bearing estimation of the separate sections of a volumetarget with a non-typical VAIA. The bearings of the midway section and the section between themidway and the stern of the volume target radiating low frequency noise is estimated with the vector acoustic intensity, while the bearing of the stem section radiating high frequency noise isestimated with the high precision adaptive FIR time delay estimation method. Experimentsconducted in a semi-anechoic chamber show that bearings of the 3 sections can be estimated withsatisfying precision and the 3 sections are distinguishable. This result provides a new approachfor ship size estimation at short distance.
     6. A hybrid algorithm for the high resolution multi-path time delay estimation is presented.First, the estimate of multi-path time delay is obtained by using eigenvalue decomposition withthe MODE algorithm, then the time delay and the corresponding gain estimate is refined with theNLS (nonlinear least square) estimator. Simulation on the linear frequency modulated (LFM)signal measured at sea is presented to prove the effectiveness of our method.
     7. For the purpose of reducing the complexity of adaptive delay filter, a polarity correlator isadopted to estimate the time delay, thus avoiding direct estimation of the mean square errorfunction needed by the previously proposed MDRL (Maximum Deviation from Regression Line)algorithm, therefore resulting in much lighter computational load at little cost in performance.Computer simulations on the simulated underwater acoustic channel and data processing ofchannel measured at sea prove that our method is effective.
     8. A modified adaptive decision feedback equalizer (DFE) is proposed to exploit fully thelong sparse channels in high-speed underwater acoustic digital communications. Based on therelationships between the optimal feedforward filter, feedback filter (FBF) on the one hand andthe channel impulse response on the other hand, influence of the precursor with different strengthon the FBF is analyzed. Our modified DFE only works on the significant taps predicted with theabove analysis. Simulations on sparse channel measured at sea confirm that our modified DFEhas the advantages of lighter computational load and faster convergence over the conventionalDFE with only a very small cost in performance.
     9. A Y/2 fractionally-spaced sparse complete feedback equalizer (CFE) scheme is proposed toavoid the performance deterioration caused by symbol timing error in the receiver. Theperformance of the scheme is analyzed based on minimum mean square error (MMSE) criterion,and the MMSE performance is proved to be the same as that of the DFE. The scheme alsoeffectively exploits the sparseness of the multi-path channels with large delay spread and reducesthe complexity of the equalizer with small performance degradation. Theoretical analysis andcomputer simulations over field measured wireless channel and underwater acoustic channelshow that the scheme performs better than symbol-spaced CFE and T/2 fractionally-spaced DFE.
     10. A new blind equalization method named ACMA (Absolute Constant Modulus Algorithm) isproposed. We give a fairly detailed theoretical analysis based on EPS (Error Performance Surface)that proves that our ACMA method has the advantage of much faster convergence rate. To furtherreduce the mean square error (MSE), the kurtosis of the output signal of the equalizer iscomputed and compared with a pre-selected threshold. If the kurtosis is smaller than thethreshold, which means the eye-diagram is open, the equalizer turns to the DFE mode, so as toachieve much lower noise floor. Both theoretical analysis and computer simulations showpreliminarily that our method has much better performance than CMA2-2.
引文
[1] R.J.Urick. Principles of Underwater Sound [M], 3rd edn. McGraw-Hill, New York, 1983.
    [2] R.M.Hamson, et al, An ambient noise model that includes Coherent hydrophone summation for sonar performance in shallow water [R]. SACLANT Centre Report SR 70,1983.
    [3] P.Scrimger, et al. A computer model of merchant shipping in the Mediterranean Sea [R]. SACLANT Centre Report SR 164, 1990.
    [4] R.M.Hamson. The modelling of horizontal ambient noise directionality at three site in the Mediterranean [R]. SACLANT Centre Report SR139, 1988.
    [5] M.J.Buckingham. Theoretical model of ambient noise in a low-loss shallow water channel [J]. J. Acoust Soc. Amer., 1980, vol.67, 1186-1192.
    [6] J.Perkin, et al. Modelling ambient noise in three dimensional ocean environments [J]. J. Acoust Soc. Amer., 1993, vol.93,739-752.
    [7] C.H.Harrison, et al. A model of ambient noise, coherence and array response [J]. J. Acoust Soc. Amer., 1996, vol.99, 2055-2066.
    [8] D.Ross. Mechanics of Underwater Noise [M]. Pergamon Press, 1976.
    [9] G.L.Risueno. Unknown signal detection via automatic decomposition [C]. Proc.11th IEEE Signal processing workshop on statistic signal processing, 2001, pp. 174~177.
    [10] [美]D.罗斯.水下噪声原理[M].北京:海洋出版社,1983.
    [11] 叶平贤,龚沈光.舰船物理场[M].北京:兵器工业出版社,1992.
    [12] 任克明,王荣庆等.潜艇声频信号特征控制分析与展望[J].舰船科学技术,1997,(3):36~39.
    [13] 刘勋.体积目标的被动声定向方法和尺度估计研究[D].西安:西北工业大学,2000.
    [14] 刘勋,相敬林等.作为体积目标的船舶声辐射纵向分布特性的研究[J].西北工业大学学报,2000;18(3):409~412.
    [15] B.G.Petolas, R.Mahr. An ARGOS-reporting, A-size minibuoy that measures ocean ambient noise time histories for periods up to one month [C]. Proc. OCEANS'98, vol. 1,564~570.
    [16] G.D.Hugus, M.L.Pecoraro, et al. The Development Of A Portable, Self-contained, And Easily. Deployed Hydrophone System For Recording deep-ocean ambient Noise [C]. Proc. OCEANS '92, vol.2, 654~659.
    [17] P.C.Eter. Underwater Acoustic Modelling Principles, Techniques and Applications [M]. 2nd edn, 1996, pp.178.
    [18] M.P.Olivieri, S.A.L.Glegg, et al. Using ambient noise sonar (ANS) to probe the ocean environ -ment in shallow water [C]. Proc. OCEANS '98, vol.3, 1368~1372.
    [19] 李宝祥译,海军资料汇编(俄)[M],1993.
    [20] Olson H F. System Responsive to the Energy Flow in Sound Waves [P]. U. S. Patent 1892644, 1932.
    [21] Bolt H. F, Petrauskas A. A. An Acoustic Impedance Meter for Rapid Field Measurement [J]. J. Acoust Soc. Amer., 1943, 15: 79~84.
    [22] Schultz T J. Acoustic Wattmeter [J]. J. Acoust Soc. Amer., 1956, 28(4): 693~699.
    [23] Frank J Fahy. Measurement of acoustic intensity using the cross-spectral density of two microphone signals [J]. J. Acoust Soc. Amer., 1977, 62(4): 1057~1059.
    [24] Chung J Y. Cross-spectral method of measuring acoustic intensity without error caused by instrument phase mismatch [J]. J. Acoust Soc. Amer., 1978, 64(6): 1613~1616.
    [25] Chung J Y. Fundamental aspects of the Cross-spectral method of measuring acoustic intensity [C]. Proc. CETIM., Senlis(France), 1981.
    [26] 陈继康.用简易声强计测量声强[J].声学学报,1983,8(4):250~254.
    [27] 姜哲,郭骅.声场中负声强探讨[J].声学学报,1992,17(2):122~128.
    [28] Chung J Y, Blaser D A. Transfer function method of measuring acoustic intensity in a duct system with flow [J]. J. Acoust Soc. Amer., 1980, 68(6): 1570~1577.
    [29] Seybert A F. Statistical Errors in Acoustic Intensity Measurements [J]. Journal of Sound and Vibration, 1981, 75(4): 519~526。
    [30] Dyrlund O. A Note on Statistical Errors in Acoustic Intensity Measurements [J]. Journal of Soundand Vibration, 1983, 90(4): 585~589.
    [31] Jaxobsen F. Random Errors in Sound Intensity Estimation [J]. Journal of Sound and Vibration, 1989, 128(2): 247~257.
    [32] Pascal J C, Carles C. Systematic measurement errors with two microphone sound intensity meters [J]. Journal of Sound and Vibration, 1982, 83(1): 53~65.
    [33] Thompson J K, Tree D R. Finite difference approximation errors in acoustic intensity measurements [J]. Journal of Sound and Vibration, 1981, 75(2): 229~238.
    [34] 甘长胜,陈心强,李登啸.FFT分析仪—微机声强测量系统及其应用[J].应用声学,1989,8(5):4~15.
    [35] Robert Hicking, Samuel P Marin. Enhancement of the sound power of a component of a complex noise source by sound from other nearby components [J]. J. Acoust Soc. Amer., 1988, 84(1): 262~274.
    [36] Robert Hicking. Narrow-band indoor measurement of the sound power of a complex mechanical noise source [J]. J. Acoust Soc. Amer., 1990, 87(3): 1182~1191.
    [37] 张林,商德江.阵列式双水听器平面扫描声强分布测量和声功率计算实验研究[J].应用声学,1997,16(2):37~42.
    [38] Abdou A, Guy R W. Directional Accuracy of Transient Sound Employing an Intensity Probe[J]. Applied Acoustics, 1997, 50(1): 65~77.
    [39] Maeda T, Ono T, Imaizumi H, Hori K. Identification of Sound Source Using Three Dimensional Acoustic Intensity [C]. Inter-noise84, 1099-1102.
    [40] Robert Hickling, Wei Wei. Finding the direction of a sound source using a vector sound-intensity probe [J]. J. Acoust Soc. Amer., 1993, 94(4): 2408~2412.
    [41] Robert Hickling, Wei Wei. Use of pitch-azimuth plots in dederming the direction of a noise source in water with a vector sound-intensity probe [J]. J. Acoust Soc. Amer., 1995, 97(2): 856~866.
    [42] 陈川.声强矢量探头对声源的定向[J].水雷战与舰船防护,1997(1):1~5.
    [43] Robert Hicking, Alexander P Morgan. Locating sound sources with vector sound-intensity probes, using polynomial continuation [J]. J. Acoust Soc. Amer., 1996, 100(1): 49~56.
    [44] 初军田.基于声强矢量的水雷测向引信研究:[D].海军工程学院,1997.
    [45] 刘勋,相敬林.基于声强向量法的体积目标定向和缩比实验研究[J].电子与信息学报, 2002;24(3):347~353.
    [46] 刘勋,相敬林.声强向量法对声源定向的理论和实验研究[J].声学技术,2001,20(2):59~62.
    [47] 刘勋,相敬林等.基于声强向量法和声压梯度法的水中目标定向[J].兵工学报,2001;22(1):90~94.
    [48] 刘勋,相敬林等.基于声强度向量法的体积目标被动跟踪与尺度估计[J].声学学报,2001;26(1):41~50.
    [49] M.Stojanovic, J.A.Catipovic, J.G.Proakis. Phase-coherent digital communications for under-water acoustic channels [J]. IEEE J.Ocean.Eng., 1994, 19 (1): 100-111.
    [50] M.Stojanovic. Underwater acoustic communications [J]. IEEE Electro International, Boston, 1995, pp.435-440.
    [51] [美]B.维德罗,S.D.史蒂恩斯.自适应信号处理[M].成都:四川大学出版社,1989.
    [52] S.Haykin. Adaptive Filter Theory [M]. Beijing: Publishing House of Electronics Industry, 2002.
    [53] J.G.Proakis. Digital Communications [M]. Beijing: Publishing House of Electronics Industry, 2002.
    [54] M.Kocic, D.Brady, et al. Sparse Equalization for Real-Time Digital Underwater Acoustic Communications [C]. Proc. Oceans '95 MTS/IEEE, vol.3, 1417~1422.
    [55] M.Stojanovic. Recent advances in high-speed underwater acoustic communications [J]. IEEE J.Ocean.Eng., 1996, 21 (2): 125-136.
    [56] K.Berberidis, T.A.Rontogiannis, et al. Efficient block implementation of the DFE [J]. IEEE Signal Processing Lett., 1998, vol.5, 129~131.
    [57] P.M.Crespo, M.L.Honig. Pole-Zero Decision Feedback Equalization with a Rapidly Converging Adaptive IIR Algorithm [J]. IEEE J.Select.Areas Commun., 1991, 9 (6): 817~828.
    [58] N.A.Dhahir, A.H.Sayed, et al. Stable Pole-Zero Modeling of Long FIR Filters with Application to the MMSE-DFE [J]. IEEE Trans. Commun., 1997, 45 (5): 508~513.
    [59] S.Ariyavisitakul, N.R.Sollenberger, et al. Tap-Selectable Decision-Feedback Equalization[J]. IEEE Trans. Commun., 1997, 45 (12): 1497~1500.
    [60] A.A.Rontogiannis, K.Berberidis. Efficient Decision Feedback Equalization for Sparse Wireless Channels [J]. IEEE Trans. Wireless Commun., 2003, 2 (3): 570~581.
    [61] I.J.Fevrier, S.B.Gelfand, et al. Reduced Complexity Decision Feedback Equalization for Multipath Channels with Large Delay Spreads [J]. IEEE Trans. Commun., 1999, 47 (6): 927~936.
    [62] S.Ariyavistakul, L.J.Greenstein. Reduced-Complexity Equalization Techniques for Broadband Wireless Channels [J]. IEEE J.Select.Areas Commun., 1997, 15 (1): 5~15.
    [63] Ungerboeck.G. Fractionally tap-spacing equalizer and consequences for clock recovery in data modems [J]. IEEE Trans. Commun., 1976, 24 (8): 856~864.
    [64] 张贤达,保铮.通信信号处理[M].北京:国防工业出版社,2000.
    [65] Y.Sato. A method of self-recovering equalization for multilevel amplitude-modulation systems [J]. IEEE Trans. on Com., 1975, vol.COM-23,679~682.
    [66] C.R.Johnson, P.Schniter, et al. Blind Equalization Using the Constant Modulus Criterion: A Review [J]. Proceedings of the IEEE, 1998, 86 (10): 1927~1950.
    [67] D.N.Godard. Self-recovering equalization and carrier tracking in two-dimensional data communications systems [J]. IEEE Trans. on Com., 1980, 28 (11): 1867~1875.
    [68] J.R.Treichler, B.G.Agee. A new approach to multipath correction of constant modulus signals [J]. IEEE Trans. on ASSP, 1983, 31 (2): 459~472.
    [69] J.J.Shynk, C.K.Chan. A comparative analysis of the stationary points of the CMA on Gaussian assumptions [C]. IEEE ICASSP '90, vol.3, 1249~1252.
    [70] H.H.Zeng, L.Tong, et al. Behavior of fractionally-spaced constant modulus algorithm: mean square error, robustness and local minima [C]. IEEE Conference on Signals, Systems and Computers, 1996, vol. 1, 310~314.
    [71] Y.Li, Z.Ding. Convergence analysis of finite length blind adaptive equalizers [J]. IEEE Trans. on Signal Processing, 1995, 43 (9): 2120~2129.
    [72] H.Jamali, S.L.Wood. Error surfaces analysis for the complex constant modulus adaptive algorithm [C]. IEEE Conference on Signals, Systems and Computers, 1990, vol.1,248~252.
    [73] J.J.Shynk, C.K.Chan. Error surfaces of the constant modulus algorithm [C]. IEEE International Symposium on Circuits and Systems, 1990, vol.2, 1335~1338.
    [74] Y.Li, Z.Ding. Global convergence of fractionally spaced Godard (CMA) adaptive equalizers[J]. IEEE Trans. on Signal Processing, 1996, 44 (4): 818~826.
    [75] C.K.Chan, J.J.Shynk. Stationary points of the constant modulus algorithm for real Gaussian signals [J]. IEEE Trans. on ASSP, 1990, 38 (12): 2176~2181.
    [76] J.J.Shynk, C.K.Chan. Performance surfaces of the constant modulus algorithm based on a conditional Gaussian model [J]. IEEE Trans. on Signal Processing, 1993, 41 (5): 1965~1969.
    [77] R.E.Kamel, Y.B.Ness. Anchored blind equalization using the constant modulus algorithm [J]. IEEE Trans. on Circuits and Systems, 1997, 44 (5): 397~402.
    [78] V.Shtrom, H.Fan. Blind equalization: A new convex cost function [C]. IEEE ICASSP'96, vol.3, 1779~1782.
    [79] M.Hajian, J.Fernandes, et al. Adaptive equalization for mobile communication systems based on constant modulus algorithm [C]. IEEE VTS 53rd, 2001, vol.3, 1609~1613.
    [80] M.Shahmohammadi, M.H.Kahaei. A new dual-mode approach to blind equalization of QAM signals [C]. ISCC'03, 277~281.
    [81] N.Mcginty. Strategy to transition from the constant modulus algorithm to a decision feedback blind equalizer [C]. ICASSP '02, vol.3, 13~17.
    [82] R.A.Casas, Z.Ding, et al. Blind adaptation of decision feedback equalizers based on the constant modulus algorithm [C]. IEEE Conference on Signals, Systems and Computers, 1995, vol.1,698~702.
    [83] J.Gomes, V.Barroso. Acoustic channel equalization results for the ASMOV high-speed coherent data link [C]. Proc. Oceans '00, Rhode Island, U.S.A.
    [84] J.Gomes, V.Barroso, et al. An overview of the ASIMOV acoustic communication system [C]. Proc.Oceans '00, Rhode Island, U.S.A.
    [85] G.H.Sandsmark, A.Solstad. Simulations of an adaptive equalizer applied to high-speed ocean acoustic data transmission [J]. IEEE J.Ocean.Eng, 1991, 16 (1): 32-41.
    [86] R.Weber, F.Schulz, Johann.F.B. Blind adaptive equalization of underwater acoustic channels using second-order statistics [C]. Proc.Oceans '02 MTS/IEEE, vol.4, 2444-2452.
    [87] A.Waldhorst, R.Weber, et al. A blind multichannel DFE receiver for precoded OQPSK signal transmission in shallow water [C]. Proc.Oceans '01 MTS/IEEE, vol.4, 2209-2215.
    [88] R.Weber, A.Waldhorst. Blind receivers for MSK signals transmitted through shallow water[C]. Proc. Oceans '01 MTS/IEEE, vol.4, 2183-2190.
    [89] R.Weber, F.Schulz, et al. Adaptive multichannel super-exponential blind equalization of underwater acoustic channels [C]. Proc.Oceans '02 MTS/IEEE, vol.4, 2429-2437.
    [90] 张歆,张小蓟等.水声数字遥控系统[J].应用声学,1993,12(4):12-15.
    [91] 徐金标,葛建华等.基于CMA算法的双模式盲均衡算法[J].通信学报,1997,18(2):65~69.
    [92] 吴建华,刘泽民.基于严格U性价值函数的DF结构的盲均衡方案[J].电子学报,1995,23(1):21~27.
    [93] 李道本,陈少霞.快速最小差错概率盲均衡算法[J].电子学报,1995,23(4):15~19.
    [94] 王峰,赵俊渭等.一种常数模与判决导引相结合的盲均衡算法研究[J].通信学报,2002,23(6):105~109.
    [95] 樊龙飞,查光明等.一种混合型盲均衡算法[J].信号处理,1998,14(1):71~75.
    [96] 何平.一种使用于MPSK调制的混合型盲均衡算法[J].通信学报,1995,16(2):97~102.
    [97] 刘丰,徐金标等.基于正交小波的判决反馈均衡算法[J].电子学报,1998,26(10):4~8.
    [98] 罗来源,肖先赐.基于子空间分解的快速盲均衡解调算法[J].电子与信息学报,2003,25(6):838~843.
    [99] 王峰,赵俊渭等.基于倒三谱初始化的Bussgang类盲均衡算法研究[J].系统仿真学报,2002,14(7):877~890.
    [100] 王峰,赵俊渭等.一种混合常数模水声信道盲均衡新算法的研究[J].声学学报,2003,28(2):137~140.
    [101] 童峰,陆佶人.基于盲源分离的水声信道盲均衡处理方法[J].电子与信息学报,2003,25(2):270~274.
    [102] 吴国清,李靖等.舰船噪声识别(Ⅰ)——总体框架、线谱分析与提取[J].声学学报,1998,23(5):394~400.
    [103] 吴国清,李靖等.舰船噪声识别(Ⅱ)——线谱稳定性和唯一性[J].声学学报,1999,24(1):6~11.
    [104] 吴国清,李靖等.舰船噪声识别(Ⅲ)——双重谱和平均功率谱的特征提取和模板图[J].声学学报,1999,24(2):191~196.
    [105] 吴国清,李靖等.舰船噪声识别(Ⅳ)——模糊神经网络识别[J].声学学报,1999,24(3):275~280.
    [106] 章新华,王骥程等.基于小波变换的舰船辐射噪声特征提取[J].声学学报,1997,22(2):139~144.
    [107] 陈捷,陈克安,孙进才.基于多重分形的舰船噪声特征提取[J].西北工业大学学报,2000,18(2):241~244.
    [108] 蔡悦斌,张明之等.舰船噪声波形结构特征提取及分类研究[J].电子学报,1999,27(6):129~130.
    [109] 吴国清,任锐等.舰船辐射噪声的子波分析[J].声学学报,1996,21(4):700~708.
    [110] 张仁和,王富堂等.海洋环境噪声与舰船噪声的频间相关与群延迟特性[J].声学学报,1995,20(3):235~238.
    [111] 周越,杨杰等.基于高阶累积量的水声噪声检测与识别[J].兵工学报,2002,23(1):72~78.
    [112] 王铁根.线谱声引信.舰船设备科学与技术[J],1997,2(1):40~43.
    [113] 陈家川,单汝政.舰船自噪声场结构及其实验研究方法[J].声学学报,1981,(4):260~262.
    [114] 陶笃纯.舰船噪声节奏的研究(Ⅰ)---数学模型及功率谱密度[J].声学学报,1983,8(2):65~76.
    [115] 陶笃纯.螺旋桨空化噪声谱[J].声学学报,1982,7(6):344~351.
    [116] 王广恩,王茂法,胡益群.水下目标低频线谱在线列阵上的特性分析[J].舰船科学技术,1994.1:9~13.
    [117] 吴国清,魏学环,周钢.提取螺旋桨识别特征的二种途径[J].声学学报,1993,18(3):210~216.
    [118] 刘铭克.频率分辨率对水噪声线谱分析的影响[J].舰船科学技术,1994(1):31~34.
    [119] 胡家雄.从潜艇水下噪声频谱中分离出螺旋桨噪声的研究[J].舰船科学技术,1997.6:23~27.
    [120] 孙玉兰,陈宗歧.舰船辐射噪声主要噪声源及其贡献分析研究[C].93年全国水声学学术交流会论文,117~118.
    [121] Burdic W S. Underwater Acoustic System Analysis [M]. New Jerzey: Prentice-Hall Inc., 1991.
    [122] 刘钊,陈心昭.求解随机振动结构声辐射的统计边界方法[J].声学学报,1997,22(6):495~500.
    [123] 姜哲,赵晓丹.振动表面局部辐射性质与声能量[J].声学学报,1998,23(1):74~81.
    [124] 汪德昭,尚尔吕,水声学[M],北京:科学出版社,1981.
    [125] Harrison C H. Formulas for ambient noise level and coherence [J]. J. Acoust Soc. Amer., 1996, 99(4): 2055~2066.
    [126] Hamson R M. The Modelling of Ambient Noise due to Shipping and Wind Sources in Complex Environments [J]. Applied Acoustics, 1997, 51(3): 251~286.
    [127] 冯海泓,梁国龙,惠俊英.目标方位的声压、振速联合估计[J].声学学报,2000,25(6):516~519.
    [128] 鄢社峰,马远良等.一种海洋宽带噪声场数值模拟方法[J].声学技术,2003,22(1):30~32.
    [129] D.L.Hutt, P.C.Hines, et al. Measurement of underwater sound intensity vector [C]. Proc. OCEANS '99 MTS/IEEE, 1999, vol.2: 717~722.
    [130] 马远良,赵浚渭等.用FIR数字滤波器实现高精度时延的一种新方法[J].声学学报,1995,20(2):121-126.
    [131] 相敬林,王海燕.微弱信号检测技术与近感系统[M].西北工业大学出版社,1993.
    [132] [美]Kay S M.罗鹏飞等译.统计信号处理基础——估计与检测理论Ⅱ[M].北京:电子工业出版社,2003.
    [133] 李启虎.数字式声纳设计原理[M].合肥:安徽教育出版社,2003.
    [134] 朱洪,相敬林.信号过零检测及其在引信技术中的应用[J].声学学报,1995;20(3):218-220.
    [135] Kedem.B. Spectral analysis and discrimination by Zero-Crossings [J]. IEEE Proc., 1986, 74(11):1477-1493.
    [136] Wan C R, Goh J T, et al. Optimum tonal detectors based on the power spectrum [J]. IEEE J Oceanic Eng., 2000; 25(4):540-552.
    [137] 胡广书.数字信号处理[M].北京:清华大学出版社,1997.
    [138] Van Trees H L. Optimum Array Processing [M]. John Wiley & Sons, 2002.
    [139] 杨益新.声呐波束形成与波束域高分辨方位估计技术研究[D].西安:西北工业大学,2002.
    [140] 鄢社锋,马远良.圆环形声基阵低频超增益性能研究[J].西北工业大学学报,2002;20(1):79-82.
    [141] 孙贵青,杨德森等.基于矢量水听器的水下目标低频辐射噪声测量方法研究[J].声学学报,2002;27(5):429-434.
    [142] 吴祈耀.随机过程[M].北京:国防工业出版社,1984:113.
    [143] Jenkins G.M, Watts D.G. Spectral Analysis [M]. San Francisco: Holden_Day, 1968.
    [144] 简明数学手册[M].上海:上海人民出版社,1977.
    [145] 岳剑平,王德俊等.单矢量传感器的互谱估计与方位估计[J].哈尔滨工程大学学报,2004;25(3):299-304.
    [146] 朱燕堂,赵选民等.应用概率统计方法[M].西安:西北工业大学出版社,1997.
    [147] 惠俊英,李春旭,梁国龙等.声压与振速联合信号处理抗相干干扰[J].声学学报,2000;25(5):389-394.
    [148] Young V W, Hines P C, et al. Practical application of a tri-axial intensity array [J]. J Acoust Soc. Amer., 2003, 114(4): 2427.
    [149] 侯自强,李贵斌.声呐信号处理[M].北京:海洋出版社,1986.
    [150] 孙贵青,李启虎.声矢量传感器研究进展[J].声学学报,2004;29(6):481~489.
    [151] 陈韶华.关于水中声源的信号检测与定向研究[D].西安:西北工业大学,2003.
    [152] 陈华伟,赵浚渭.基于矢量传感器复声强测量的低空目标二维波达方向估计[J].声学学报,2004;29(3):277~282.
    [153] P.Stoica, K.C.Sharman. Novel eigenanalysis method for direction estimation [J]. IEE Proceedings, vol. 137, Pt.F. 1990,19~26.
    [154] Y.F.Cheng, D.M.Etter. Analysis of an adaptive technique for modeling sparse systems [J]. IEEE Trans. on ASSP, 1989, 37 (2): 254~264.
    [155] Y.Jin, B.Friedlander. On the performance of equalizers for sparse channels [C]. IEEE Conference on Signals, Systems and Computers, 2000, vol.2, 1757~1761.
    [156] D.M.Etter. Identification of sparse impulse response systems using an adaptive delay filter[C]. Proc. on ICASSP'85, vol.10, 1169~1172.
    [157] 艾宇慧,惠俊英等.水声信道相关均衡器仿真研究[J].声学学报,1999,24(6):589~597.
    [158] 陈庚、徐俊华,用脉冲时间相关法测量海洋声信道时变特性[J].声学学报,6(3):158~1981.
    [159] 朱埜.主动声呐检测信息原理[M].北京:海洋出版社,1990.
    [160] I.Ziskind, M.Wax. Maximum likelihood localization of multiple sources by alternating projection[J]. IEEE Trans. ASSP, 1988, 36 (10): 1553~1560.
    [161] J.Li, R.Wu. An efficient algorithm for time delay estimation [J]. IEEE Trans. Signal Processing, 1998, 46 (8): 2231~2235.
    [162] R.J.Vaccaro, C.S.Ramalingam, D.W.Tufts. Least-squares time-delay estimation for transient signals in a multipath enviroment [J]. J.Acoust.Soc. Am, 1992, 92 (1): 210~218.
    [163] R.Wu, J.Li. Time-delay estimation via optimizing highly oscillatory cost functions [J]. IEEE J. Oceanic Eng., 1998, 23 (3): 235~243.
    [164] 蒋德军,胡涛.时延估计技术及其在多途环境中的应用[J].声学学报,2001,26(1):34~40.
    [165] R.Wu, J.Li, Z.Liu. Super resolution time delay estimation via MODE-WRELAX [J]. IEEE Trans.Aerospace and Electronic Systems, 1999, 35 (1): 294~307.
    [166] D.M.Etter, C.T.Huang. An adaptive delay filter with variable delay and variable taps [C]. Proc. on ICASSP'86, 2123~2126.
    [167] J.H.Gross, D.M.Etter. Comparison of echo cancellation for the adaptive delay filter [C]. Proc. on the 42nd Vehicular Technology Conference, 1992, vol. 1,574~576.
    [168] 劳力云,张宏建等.应用极性相关方法快速计算标准化互相关函数[J].浙江大学学报,1999;33(6):645~649.
    [169] S.F.Cotter, B.D.Rao. Sparse Channel Estimation via Matching Pursuit with Application to Equalization [J]. IEEE Trans. Commun., 2002, 50 (3): 374~377.
    [170] 陈韶华,相敬林等.一种改进的适用于稀疏信道的DFE均衡器[J].西北工业大学学报,2006,24(2):185~189.
    [171] Al-Dhahir.N, Cioffi.J.M. Fast computation of channel-estimate based equalizers in packet data transmission [J]. IEEE Trans. Signal Processing, 1995, 43 (11): 2462~2473.
    [172] http://spib.rice.edu/spib/microwave.html/chan 15.
    [173] Daniel.B.K, Arthur.B.B. The state of the art in underwater acoustic telemetry [J]. IEEE J.Ocean.Eng., 2000, 25 (1): 5~27.
    [174] J.C.Lin, L.S.Lee. A modified blind equalization technique based on a constant modulus algorithm [C]. IEEE ICC '98, vol. 1,344~348.
    [175] K.D.Tsai, J.T.Yuan. A modified constant modulus algorithm (CMA) for joint blind equalization and carrier recovery in two-dimensional digital communication systems [C]. IEEE Proceedings of the 7th International Symposium on Signal Processing and Its Applications, 2003, vol.2, 563~566.
    [176] K.N.Oh, Y.O.Chin. Modified constant modulus algorithm: blind equalization and carrier phase recovery algorithm [C]. IEEE ICC '95, vol. 1,498~502.
    [177] D.L.Jones. A normalized constant-modulus algorithm [C]. IEEE Conference on Signals, Systems and Computers, 1995, vol. 1,694~697.
    [178] Q.Yanrikulu, A.G.Constantinides, et al. New normalized constant modulus algorithms with relaxation [J]. IEEE Signal Processing Letters, 1997, 4 (9): 256~258.
    [179] R.D.Gitlin, F.R.Magee. Self-orthogonalizing adaptive equalization algorithms [J]. IEEE Trans. on Communications, 1977, 25 (7): 666~672.
    [180] T.Schirtzinger, X.Li, et al. A comparison of three algorithms for blind equalization based on the constant modulus error criterion [C]. IEEE ICASSP '95, vol.2, 1049~1052.
    [181] D.F.Marshall, W.K.Jenkins. A fast quasi-Newton adaptive filtering algorithm [J]. IEEE Trans. on Signal Processing, 1992, 40 (7): 1652~1662.
    [182] P.Sirisuk, A.C.Constantinides. On the use of orthogonal transforms for fractionally-spaced blind equalization [C]. IEEE Conference on Signals, Systems and Computers, 1999, vol.1, 281~285.
    [183] D. F.Marshall, W.K.Jenkins. The use of orthogonal transforms for improving performance of adaptive filters [J]. IEEE Trans. on Circuits and Systems, 1989, 36 (4): 474~484.
    [184] F.Beaufays. Transform-domain adaptive filters: An analytical approach [J]. IEEE Trans. on Signal Processing, 1995, 43 (2): 422~431.
    [185] Z.Ding, R.A.Kennedy, et al. Ill-convergence of Godard blind equalizers in data communication systems [J]. IEEE Trans. on Communications, 1991, 39 (9): 1313~1327.
    [186] H.H.Zeng, L.Tong, et al. Relationships between the constant modulus and Wiener Receivers [J]. IEEE Trans. on Information Theory, 1998, 44 (4): 1523~1538.
    [187] J.C.Lee, C.K.Un. Performance of transform-domain LMS adaptive digital filters [J]. IEEE Trans. on ASSP, 1986, 34 (3): 490~510.
    [188] S.S.Narayan, A.M.Peterson, et al. Transform domain LMS algorithm [J]. IEEE Trans. on ASSP, 1983, 31 (3): 609~615.
    [189] A.W.Hull, W.K.Jenkins. Performance improvement of blind equalizers using the constant modulus algorithm [C]. IEEE Conference on Signals, Systems and Computers, 1992, vol. 1, 11~14.
    [190] S.Hosur, A.H.Tewfik. Wavelet transform domain adaptive FIR filtering [J]. IEEE Trans. on Signal Processing, 1997, 45 (3): 617~630.
    [191] S.Hosur, A.H.Tewfik. Wavelet transform domain LMS algorithm [C]. IEEE ICASSP'93, vol.3,508~510.
    [192] S.Attallah, M.Najim. A fast wavelet transform-domain LMS algorithm [C]. IEEE ICASSP '96, vol.3, 1343~1346.
    [193] S.McLaughlin. Adaptive equalization via Kalman filtering techniques [J]. IEE Proceedings on Radar and Signal Processing, 138 (4): 388~396.
    [194] D.D.Falconer, L.Ljung. Application of fast Kalman estimation to adaptive equalization [J]. IEEE Trans. on Communications, 1978, 26 (10): 1439~1446.
    [195] A.A.Rontogiannis, S.Theodoridis. An adaptive LS algorithm based on orthogonal Householder transformations [C]. ICECS'96, 860~863.
    [196] R.A.Axford. Blind equalization with the lattice constant modulus algorithm [C]. IEEE MILCOM '93, vol. 1,268~272.
    [197] N.K.Jablon. Joint blind equalization, carrier recovery, and timing recovery for high-order QAM signal constellations [J]. IEEE Trans. on Signal Processing, 1992, 40 (6): 1383~1398.
    [198] M.Ghosh. A sign-error algorithm for blind equalization of real signals [C]. IEEE ICASSP '98, vol.6, 3365~3368.
    [199] A.Tawfik, E.A.Raheem, et al. A modified dithered signed-error constant modulus algorithm for blind adaptive equalizer [C]. ICECS'00, vol.2, 688~691.
    [200] F.R.P.Cavalcanti, J.C.M.Mota. A predictive constant modulus algorithm for blind equalization in QAM systems [C]. ICC'97, vol.2, 1080~1084.
    [201] B.Wahlberg. System identification using Laguerre models [J]. IEEE Trans. on Automatic Control, 1991, 36 (5): 551~562.
    [202] Y.G.Yang, N.I.Cho, et al. Fast blind equalization by using frequency domain block constant modulus algorithm [C]. Proceedings of the 38th Midwest Symposium on Circuits and Systems, vol.2, 1003~1006.
    [203] J.J.Shynk, C.K.Chan, et al. Blind adaptive filtering in the frequency domain [C]. IEEE Interna -tional Symposium on Circuits and Systems, vol. 1,275~278.
    [204] C.K,Chan, M.R.Petraglia, et al. Frequency-domain implementations of the constant modulus algorithm [C]. IEEE Conference on Signals, Systems and Computers, 1989, vol.2, 663~669.
    [205] J.P.LeBlanc, I.Fijalkow, et al. Fractionally-spaced constant modulus algorithm blind equalizer error surface characterization: Effects of source distributions [C]. IEEE ICASSP '96, vol.5, 2944~2947.
    [206] V.Y.Yang, D.L.Jones. A vector constant modulus algorithm for shaped constellation equalization [J]. IEEE Signal Processing Letters, 5 (4): 89~91.
    [207] Y.Luo, J.A.Chambers. Fast convergence algorithms for joint blind equalization and source separation based upon the cross-correlation and constant modulus criterion [C]. IEEE ICASSP '02, vol.3, 3065~3068.
    [208] D.Hatzinakos, C.L.Nikias. Blind equalization based on second and fourth order statistics [C]. ICC '90, vol.4, 1512~1516.
    [209] S.D.Halford, G.B.Giannakis. Optimal blind equalization and symbol error analysis of fractio -nally-sampled channels [C]. IEEE Conference on Signals, Systems and Computers, 1995, vol.2, 1332~1336.
    [210] J.A.Catipovic, L.E.Freitag. Spatial diversity processing for underwater acoustic telemetry[J]. IEEE J.Ocean.Eng, 1991, 16 (1): 86-97..
    [211] Q.Wen, J.A.Ritcey. Spatial diversity equalization applied to underwater communications[J]. IEEE J. Ocean. Eng, 1994, 19 (2): 227-241.
    [212] B.G.Song, J.A.Ritcey. Spatial diversity equalization for MIMO ocean acoustic communication channels [J]. IEEE J.Ocean.Eng, 1996, 21 (4): 505-512.
    [213] J.Trubuil, G.Lapierre, et al. Real-time high data rate acoustic link based on spatio-temporal blind equalization: The TRIDENT acoustic system [C]. Proc.Oceans '02 MTS/IEEE, vol.4, 2438-2443.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700