用户名: 密码: 验证码:
长春花属生物碱抗肿瘤药物的半合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长春花属生物碱(Vica Alkaloids)是从植物长春花Catharanthus roseus (L.) G.Don中提取得到或者在此基础上进行结构修饰得到的一类生物碱的总称,其中的多种活性结构具有很好的抗肿瘤活性,因而对长春花属生物碱进行高活性化合物的筛选以及在此基础上对其进行结构修饰以期得到活性更高、副作用更小的新的结构备受关注。长春瑞滨正是通过半合成得到的长春花属高效抗肿瘤药物的代表。
     本论文首先建立了从长春碱合成长春瑞滨的合成及纯化工艺。长春碱在以乙醚为反应溶剂,CO2Cl2与DMF反应生成的复合物为脱水剂,底物浓度为20 mmol/L,25℃下反应得到脱水长春碱,收率为64.52±1.17%,高于文献报道的最大值55%。同时在该合成过程中,首次发现报道了6’-N_b-oxide-leurosine,3, 4-demthyl-leurosine,3- demthyo-leurosine等三种相关的副产物。脱水长春碱在经过溴代及缩环水解反应后,得到长春瑞滨,经过对溴代反应过程的单因素分析,得到了较好的工艺条件,长春瑞滨的收率为66.34±1.44%,与文献报道的最大值64%基本持平。并且,通过研究得到了硅胶干柱结合反向MCI-GEL CHP-20柱分离的新纯化方法,能够得到纯度大于98%的长春瑞滨,分离总收率达到80%,高于传统反复硅胶分离法的70%的收率。
     其次,建立了基于生物信息学的长春花属生物碱抗肿瘤活性虚拟评价的新方法,并对合成过程中的副产物进行了活性评价,发掘其应用价值。研究发现,长春花属生物碱与紫杉醇具有同样的结合部位,都位于微管蛋白1jff的β亚基,该结合部位是一个类似于“凹陷”的区域。长春瑞滨及长春氟宁与1jff的结合“吻合度”最好,通过分子对接分析,将长春氟宁上的F原子用短C链的结构取代,或许会得到活性更好的小分子。6’-N_b-oxide-leurosine也表现出与微管蛋白具有较低的对接能,推测该化合物具有较高的抗肿瘤活性。并且根据其对接结构分析,将3位的-OCH3用C链较长的结构取代,将会得到比6’-N_b-oxide-leurosine活性更高的结构。
     本论文还首次建立了从长春碱化学合成6’-N_b-oxide-leurosine的工艺,反应的总收率为67.61±2.11%。并且建立了该化合物合成长春瑞滨的方法,充分利用该途径能将从H2SO4-VBL合成VNR的合成总收率从44.79±1.58%提高到50.03±1.73%,远大于文献报道的最大值44.8%
     再次,首次利用基于甘草细胞(Glycyrrhiza uralensis Fisch)的生物转化的方法得到了6’-N_b-oxide-leurosine。8.0 g的甘草细胞在250 ml液体培养条件下,最大能将26 mg的硫酸长春碱完全进行转化,转化率为84.5±2.01%,远高于化学合成的收率,为6’-N_b-oxide-leurosine的获取提供了全新的来源途径。
     本文还分别利用混合实验设计、人工神经网络分析技术及响应面分析技术等先进的过程优化技术对长春瑞滨的合成过程进行了优化。得到了合成脱水长春碱的最佳工艺为:底物浓度为15 mmol/L,脱水剂用量与底物摩尔比为50,反应温度20℃,反应时间12 h,萃取剂乙醚与二氯甲烷的体积比10:1。在此条件下的实验收率为70.884±1.12%,比单因素分析后得到的结果64.52±1.17%有较大程度上的提高。最佳溴代反应工艺条件为:NBS用量为1.07 mol/mol(与底物当量比)、TFA用量为22 mL/L(每L反应体系加入的mL数)、反应温度为-68℃。在此工艺条件下,实际的反应收率为70.56±0.33%,高于优化前的66.34±1.44%。
     利用最终优化好的条件,进行反应,将从硫酸长春碱合成长春瑞滨的合成总收率从44.79±1.58%提高到50.01±1.27%,高于文献报道的最大值44.8%,而若充分考虑6’-N_b-oxide-leurosine的补充途径,合成过程总收率将达到55.21±1.73%,大大高于文献报道的最大值。
     最后,以小试工艺为基础,对以长春碱为原料合成长春瑞滨及其纯化过程进行了三个批次的放大。在分别投料20 g、25 g、30 g的三个批次实验中,从H2SO4-VBL合成VNR酒石酸盐,合成及纯化过程的总收率为36.35±0.10%,与小试工艺的44.16±1.38%基本持平,但远大于文献报道的最大值30.5%。
Vica Alkaloids including the alkaloids extract from Catharanthus roseus (L.) G.Don and its smi-synthetical alkaloids. Most of them have antitumour activities. The synthesis of derivatives (partial or total) and filtrated from Vica Alkaloids has been the subject of a considerable amount of work in the past years to find new structures with higher antitumour activities and lower side effects, such as vinorelbine.
     Firstly, we established the methods of synthesize vinorelbine from vinblastine. Particular analysis has been done of many facors under the process of synthetize anhydrovinbastine from vinblastine sulfate. We found that the yield reaches 64.52±1.17% under the reaction conditions are: vinblastine is dissolved in aether and the concentration is 20 mmol/L; the reaction reagent is the reactant of CO2Cl2 and DMF; the reaction temperature is 25℃.This yield is higher than those reported before. And we identified serveal important by-products, which are first reported in the process of synthetize anhydrovinbastine. The most important structures are 6’-N_b-oxide-leurosine, 3-demthyo- leurosine and 3, 4- demthyl- leurosine.
     We can obtain vinorelbine from anhydrovinblasitne through halogenation and hydroly- zation. After particular analysis of halogenation, the preferable reaction conditions were obtained and the yield reached 66.34±1.44%, as high as those reported before (64%). We can obtain 98% vinorelbine using twice column chromatography, silica gel dry-column and MCI-GEL CHP-20. The yield of purification reaches 80%, is higher than reported before (70%).
     Secondly, we established the methods of filtrated the structures with high activities and how to synthesis its derivatives. Using virtual screen technology that bases on numerator docking, we found that Vica Alkaloids and taxol have the same integrate position with microtubule protein 1jff. Vinorelbine and vinoflunine are the wonderful structures integrate with this hollow area. The formed compounds are steady. Based on our research, we supposed that we can obtain higher antitumour activities structures when replaced F atom with some kind of short carbochain structures. 6’-N_b-oxide-leurosin also is a considerate sructure of integrate with the hollow area and a certain extent the formed compounds are steady. We supposed that 6’-N_b-oxide-leurosin also with high antitumour activities. Based on the structure analysis, we concluded that the antitumour activities would increase when replaced methoxy at 3 position with some kind of long carbochain structures.
     And we firstly established the method to synthesize 6’-N_b-oxide-leurosin from vinblastine, the yield reaches 67.61±2.11%. And the method of synthesizes vinorelbine from 6’-N_b-oxide-leurosin also established.
     Some researches were done in a bran-new field of biotransformation of vinblastine. We found that Glycyrrhiza uralensis Fisch can directional transform vinblastine to 6’-N_b- oxide-leurosine. The yield is higher than chemical method reaches 84.5±2.01% and 8.0 g plant cell can biotransformation 26 mg vinblastine. This is a bran-new route of obtained 6’-N_b-oxide-leurosine.
     Process optimization has also been done by the new technologies, which are mixture design, ANN and RSM. Through these models we obtained the confirmed optimum reaction conditions: the concentration of vinblastine is 15 mmol/L; the stechiometric proportions between the dehydrate reagent and vinblastine is 50; the reaction temperature is 20℃and the duration is 12 hours; The extraction reagent after reaction is the mixture of aether and methylene chloride (V/V=10). The yield of anhydrovinblastine reaches 70.88%±1.12%, higher than before optimization (64.52±1.17%). And the yield of obtained vinborelbine from anhydrovinblastine reaches 70.56±0.33% after optimizatd by RSM, is also higher than before optimization (66.34±1.44%).
     After the process optimization, the total yield reaches 50.01±1.27% from vinblastine sulfate to vinorelbine, is high than before reported (45%). The yield can increase to 55.21±1.73% when the 6’-N_b-oxide-leurosine route is considerate.
     Finally, we magnified the mass of vinblastine sulfate to 20~30 g under the optimizated conditions. The amplificatory yield reaches 36.35±0.10% and lower than before magnification. But the yield is much higher than before reported (30.5%). The amplificatory results are satisfied.
引文
[2] Parkin DM, Bray F, Ferlay J, et al. Estimating the world cancer burden: globocan 2000 [J]. International Journal of Cancer. 2001, 62: 1356-1362.
    [3]董志伟,乔友林,李连弟,等.中国癌症控制策略研究报告[J].中国肿瘤. 2002, 11: 250-260.
    [4]李连弟,鲁凤珠,张思维,等.中国恶性肿瘤死亡率20年变化趋势和近期预测分析[J].中华肿瘤杂志. 1997, 19: 3-9.
    [5] Lee KH. Current developments in the discovery and design of new drug candidates from plant natural products leads [J]. Journal of Natural Products. 2004, 67: 273-283.
    [6]方晓阳,肖家军.喜树碱类药物四十年研发的回顾[J].医学与哲学. 2005, 26: 30-31.
    [7] Dagher R, Li N, Abraham S, et al. Approval summary: docetaxel in combination with prednisone for the treatment of androgen-independent hormone refractory prostate cancer [J]. Clinical Cancer Research. 2004, 24: 8147-8151.
    [8] Ashizawa T, Asada M, Kobayashi E, et al. Combination effect of Navelbine with cisplatine against murine P388 leukaemia and human lung carcinoma xenografts in mice [J]. Anticancer Drugs. 1993, 4: 577-583.
    [9] Adams DJ, Knick VC. P-glycoprotein mediated drug resistance to 5'-nor- anhydrovinblastine [J]. Invest New Drugs. 1995, 13: 13-21.
    [10] Rowinshy EK, Noe DA, Trump DL, et al. Pharmacokinetic, bioavailability and feasibility study of vinorelbine in patients with solid tumours [J]. Journal of Clinical Oncology. 1994, 12: 1754-1763.
    [11]杨波,钟惠民,徐泳吉.野生植物长春花的营养成分[J].氨基酸和生物资源. 2003, 25: 12-13.
    [12]蔡连捷,闫有旺.长春花的栽培及其利用[J].特种经济动植物. 2003, 12: 19-20.
    [13] Noble RL, Beer CT, Cutts JH. Further biological activities of vincaleuk -oblastine: an alkaloid isolated from Vinca rosea (L.) [J]. Biochemical Pharmacology. 1959, 1:347-348.
    [14] Svoboda GH. Alkaloids of Vica rosea Linn.Ⅸ. Extraction and characterization of leurosidine and leucocristine [J]. Lloyda. 1961, 24: 173-178.
    [15]王非,李雷鸿,孙家宝,等.人为采收后长春花中长春碱含量的动态变化[J].东北林业大学学报. 2005, 33: 42-44.
    [16] Brossi A, Suffness M. Antitumor Alkaloids from Catharanthus roseus (L.) The Alkaloids [M]. Academic Press Inc: San Diego, 1990.
    [17] Pezzuto JM. Plant-Derived Anticancer Agents [J]. Biochemical Pharmacology. 1997, 53: 121-133.
    [18] Andriamialisoa RZ, Langlois N, Potier P, et al. Structure de la catharinine: "alcaloie" bis-indolique isoléde plusieurs espèces de catharanthus [J]. Tetrahedron Letters. 1976, 17: 2849-2852.
    [19] Jacquesy JC, Fahy J. Biomedical chemistry: applying chemical principles to understanding and treatment of disease [M]. Joun Wiley and Sons Inc: New York, 2000.
    [20] Donehower RC, Rowinsky EK. Anticancer drugs derived from plants [M]. J B Lippincott Company: Philadelphia, 1993.
    [21] Johnson SI, Amstrong JG, Gorman M, et al. The Vinca alkaloids: a new class of oncolytic agents [J]. Cancer Research. 1996, 23: 1390-1427.
    [22] 21. Morman R, Farnsworth P. The pharmacognosy of the periwinkles, Vinca and Catharanthus [J]. Lloytlia. 1961, 24: 105-138.
    [23]卢懿,侯世祥,陈彤.长春花抗癌成分长春新碱研究的进展[J].中国中药杂志. 2003, 28: 1006-1008.
    [24] Fahy J, Duflos A, Ribet JP, et al. Vica alkaloids in superacdic media: a method for creating a new family of antitumour derivatives [J]. Journal of Amercian Chemical Society. 1977, 119: 8576-8577.
    [25] Lobert S, Vulevic B, Correia JJ. Interaction of Vica alkaloids with tubuline: a conparison of vinblastine, vincristine and vinorelbine [J]. Biochemistry. 1996, 35: 6806-6814.
    [26] Jordan MA, Wilson L. Kinetic analysis of tubulin exchange at microtubule ends at low vinblastine concentrations [J]. Biochemistry. 1990, 29: 2730-2739.
    [27] Na GC, Timasheff SN. In vitro vinblastine-induced tubulin paracrystals [J]. Journal of Molecular Biology. 1982, 187: 61-73.
    [28] Tellingen VO, Sips JM, Beijnen JH, et al. Pharmacology, bio-analysis and pharmacokinetics of the Vinca alkaloids and sem-synthetic deritatives [J]. Anticancer Research. 1992, 12: 1699-1716.
    [29] Zhou XJ, Rahmani R. Preclinical and clinical pharmacology of Vica alkaloids [J]. Drug. 1992, 44: 1-16.
    [30]贾彩云,纪人明.抗肿瘤新药-艾西克在临床应用中的毒副反应[J].实用肿瘤学杂志. 1994, 4: 56-60.
    [31] Zhang HZ, Dong ZH, She J, et al. Modern study of traditional chinese medicine VolⅡ[M]. Beijing: Academic Press, 1991: 1020-1035.
    [32] Mangeney P, Andriamialisoa RZ, J L, et al. 5'-Nor-anhydrovinblastine: Prototype of a new class of vinblastine derivatives [J]. Tetrahedron. 1979, 35: 2175-2179.
    [33]张湘茹,孙燕.新抗肿瘤药物异长春花碱[J].北京医学. 1992, 14: 171-175.
    [34] Goa KL, Faulds D. Vinorelbine, a review if its pharmacological properties and clinical use in cancer chemotherapy [J]. Drugs Aging. 1994, 5: 200-234.
    [35] Kruczynski A, Barrent JM, Etievant C, et al. Antimitotic and tubulin-interacting properties of vinflunine, a novel fluorinated Vica alkaloids [J]. Biochemical Pharmacology. 1998, 55: 635-648.
    [36] Jacquesy JC, Berrier C, Zunino F, et al. Fluorination in superacids: a novel access to biologically active compounds [J]. Journal of Fluorine Chemistry. 2002, 114: 139-141.
    [37] Ades EW, J CG. Cytotoxic composition of transferrin coupled to Vica alkaloids [P]. US Patent No. 4522750. 1985.
    [38] Johnson SAN. Vinorelbine: an update and review of activity [J]. Clinical Oncology. 1996, 8: 353-357.
    [39] Fahy J. Modifications in the upper or velbenamine part of the Vinca alkaloids have major imolications for tubulin interacting activities [J]. Current Pharmaceutical. 2007, 7: 1181-1197.
    [40] Bruce S, James K, Laerence M. Anhydrovinblastine for the treatment of cancer [P]. US Patent No. 6226376. 2001.
    [41] Bruce S, James K, Laerence M. Anhydrovinblastine for the treatment of cervical and lung cancer [P]. CP: 2199065. 1997.
    [42] Longlois N, Gueritte F, Langlois Y, et al. Application of a modification of the polonovski reaction to the synthesis of vinblastine-type alkaloids [J]. Journal of the American Chemical Society. 1976, 98: 7017-7024.
    [43] Raucher S, Bray BL, R L. Synthesis of catharanthine, anhydro- vinblastine, and anhydrovincovaline [J]. Journal of the American Chemical Society. 1987, 109: 442-446.
    [44] Fahy J, Boullay VT, C BD. New method of synthesis of Vinca alkaloid derivatives [J]. Bioorganic & Medicinal Chemistry Letters. 2002, 12: 505-507.
    [45] Tabakovic I, Gunic E. Anodic fragmentation of catharanthine and coupling with vindoline: formation of anhydrovinblastine [J]. Journal of Organic Chemistry. 1997, 62: 947-953.
    [46] Vukovic J, E GA. Production of alkaloid dimers using ferric ion [P]. US Patent No. 4778885. 1988.
    [47]丁亚芳,包永明,安利佳.脱水长春碱合成新工艺[J].中国新药杂志. 2006, 15: 1087-1089.
    [48] Hirata K, Akagi T, Honda M, et al. Catharanthine oxidation in flavin mononucleotide-mediated catharanthine-vindoline coupling reaction for synthesis of dimeric indole alkaloids under near-ultraviolet light [J]. Journal of Bioscience and Bioengeering. 1999, 87: 781-786.
    [49] Goodbody AE, Tsuyoshi E, Vukovic J, et al. Enzymatic preparation of 3', 4'-anhydrovinblastine [P]. US Patent No. 4918011. 1990.
    [50] Sottomayor M, DiCosmo F, Barcelo AR. On the fate of catharanthine and vindoline during the peroxidase-mediated enzymatic synthesis of 3',4'- anhydrovinblastine [J]. Enzyme and Microbial Technology. 1997, 21: 543-549.
    [51] Goodbody AE, Endo T, Vukovic J, et al. Enzymic coupling of carharanthine and vindoline to from 3',4'-anhydrovinblastine by horseradish peroxidase [J]. Planta Medical. 1988, 54: 136-140.
    [52] Hardouin C, Doris E, Rousseau B, et al. Concise synthesis of anhydrovinblastine from leurosine [J]. Organic Letters. 2002, 4: 1151-1153.
    [53] Hardouin C, Doris E. elective deoxygenation of leurosine: concise access to anhydrovinblastine [J]. Journal of Organic Chemistry. 2002, 67: 6571-6574.
    [54] Atta-ur-Rahman , Perveen S. Synthesis of anhydrovinblastine from leurosine [J]. Journal of Natural Products. 1988, 51: 1271-1272.
    [55]祖元刚,罗猛,牟潘松,等.长春花生物碱成分及其药理作用研究进展[J].天然产物研究与开发. 2006, 18: 325-329.
    [56]陈永江,陈洪明,李莉,等.酒石酸长春瑞滨的合成[J].中国医药工业杂志. 1999, 30: 6-8.
    [57] Teljse H. 3', 4'-anhydrovinblastine and its acid addition salts [P]. Hungary Pat. No. 20601. 1981.
    [58]包俊敏,夏德生,陈云华.合成长春瑞滨的方法[P]. CN 1552716 A. 2004.
    [59] Neuss N, Neuss MN. Therapeutic use of bisindole alkaloids from Catharanthus roseus in the alkaioids [M]. Academic Press: New York, 1990.
    [60] Binet S, Chaineau E, Fellows A, et al. Immounofluorescence study of the action of Naverelbine, vincristine and vinblastine on mitotic and axonal microtubules [J]. International Journal of Cancer. 1990, 46: 262-266.
    [61] Cros S, Wright M, Morimoto M, et al. Experimental antitumour activity of Navelbine [J]. Semin Oncology. 1989, 16: 15-20.
    [62] Edelstine MP, Wolfe LA, Duch DS. Protentiation of radio-therary by Navelbine in a human non-small cell lung cancer line. [J] Proc AACR. 1995, 36: 36-37.
    [63] Maral N, Bourut C, Chenu E, et al. Experimental antitumour activity of 5'-nor-anhydrovinblastine [J]. Cancer Letters. 1984, 22: 49-54.
    [64] Mangeney P, Andriamialisoa RZ, Langlois N, et al. A new class of antitumor compounds: 5'-nor and 5', 6'-seco derivatives of vinblastine-type alkaloids [J]. Journal of Organic Chemistry. 1979, 44: 72-85.
    [65] Potier P. Synthesis of the antitumor dimeric indole alkaloids from catharanthus species [J]. Journal of Natural Products. 1980, 43: 72-85.
    [66] Langlois N, Langlois Y, Andriamialisoa RZ, et al. Nor bis-indole compounds usable as medicaments [P]. US Patent No. 4307100. 1979.
    [67] Schmidt B, Kutney J, Mayer L. Use of anhydrovinblastine [P]. US Patent No. 6011041. 2000.
    [68] Andriamialisoa RZ, Langlois N, Langlois Y, et al. Composés antitumoraux du groupe de la vinblastine: nouvelle méthode de préparation [J]. Tetrahedron. 1980, 36: 3053-3060.
    [69] Moyano N, Parana ER, Iturraspe J, et al. Process for the production of 5'-nor-anhydrovinblastine ditartrate from plants of genus catharanthus [P]. Euro. Pat. No. EP 1118616A1. 2001.
    [70] Conrad RA, Cullinan GJ, Gerzon K, et al. Structure-activity relationships of dimeric Catharanthus alkaloids. 2. Experimental antitumor activities of N-substituted deacetylvinblastine amide (vindesine) sulfates [J]. Journal of Medical Chemistry. 1979, 22: 391-400.
    [71] Barnett CJ, Cullinan GJ, Gerzon K, et al. Structure-activity relationships of dimeric Catharanthus alkaloids. 1. Deacetyl vinblastine amide (vindesine) sulfate [J]. Journal of Medical Chemistry. 1978, 21: 88-96.
    [72]韩云,于南江.长春地辛在晚期非小细胞肺癌联合化疗中的疗效观察[J].辽宁药物与临床. 2000, 3: 115-116.
    [73] Jacquesy JC. Reactivity of Vinca alkaloids in superacid: An access to vinflunine, a novel anticancer agent [J]. Journal of Fluorine Chemistry. 2006, 127: 1484-1487.
    [74] Kruczynski A, Poli M, Dossi R, et al. Anti-angiogenic, vascular-disrupting and anti-metastatic activities of vinflunine, the latest vinca alkaloid in clinical development [J]. European Journal of Cancer,. 2006, 42: 2821-2832.
    [75] Ishihara K, Hamada H, Hirata T. Biotransformation using plant cultured cells [J]. Journal of Molecular Catalysis B: Enzymatic. 2003, 23: 145-170.
    [76]卢艳花,王剑文,魏东芝.天然药物的生物转化[M].化学工业出版社:北京, 2006.
    [77] Jokanovic M. Biotransformation of organophosphorus compounds [J]. Toxicology. 2001, 25: 139-160.
    [78] Bosetti A, Beilen JB, Preusting H, et al. Production of primary aliphatic alcohols with a recombinant Pseudomonas strain, encoding the alkane hydroxylase enzyme system [J]. Enzyme and Microbial Technology. 1992, 14: 702-708.
    [79]朱关平,林隆泽,潘文君,等.生物转化喜树碱为10-羟基喜树碱的研究[J].科学通报. 1978, 23: 761-762.
    [80]金凤燮,鱼红闪,卢明春,等.生物转化法生产高附加值生理活性物质的开发[J].辽宁医学. 2002, 16: 33-35.
    [81]陈有根,余伯阳.微生物转化青蒿素为9α-羟基青蒿素的条件优化[J].药物生物技术. 2001, 8: 90-93.
    [82]吴再坤,钟宏,王微宏,等.手性药物的活性分析与生物转化[J].化工技术与开发. 2006, 26: 163-171.
    [83] Goodbody AE, Endo T, Vukovic J, et al. The coupling of catharanthine and vindoline to from 3',4'-anhydrovinblastine by haemoproteins and haemin [J]. Planta Medical. 1988, 54: 210-214.
    [84] Sottomayor M, López SM, DiCosmo F, et al. Purification and characterization ofα-3',4'-anhydrovinblastine synthase (peroxidase-like) from Catharanthus roseus (L.) G. Don [J]. FEBS Letters. 1998, 428: 299-303.
    [85] Kutney JP, Aweryn B, Choi LSL, et al. Alkaloid production in Catharanthus roseus cell cultures: biotransformation studies with 3',4'-anhydrovinblastine [J]. Heterocycles. 1981, 16: 1169-1171.
    [86] Stuart KL, Kutney JP, Worht BR. Studies on the synthesis of bisindole alkaloids: enzyme catalysed formation of leurosime [J]. Heterocycles. 1978, 6: 1015-1021.
    [87]李洪林,沈建华.虚拟筛选与新药发现[J].生命科学. 2005, 12: 125-131.
    [88]赵丽琴,肖军海,李松.分子对接在基于结构药物设计中的应用[J].生物物理学报. 2002, 14: 263-269.
    [89] Rarey DM, Kramer B, Lengauer T, et al. A fast flexible docking method using an incremental construction algorithm [J]. Journal of Molecule Biology. 1996, 261: 470-489.
    [90] Morris GM, Goodsell DS, Halliday RS, et al. Automated docking using a lamarckian genetic algorithm and empirical binding free energy function [J]. Journal of Computer Chemistry. 1998, 19: 1639-1662.
    [91] Jones G, Willett P, Glen RC, et al. Development and validation of a genetic algorithm for flexible docking [J]. Journal of Molecule Biology. 1997, 267: 400-403.
    [92] Li H, Li C, Gui C, et al. GAsDock: a new approach for rapid flexible docking based on an improved multi-population genetic algorithm [J]. Bioorganic & MedicinalChemistry Letters. 2004, 14: 170-176.
    [93] Kuntz ID, Blaney JM, Oatley SJ, et al. A geometric approach to macromolecule-ligand interactions [J]. Journal of Molecule Biology. 1982, 161: 629-637.
    [94] Silvia S, Efrem C, Gianluca DP. Polymeric hydrophobic membranes as a tool to control polymorphism and protein–ligand interactions [J]. Journal of Membrane Science. 2006, 131: 1149-1153.
    [95] Eriksson L, Johansson E, Wikstrom C. Mixture design--design generation, PLS analysis, and model usage [J]. Chemometrics and Intelligent Laboratory Systems. 1998, 43: 1-24.
    [96] Cohran WG, Cox GM. Experimental Design [M]. Wiley Publishing Ltd.: New York, 2002.
    [97] Khuri AL, Cornell JA. Response Surface Design and Analysis [M]. Marcel Dekker Publishing Ltd.: New York, 1987.
    [98] Beres DL, Hawkins DM. Plackett-Burman technique for sensitivity analysis of many-parametered models [J]. Ecological Modelling. 2001, 141: 171-183.
    [99] Montgomery DC. Response Surface Methodology: Design and Analysis of Experiments [M]. Wiley Publishing Inc.: New York, 2002.
    [100] Ott L. An introduction to statistical methods and data analysis [M]. PWS-Kent Publishing Co.: Boston, MA, 1988.
    [101] Ferreira SLC, Bruns RE, Ferreira HS, et al. Box-Behnken design: An alternative for the optimization of analytical methods [J]. Analytica Chimica Acta,. 2007, 597: 179-186.
    [102] Gunawan ER, Baeri M, Raham MA, et al. Study on response surface methodlogy of lipase-catalyzed synthesis of plant-based wax ester [J]. Enzyme and Microbial Technology. 2005, 37: 739-744.
    [103] Srinivasa PC, Ravi R, Tharanathan RN, et al. Effect of storage cinditions on the tensile properities of eco-friendly chitosan films by response surface methodology [J]. Journal of Food Engineering. 2007, 80: 184-189.
    [104] Nath A, Chattopadhyay PK. Optimization of oven toasting for improving crispness and other quality attributes of ready to eat potato-soy snack using response surfacemethodology [J]. Journal of Food Engineering. 2007, 80: 1282-1292.
    [105] Hill WJ, Hunter WG. A review of response surface methodology: a literature review [J]. Technometrics. 1966, 8: 571-590.
    [106]傅剑峰,李湘中,季民.响应面法分析Ti/TiO2电极光电催化富里酸的过程[J].中国环境科学. 2006, 26: 718-722.
    [107] Mead R, Pike DJ. A review of response surface methodology from a biometrics viewpoint [J]. Biometrics. 1975, 31: 803-851.
    [108] Myers RH, Khuti AI, Carter WH. Response surface methodology: 1966-1988 [J]. Thchnometrics. 1989, 31: 560-582.
    [109] Carter WH, Wampler GL, Stablein DM. Review of the application of response surface methodology in the combinnation therapy of cancer [J]. Cancer Treatment Reports. 1983, 70: 133-140.
    [110] Hopfield JJ, Bordy CD. Sepatating objects and neural computation separation des objets et calcul neuronal [J]. Computes Rendus of Biologies. 2003, 326: 219-222.
    [111] Asthana RGS. Evolutionary Algorithms and Neural Networks [J]. Soft Computing and Intelligent Systems. 2000, 12: 111-136.
    [112] Quinlan PT. Structural change and development in real and artificial neural networks [J]. Neural Networks. 1998, 11: 577-599.
    [113] Shi WJ, Wang XZ, Zhang DQ. A novel FOCAL technique based on BP-ANN [J]. Optik-International Journal for Light and Electron Optics. 2006, 117: 145-150.
    [114]冷飞. BP网络及其应用研究[J].中国现代教育装备. 2006, 46: 55-57.
    [115]胡德文,王正志,王耀男,等.神经网络自适应控制[M].国防科技大学出版社:湖南长沙, 2006.
    [116]蒋益虹,冯雷.人工神经网络方法在红曲杨梅果酒发酵工艺优化中的应用[J].农业工程学报. 2003, 19: 140-143.
    [117]王留成,王福安,宋建池,等.改进人工神经网络法进行二(2,2,6,6-四甲基-哌叮基)马来酸酯合成反应工艺参数优化[J].高校化学工程学报. 2004, 18: 362-366.
    [118]崔升,沈晓东,林本兰.利用BP神经网络算法优化纳米Fe3O4的合成工艺[J].功能材料与器件学报. 2005, 11: 435-439.
    [119]吕洁丽,杨中汉,袁珂.新型凝胶树脂及大孔吸附树脂在中草药成分分离纯化中的应用[J].中药材. 2005, 23: 239-241.
    [120] Prakash V, Timasheff SN. Mechanism of interaction of Vica alkaloids with tubulin: catharanthine and vindoline [J]. Biochemistry. 1991, 12: 811-817.
    [121] Singer GC, Himes RH. Cellular uptake and tubilin binging properties of four Vinca alkaloids [J]. Biochemical Pharmacology. 1992, 21: 1113-1121.
    [122] Dacid PT, Simon C, Pantaloni D. Effects of antimitotic drugs in tubulin GTPase activity and self-assembly [J]. Journal of Biology Chemistry. 1979, 1: 11686-11702.
    [123] Sackett DL, Varma JK. Molecular mechanism of colchicine action: induced local unfolding ofβ-tubulin [J]. Biochemistry. 1993, 1: 13560-13565.
    [124]张英锋,范林.抗癌药物紫衫醇的制备、抗癌机理和应用前景[J].化学教育. 2007, 14: 299-315.
    [125] Srivastava V, Negi AS, Kumar JK, et al. Plant-based anticancer molecules: a chemical and biological profile of some important leads [J]. Bioorganic & Medicinal Chemistry. 2005, 13: 1772-1781.
    [126] El-Sayed A, Handy GA, Cordell GA. Catharanthus alkaloids, XXXVIII, confirming srtuctural evidence and antineolplastic activity of the bisindole alkaloids leurosine-Nb'-oxide, roseadine and vindolicine from Catharanthus roseus [J]. Journal of Natural Products. 1983, 46: 517-527.
    [127] Lavielle G, Hautefaye P, Schaeffer C, et al. New amino phosphonic acid derivatives of vinblastine: chemistry and antitumor activity [J]. Journal of Medicinal Chemistry. 1991, 34: 1998-2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700