用户名: 密码: 验证码:
红曲拮抗高脂膳食诱导非酒精性脂肪肝大鼠分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     非酒精性脂肪肝(non-alcoholic fatty liver disease,NAFLD)仅次于病毒性肝炎的第二大肝病,已经成为我国常见的慢性肝病之一,其发病率大约为14~20%,严重危害人民生活健康。NAFLD以弥漫性肝细胞大泡性脂肪变为主要特征的临床病理综合征,包括单纯性脂肪肝及其演变的脂肪性肝炎(NASH)和肝硬化。研究发现遗传易感性、胰岛素抵抗、肠源性内毒素血症以及PPARα与其发病关系密切。其中胰岛素抵抗是关键的始动因素,肠源性内毒素血症以及PPARα的表达下调作为“二次打击”,最终造成脂肪在肝脏大量蓄积出现脂肪肝的病理改变。
     祖国医学虽无“脂肪肝”的病名,《内经》中有“肝满”、“肝胀”、“胁痛”等记载,符合脂肪肝的临床表现。其病位在肝,与胆、脾、胃、肾均有关。多因过食肥甘,或饮酒过度,或感受湿热疫毒,或情志失调,或久病体虚,导致痰湿瘀阻互结,痹阻肝脏脉络而成。红曲性味甘、温、无毒,归肝、脾胃、大肠经,具有健脾消食、活血化淤之功效;现代药理研究发现其有效成份之一的洛伐他汀,具有较为理想的抗炎、降胆固醇的功效,已在临床广泛利用。因此,本课题组推测,红曲可能具有较好的抗NAFLD的效应,对红曲抗NAFLD的分子机制深入研究,是中药创新的切入点。
     本项目在中医药理论指导下,结合现代医学研究进展,通过高脂饮食诱导胰岛素抵抗NAFLD大鼠模型,继而予以不同剂量红曲干预8周,以绞股蓝为阳性对照组,采用HE染色、全自动生化分析、胰岛素-血糖钳夹、RT-PCR、Western-blot、ELISA等实验技术检测各组大鼠血脂、肝脏生化、胰岛素抵抗以及TNF-α、IL-6、IL-10、PPARα等指标的变化,探讨红曲治疗NAFLD的效应及其作用机制,为提高中医药防治水平提供实验依据。
     目的
     观察红曲对胰岛素抵抗,肝脏生化、血脂改变以及TNF-α、IL-6、IL-10、PPARα等指标的影响,探讨胰岛素抵抗、肠源性内毒素血症以及过氧化物增殖激活受体在大鼠NAFLD发病中的作用及红曲拮抗NAFLD的分子机制。
     方法:
     48只SD大鼠,雌雄各半,适应性喂养1周后,按体重随机分为6组,正常组、模型组、绞股蓝组、红曲低剂量组、红曲中剂量组、红曲高剂量组,每组8只。正常组予普通饲料,同步饲养8周;其余各组予高脂饲养喂养,并分别予等剂量生理盐水、绞股蓝水溶液、低、中、高剂量红曲水溶液灌胃,连续8周。第9周,处死所有大鼠,取肝脏及腹主动脉血备用。
     HE染色、光镜下对各组大鼠肝脏组织病理学评分,从形态学上分析NAFLD大鼠及红曲干预后肝脏组织结构的变化;全自动生化分析仪分析血清ALT、AST、及血脂变化;放免法检测肝纤四项;正常葡萄糖-高胰岛素钳夹技术评估胰岛素抵抗变化,以观察红曲改善胰岛素抵抗的效应;ELSIA及RT-PCR技术检测各组大鼠TNF-α、IL-6、IL-10水平变化,分析红曲对TNF-α、IL-6、IL-10的影响,以观察红曲对上述细胞因子的调控机制;Western-blot、RT-PCR技术检测各组大鼠肝脏PPARαmRNA和蛋白水平变化,从蛋白表达水平和从基因转录水平分析NAFLD大鼠肝脏PPARα的情况及红曲对其进行治疗后的肝脏PPARα的影响。
     统计学处理:计量资料用平均值±标准差((?)±s)表示,数据处理采用SPSS11.5统计软件包进行单因素方差分析(One-way ANOVA);计数资料采用秩和检验。P<0.05有统计学意义。
     结果
     1红曲对NAFLD大鼠的症状、体征的影响
     正常组大鼠表现为体重自然增加,反应灵活,活动敏捷,皮毛密集而有光泽,紧贴皮肤,鼻、唇湿润清洁,眼睛明亮,大便正常,在饲养过程中未发现死亡。模型组动物表现饮食减少,生长缓慢,皮毛干枯、蓬松且易脱落,活动迟缓,反应迟钝,眼睛、鼻、唇、耳、尾部色淡少泽。各治疗组行为学表现、体重和营养状况等方面与模型组比较有一定改善,无统计学意义P=0.487。以红曲高剂量组改善情况为佳。
     2红曲对NAFLD大鼠肝组织形态学的影响
     从光镜下肝脏病理组织学变化看,模型组大鼠成模率100%,肝脏全小叶脂肪变性,大囊泡性,并有大囊泡融合形成脂囊。基本存在小叶内炎症,以单核细胞、淋巴细胞浸润为主,并可见点状坏死、灶状坏死、碎屑样坏死。绞股蓝组可见部分肝脂肪细胞变性、仅见少许炎性细胞浸润,无汇管区纤维组织增生;红曲高剂量组仅见少许肝细胞脂肪变性,肝小叶内仅有少量炎细胞浸润,无灶状及碎屑样坏死,汇管区纤维组织增生、淋巴细胞浸润不明显。红曲低、中剂量组脂肪变性及炎症程度介于模型组和红曲高剂量组之间。
     3红曲对NAFLD大鼠肝功能、血脂的影响
     ①肝脏酶学变化提示:模型组与各组比较,大鼠存在肝脏酶学异常改变(P=0.000),以ALT、AST升高为主,ALT/AST<1,这表明存在脂肪性肝炎肝细胞坏死的生化改变;予红曲、绞股蓝干预后,ALT、AST呈下降改变。红曲各治疗组与绞股蓝组之间比较,无统计学差异(P=0.337)。
     ②血脂变化表明:模型组与正常组比较,大鼠血脂紊乱,存在总胆固醇以及低密度脂蛋白增高、高密度脂蛋白降低变化,有统计学差异(P=0.001);经红曲干预后,大鼠血脂紊乱无改善;但绞股蓝组出现TG、LDL-C下降以及HDL-C上调的趋势,红曲高剂量组与绞股蓝组比较在CHOL及HDL-C,有统计学差异(P=0.013,P=0.006)。
     4.红曲对NAFLD大鼠肝纤维化的影响
     NAFLD大鼠肝纤四项变化提示,模型组LN、HA、PCⅢ、CⅣ均呈上升趋势;除红曲低剂量组肝纤四项变化呈下降趋势;其余各组肝纤四项变化不明显。模型组与红曲各剂量组、绞股蓝组比较,无统计学差异(P=0.057);红曲无改善大鼠肝纤维化的作用。
     5红曲对NAFLD大鼠胰岛素抵抗的影响
     实验前(即钳夹开始前60min)各组大鼠血糖差别较大,模型组大鼠空腹血糖与正常对照组相比升高(P=0.016),表明NAFLD大鼠存在血糖代谢的障碍。实验开始60min后(即钳夹开始0min)各组血糖均达到稳态(5.3mmol/l),表明葡萄糖钳夹形成。实验过程中各组血糖保持稳定,符合高胰岛素葡萄糖钳夹实验要求。
     高脂饮食组(包括模型组及各治疗组)和正常对照组的空腹血糖水平相近。空腹胰岛素水平高脂饮食组高于正常对照组(P=0.030)。通过钳夹实验发现高脂饮食大鼠的GIR低于普通饮食,说明高脂饮食大鼠对胰岛素敏感性降低,存在胰岛素抵抗。予红曲治疗后,空腹胰岛素水平呈下降趋势,表明红曲具有一定改善胰岛素抵抗的作用。
     6红曲对NAFLD大鼠肠源性内毒素血症的影响
     NAFLD大鼠炎性细胞因子变化结果提示。大鼠TNF-α(pg/ml):正常组38.34±4.57、模型组50.05±3.74、绞股蓝组34.99±7.99、红曲低、中、高剂量组分别为49.40±6.61、44.90±12.04和35.68±7.29,模型组与各治疗组比较,有统计学意义(P=0.000);红曲高剂量组与绞股蓝组比较,无统计学意义(P>0.05);红曲高剂量组与低、中剂量组比较,有统计学意义(P<0.001);大鼠IL-6(pg/ml):正常组26.65±3.67、模型组34.35±2.36、绞股蓝组30.79±6.50、红曲低、中、高剂量组分别为34.89±7.27、30.75±1.81和28.61±9.51,模型组与各治疗组比较,无统计学意义(P=0.879);红曲高剂量组与低、中剂量组比较,无统计学意义(P=0.929);红曲高剂量组与绞股蓝组比较,无统计学意义(P=1.000)。大鼠IL-10(pg/ml):正常组为36.87±4.58、模型组20.20±5.79、绞股蓝组20.61±7.44、红曲低、中、高剂量组分别为27.65±4.28、25.18±9.82和24.00±11.15,模型组与各治疗组比较,无统计学意义(P=0.326);红曲高剂量组与低、中剂量组比较,有统计学意义(P=0.344);红曲高剂量组与绞股蓝组比较,无统计学意义(P=0.388)。
     ②大鼠TNF-αmRNA表达:正常组0.51±0.50、模型组1.21±0.55、绞股蓝组0.54±0.24、红曲低、中、高剂量组分别为0.63±0.28、0.65±0.50、0.73±0.39,模型组与各治疗组比较,无统计学意义(P=0.143);红曲高剂量组与低、中剂量组比较,无统计学意义(P=0.546);红曲高剂量组与绞股蓝组比较,无统计学意义(P=0.774)。大鼠IL-6mRNA表达:正常组0.29±0.16、模型组0.53±0.18、绞股蓝组0.41±0.22、红曲低、中、高剂量组分别为0.29±0.27、0.50±0.18和0.50±0.14,模型组与各治疗组比较,无统计学意义(P=0.130);红曲高剂量组与低、中剂量组比较,无统计学意义(P=0.390);红曲高剂量组与绞股蓝组比较,无统计学意义(P=0.433)。大鼠IL-10mRNA表达:正常组分别为0.55±0.07、模型组0.32±0.16、绞股蓝组0.40±0.13、红曲低、中、高剂量组分别为0.40±0.13、0.32±0.12和0.33±0.12,模型组与各治疗组比较,无统计学意义(P=0.399);红曲高剂量组与低、中剂量组比较,无统计学意义(P=0.942);红曲高剂量组与绞股蓝组比较,无统计学意义(P=0.809)。
     7红曲对NAFLD大鼠肝脏PPARα的影响
     肝脏PPARαmRNA及蛋白质定性及半定量表达。大鼠PPARαmRNA:正常组1.13±0.01、绞股蓝组1.04±0.01、模型组0.56±0.01、红曲低、中、高剂量组分别为1.03±0.01、1.06±0.01和1.07±0.02,模型组与各治疗组比较,有统计学意义(P=0.000);红曲高剂量组与绞股蓝组比较,无统计学意义(P=0.073);红曲高剂量与低剂量组比较,有统计学意义(P=0.013);红曲高剂量与中剂量组比较,无统计学意义(P=0.275);大鼠PPARα蛋白质:正常组1.01±0.04、绞股蓝组1.42±0.04、模型组0.76±0.01、红曲低、中、高剂量组分别为1.36±0.02、1.42±0.06和1.43±0.07,模型组与各治疗组比较,有统计学意义(P=0.000);红曲高剂量组与绞股蓝组比较,无统计学意义(P=0.965);红曲高剂量与低剂量组比较,无统计学意义(P=0.276);红曲高剂量与中剂量组比较,无统计学意义(P=0.948);
     结论
     1连续8周高脂饮食成功建立了大鼠脂肪肝胰岛素抵抗模型。该模型的病理特征为肝细胞呈大泡性脂肪变性,伴小叶内炎症细胞浸润、一定程度的肝纤维化和线粒体结构的异常;代谢特征为胰岛素抵抗、高胰岛素血症、高脂血症、和血清转氨酶升高。该模型与人类肥胖所致NAFLD的病理和代谢改变极其相似,造模简单、模型成功率高,为研究NAFLD的发病机制,筛选有效的防治药物提供了良好的工具。
     2红曲能有效的拮抗大鼠NAFLD的进程,其作用机制为:
     ①红曲能够改善NAFLD模型大鼠的一般情况:如改善大鼠模型的精神状况、耗食量、以及营养状况。
     ②肝脏病理学观察表明红曲能改善肝脏脂肪变性,减少肝细胞坏死以及炎性细胞浸润。
     ③红曲降低NAFLD模型大鼠血清ALT、AST含量,但无明显降低血甘油三脂的效应。提示红曲能有效减轻炎症反应,保护肝细胞,减轻脂肪性肝炎改变。
     ④红曲降低NAFLD模型大鼠胰岛素抵抗及高胰岛素血症,增加胰岛素敏感性,从而阻断“初次打击”。
     ⑤红曲降低NAFLD模型大鼠组织中TNF-α的表达,改善肠原性内毒素血症,从而抑制选择性胰岛素抵抗,阻断“二次打击”,抑制脂肪肝的发生。
     ⑥红曲能升高NAFLD模型大鼠PPARα的mRNA及其蛋白质的表达,促进脂肪β氧化,减少脂肪肝毒性损害,发挥缓解脂肪肝的效应。
     综上所述,红曲可能通过改善胰岛素抵抗,抑制促炎因子TNF-α表达,发挥抗炎效应;诱导肝细胞PPARα的mRNA和蛋白水平增加,维持体内脂质代谢的动态平衡,发挥多环节、多靶点拮抗NAFLD的药理效应。
Background
     Non-alcoholic fatty liver disease(NAFLD) is the most frequent cause of abnormal liver function tests in China,with an estimated prevalence of 14-20%.It is caused by triglyceride(TG) accumulation within the liver and can either be a benign self-limiting state or a condition associated with steatohepatitis,which may progress to end-stage liver disease requiring liver transplantation.The most common disorder associated with NAFLD is genetic susceptibility,insulin resistance,intestinal endotoxemia,PPARα,an association which holds true in both lean and obese subjects. Insulin resistance is in turn a key element in the pathogenesis of NAFLD,However, the changes of IE and PPARαare "second-hit".Overexpressing lipoprotein lipase (LPL) in the liver in mice results in fatty liver and liver-specific insulin resistance.
     There is no similar title of NAFLD in traditional Chinese medicine.But there is similar manifestation of NAFLD in Internal Classic of Huang Di,such as'hepatic frllness',`liver swelling','hypochondriac pain',and so on.The disease located in the liver,which has a close relationship with gallbladder,spleen,stomach,kidney.The causes of NAFLD are overeating high-fat diet,excessive drinking,suffered from dampness-heat,imbalance of emotional,etc.These factors lead to Phlegm and Blood Stagnation in the liver.The effective components of Monascus are Lovastatin,which has an exact effect in anti-inflammatory and lipid-lowering.The studying team speculate that the Monascus maybe has an effect of anti-NAFLD.So,as a matter of fact,to discuss the mechanism of Monascus is an innovation in studying Chinese herb. Based on the theory of TCM and the research progress of modern medicine,We use high-fat diet to induce an experimental of NAFLD in rats.Each model is intervened by different dose of Monascus for eight weeks.the changes of blood lipid,hepatic biochemical,insulinre sistance,TNF-α、IL-6、IL-10、PPARαin rats are detected by HE stains,automatic biochemistry analyzer,RT-PCR、Western-blot、ELISA.To discuss the mechanism of Monascus is to improving the research level of TCM.
     Objective
     To observe the effect of monascus on insulin resistance,hepatic biochemical, blood lipid and the expression of TNF-α、IL-6、IL-10、PPARαin an experimental rat model of NAFLD induced by high-fat diet.The purpose is to discuss the pathogenic mechanism of NAFLD and the intervention effect of monascus.
     Method
     After one week adaptive feed 48 SD rats were randomly divided into 6 groups with 8 rats in each group:(1)Normal group,(2)Blank group,(3)gynostemae group, (4)low-dose intervention group,(5)medium-dose intervention group,(6)high-dose intervention group.Group 1 was fed by common diet for 8 weeks,the other group were fed by high-fat diet for 8 weeks.Meanwhile,except normal group,the other group were treated by intragastric administration respectively using normal saline,gynostemae and different dose of Monascus once a day.In the ninth week,all the rats are sacrificed.
     The levels of blood lipid,hepatic biochemical,insulinre sistance,TNF-α、IL-6、IL-10、PPARαin rats are detected by HE stains,automatic biochemistry analyzer, RT-PCR、Western-blot、ELISA.
     Statistical analysis:All the data are represented as mean+SE;the statistical analysis was carried out using SPSS 11.5 software followed by One-way ANOVA-test and p-values less than 0.05 were considered as statistical significance.
     Result
     1.To study the influence of monascus on symptoms,physical signs in NAFLD rat model.
     The normal group expressed weigh increased,nose humid and clean,normal stool,no death in experiment.However,Rats in blank group displayed lassitude,no appetite,grew slowly,fur withered,retarded,and so on.Compared with blank group,there is an improvement in the expression of behavior,weight and nutrition in each intervention group(P=0.487).Especial in high-dosage monascus.
     2.The influence ofmonascus on liver morphology in NAFLD rat model
     After the animal experiment gross manifestations such as the changes of liver histomorphology,the successful rate of NAFLD is 100 percent.The liver lobular is characterized by fatty degeneration,monocytes infiltration,lymphocyte infiltration and spotty necrosis in blank group.However,there is little fatty degeneration and a few inflammatory cells infiltration in gynostemae group and high-dose Monascus group.The changes in medium-dose and low-dose Monascus groups lie between the blank group and the high-dose group.
     3.The effects of monascus on serum hepatic function and lipid in NAFLD rat model
     The blank group shown an high levels of ALT and AST from the changes in serum hepatic function.This means that there is a pathology manifestation of hepatic cells apoptosis in NAFLD.After treatment with monascus or gynostemae,the levels of ALT and AST are on the decline.Compared with the intervention group,there is a significant difference in the levels of ALT,AST(P=0.000).There is no significant difference between Monascus and gynostemae group(P=0.337).
     There is an obvious lipid disorder in the blank group.Such changes are characterized by a rise of TG or LDL and fall of HDL.Compared with normal groups, there is a significant difference in blank groups(P=0.001).After treatment with monascus the changes of blood lipid are not obvious.There is no significant difference between Monascus group and Blank group(P=0.256).There is a significant difference in the expression of CHOL and HDL-C between high-dosage monascus group and gynostemae group(P=0.013,P=0.006).
     4.The influence of monascus on liver fibrosis in NAFLD rat model
     From the changes of laboratory examination of liver cirrhosis,We can see clearly that the expression of LN,HA,PCⅢ、CⅣare on the increased in blank group.Except for low-dosage monascusmonasucs,there are no significant changes of above indexes in the other intervention group.There is no significant difference between blank group and high-dosage、medium-dosage、low-dosage monascusgroup and gynostemae(P=0.057).The monasucs has no effect on NAFLD.
     5.The effects of monascus on insulin resistance in NAFLD rat model
     The difference in the changes of blood sugar is great before the experiment began.The BS in blank is higher than that in normal group(P=0.030).This means there is a dysmetabloism of blood sugar in NAFLD rat models.Sixty minutes after the experiment,the changes of blood sugar show a homeostasis(5.3mmol/l),which means the formation of glucose clamp,is success.The changes of BS are still in an state of equilibrium.
     There is an similar change of blood sugar in high-fat diet group(including blank group and intervention group) and normal group.After the the glucose clamp experiment,we found that the GIR in high-fatty diet group is lower than that in the ordinary diet group.This means there is an insulin resistance in high-fat diet group. After treatments with monascus,the levels of insulin are on the decline.The monascus has an exact effect of decrease insulin.
     6.The influence of monascus on intestinal endotoxemia in NAFLD rat model Judgement from the changes in intestinal endotoxemia,The levels in the TNF-α,IL-6 and IL-10 are as follows.In blank group,the expression of above indexes are respectively 50.05±3.74,34.35±2.36 and 20.20±5.79;In the gynostemae group,the levels of above indexes are respectively 34.99±7.99,30.79±6.50 and 20.61±7.44;In the Monascus intervention group,the expression of above indexes are respectively 49.40±6.61、34.89±7.27 and 27.65±4.28;44.90±7.27,30.75±1.81 and 25.18±9.82; 35.68±7.29、28.61±9.51 and 24.00±11.15.Compared with blank group,the difference is obvious(P=0.000) in the changes of TNF-αin different intervention group.There is no significant difference between the blank group and other intervention group in the changes of IL-6 and IL-10(P=0.879,P=0.326).
     The expression of TNF-α,IL-6 and IL-10 mRNA in the liver are as follows.In normal group,the expression of above indexes are 0.51±0.50、0.29±0.16 and 0.55±0.07;In blank group are 1.21±0.55、0.53±0.18 and 0.32±0.16;In gynostema group are 0.54±0.24,0.41±0.22 and 0.40±0.13;In different monascus group are 0.63±0.28、0.65±0.50 and 0.73±0.39;0.29±0.27、0.50±0.18 and 0.50±0.14; 0.32±0.12,0.33±0.12 and 0.47±0.23.There is no significant difference between blank group and other groups in the changes of TNF-α,IL-6 and IL-10 mRNA(P=0.143, P=0.130,P=0.399).
     7.The influence of monascus on PPAR-alpha in NAFLD rat model
     From the qualitative and quantitative expression of PPARαand protein in the liver,we can see clearly the sign that the PPARαmRNA in each group is 1.13±0.01、0.56±0.01、1.04±0.01、1.03±0.01、1.06±0.02、1.07±0.02 respectively.The PPARαprotein is 1.01±0.04、0.76±0.02、1.42±0.04、1.36±0.02、1.42±0.06、1.43±0.07.There is a significant difference between blank group and other groups(P=0.000).But there is no obvious difference between monasucs and gynostemae group(P=0.965).
     Conclusion
     1.NAFLD rat model was induced for eight weeks high-fatty diet.This model is similar to human NAFLD.The pathology was characterized by hyperlipidemia and hepatocytic macrovesicular steatosis,lobular inflammatory cell infiltration and necrosis.The metabolism is characterized by insulin-resistance,hyperinsulinemia, hyperlipoidemia and high levels in serum transaminase.This model is easy to establish,which provide a way to study the mechanism of NAFLD and screen a medicine on treating NAFLD.
     2.The monascus maybe exert an effect on treating NAFLD.The mechanisms are as follows.
     ①The monascus can improve the common condition in NAFLD rat model:For example,improving mentally condition,the consumption of food,nutrition.
     ②The monascus can improve liver adipose degeneration and reduce the hepatic cells apoptosis and inflammatory cell infiltration according to the pathology manifestation of liver.
     ③The monascus can decline the levels of serum ALT and AST in NAFLD rat model.The monascus restrain the changes of NASH by alleviate the inflammatory reaction.However,the monascus has no obvious effect on regulating the changes of blood lipid.
     ④The monascus can block the "first attack"by declining the insulin resistance and hyperinsulinemia and increasing the sensitivity of insulin.
     ⑤The monasucs can improve IE and alleviate selectivity IR by decreasing the levels of TNF-αin NAFLD rat model.So,as a matter of fact;the monascus can block the onset of NAFLD.
     ⑥The monascus can exert an effect on alleviating fatty liver by up-regulating the expression of PPARαmRNA and protein in NAFLD rat model.Furthermore,the monascus can accelerate adiposeβ-oxidation in order to protect liver.
     ALL in all,The monascus may exert an exact effect on alleviating NAFLD by improving insulin r(?)sistance,inhibiting the expression of TNF-αas well as inducing the levels of mRNA and proteins of PPARαand maintaining the balance of lipid metabolism.The high-dose of monascus worth to be recommended.
引文
[1]Ludwig J,Viggiano TR,McGill DB,et al.Nonalcoholic steatohepatitis:Mayo Clinic experiences with a hitherto unnamed disease[J].Mayo Clin Proc,1980,55(7):434-438.
    [2]Farrell GC,Chitturi S,Lau GK,et al.Guidelines for the assessment and management of non-alcoholic fatty liver disease in the Asia-Pacific region:executive summary.J Gastroenterol Hepatol.2007,22(6):775-777.
    [3]Marchesini G,Bugianesi E,Forlani G,et al.Non-alcoholic steatohepatitis in patients cared in metabolic units.Diabetes Res Clin Pract.2004,63(2):143-151.
    [4]陈小舜.脂肪肝辨证治疗的体会-附66例疗效观察[J].浙江中医学院学报,2000,24(2):37.
    [5]裴道灵,周玉琴,张先.辨证论治脂肪肝168例[J].河南中医,2001,21(5):39.
    [6]许剑,涂燕云.辨治脂肪肝经验[J].河南中医,2006,26(11):24-25.
    [7]苗凌娜.中医对脂肪肝的认识与辨证[J].中国现代实用医学杂志,2005,4(8):80.
    [8]潘金友,张爽秋.疏肝化瘀为主治疗脂肪肝[J].辽宁中医杂志,2001,28(9):152.
    [9]张卫东.脂肪肝从脾论治三法[J].中医药临床杂志,2006,18(4):359.
    [10]王雁翔,王灵台,高月求,等.脂肪肝中医证型流行病学调查及其中医病因病机初探[J].中国中西医结合杂志,2005,25(2):126-31.
    [11]王丽萍,洪佳璇.脂肪肝中医临床特点探讨[J].浙江中西医结合杂志,2000,10(5):285-6.
    [12]丁晓东,范建高,徐正婕,等.高脂饮食性脂肪性肝炎大鼠肝脏线粒体损伤和ATP储备改变[J].世界华人消化杂志,2005,13(14):1524-1528.
    [13]张洁,陈晓宇,彭延申,等.大鼠非酒精性脂肪性肝炎肝组织MMP-13及TIMP-1表达变化与肝纤维化的关系[J].世界华人消化杂志,2005, 13(14):512-515.
    [14]张一昕,苗卉,魏翠萍,等.消瘀化痰饮对非酒精性脂肪肝大鼠肝细胞凋亡及相关调控基因的影响[J].中药新药与临床药理,2008,19(5):350-354.
    [15]叶兰,熊陶,黄能慧.脂肝乐抗大鼠脂肪肝脂质过氧化的研究[J].中国药方,2008,19(27):2096-2098.
    [16]赵兴国,李丽.三七总皂苷对大鼠非酒精性脂肪肝模型胰岛素抵抗及瘦素受体表达的影响[J].中西医结合心脑血管杂志,2008,6(6):675-677.
    [17]Issemann I,Green S.Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators.Nature,1990;347(6294):645-650.
    [18]幺立萍.过氧化物酶体增殖因子活化受体研究进展[J].国外医学分子生物学分册,2001,23(1):21-24.
    [19]张军,宋亮年.过氧化物酶体增生物激活受体的结构、功能及其生物学意义[J].国外医学药学分册,1996,23(3):143-148.
    [20]赵守城.过氧化物酶体的生物发生与疾病[J].生命科学,2000,12(4):181-185
    [21]Zieleniak A,W(?)jcik M,Wo(?)niak LA.Structure and physiological functions of the human peroxisome proliferator-activated receptor gamma[J].Arch Immunol Ther Exp(Warsz).2008;56(5):331-345.
    [22]Bogazzi F,Russo D,Locci MT,et al.Peroxisome proliferator-activated receptor (PPAR) gamma is highly expressed in normal human pituitary gland[J].J Endocrinol Invest.2005;28(10):899-904.
    [23]Chao PM,Yang MF,Tseng YN,et al.Peroxisome proliferation in liver of rats fed oxidized frying oil.J Nutr Sci Vitaminol.2005;51(5):361-8.
    [24]Yu S,Rao S,Reddy JK.Peroxisome proliferator-activated receptors,fatty acid oxidation,steatohepatitis and hepatocarcinogenesis.Curr Mol Med.2003;3(6):561-572.
    [25]De Gottardi A,Pazienza V,Pugnale P,et al.Peroxisome proliferator-activated receptor-alpha and -gamma mRNA levels are reduced in chronic hepatitis C with steatosis and genotype 3 infection.Aliment Pharmacol Ther.2006;23 (1):107-114.
    [26]Ota T,Takamura T,Kurita S,et al.Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis[J].Gastroenterology.2007;132(1):282-93.
    [27]Hashimoto T,Cook WS,Qi C,et a/.Defect in peroxisome proliferator-activated receptor alpha-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting[J].J Biol Chem.2000;275(37):28918-28928.
    [28]Cook WS,Jain S,Jia Y,et al.Peroxisome proliferator-activated receptor alpha-responsive genes induced in the newborn but not prenatal liver of peroxisomal fatty acyl-CoA oxidase null mice[J].Exp Cell Res.2001;268(1):70-76.
    [29]Hashimoto T,Fujita T,Usuda N,Peroxisomal and mitochondrial fatty acid beta-oxidation in mice nullizygous for both peroxisome proliferator-activated receptor alpha and peroxisomal fatty acyl-CoA oxidase.Genotype correlation with fatty liver phenotypet[J].J Biol Chem.1999;274(27):19228-19236.
    [30]Yeon JE,Choi KM,Baik SH,et al.Reduced expression of peroxisome proliferator-activated receptor-alpha may have an important role in the development of non-alcoholic fatty liver disease[J].J Gastroenterol Hepatol.2004;19(7):799-804.
    [31]Cha DR,Zhang X,Zhang Y,et al.Peroxisome proliferator activated receptor alpha/gamma dual agonist tesaglitazar attenuates diabetic nephropathy in db/db mice.Diabetes[J].2007;56(8):2036-2045.
    [32]Holness MJ,Greenwood GK,Smith ND,et al.PPARalpha activation and increased dietary lipid oppose thyroid hormone signaling and rescue impaired glucose-stimulated insulin secretion in hyperthyroidism[J].Am J Physiol Endocrinol Metab.2008;295(6):E1380-1389.
    [33]Seo YS,Kim JH,Jo NY,et al.PPAR agonists treatment is effective in a nonalcoholic fatty liver disease animal model by modulating fatty-acid metabolic enzymes[J].J Gastroenterol Hepatol 2008;23(1):102-9.
    [34]Beraza N,Malato Y,Vander Borght S,et al.Pharmacological IKK2 inhibition blocks liver steatosis and initiation of non-alcoholic steatohepatitis[J].Gut.2008;57(5):655-663.
    [35]Ota T,Takamura T,Kurita S,et al.Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis[J].Gastroenterology.2007;132(1):282-293.
    [36]Duan SZ,Ivashchenko CY,Whitesall SE,et al.Hypotension,lipodystrophy,and insulin resistance in generalized PPARgamma-deficient mice rescued from embryonic lethality[J].J Clin Invest.2007;117(3):812-822.
    [37]Carvalho E,Rondinone C,Smith U.Insulin resistance in fat cells from obese Zucker rats-evidence for an impaired activation and translocation of protein kinase B and glucose transporter 4[J].Mol Cell Biochem,2000,206(1-2):7-16.
    [38]Liberman Z,Eldar-Finkelman H.Serine 332 phosphorylation of insulin receptor substrate-1 by glycogen synthase kinase-3 attenuates insulin signaling[J].J Biol Chem.2005,280(6):4422-4428.
    [39]UekiK,Fruman DA,BrachmannSM,etal.Molecular balance between the regulatory and catalytic subunits of phosphoinositide 3-kinase regulates cell signaling and survival[J].Mol Cell Biol,2002,22(3):965-977.
    [40]Garofalo RS,Orena SJ,Rafidi K,et al.Severe diabetes,age-dependent loss of adipose tissue,and mild growth deficiency in mice lacking Akt2/PKB beta[J].J Clin Invest,2003,112(2):197-208.
    [41]Buren J,Liu HX,Jensen J,et al.Dexamethasone impairs insulin signaling and glucose transport by depletion of insulin receptor substrate-1,phosphatidylino-sitol 3-kinase and protein kinase B in primary cultured rat adipocytes[J].Eur J Endocrinol,2002,146(3):419-429.
    [42]Kim YB,Peroni OD,Franke TF,et al.Divergent regulation of Akt1 and Akt2 isoforms in insulin target tissues of obese Zucker rats[J].Diabetes,2000,49(5): 847-856.
    [43]Gupta D,Khandelwal RL.Modulation of insulin effects on phosphorylation of protein kinase B and glycogen synthesis by tumor necrosis factor-alpha in HepG2 cells[J].Biochim Biophys Acta,2004,1671(1-3):51-58.
    [44]Gao Z,Zhang X,Zuberi A,et al.Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes[J].Mol Endocrinol,2004,18(8):2024-2034.
    [45]Nakahara I,Matsuhisa M,Shiba Y,et al.Acute elevation of free fatty acids impairs hepatic glucose uptake in conscious rats[J].Diabetes Res Clin Pract,2004,66(2):109-118.
    [46]Kim JK,Kim YJ,Fillmore JJ,et al.Prevention of fat-induced insulin resistance by salicylate[J].J Clin Invest,2001,108(3):437-446.
    [47]Yuan M,Konstantopoulos N,Lee J,et al.Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta.Science,2001,293(5535):1673-1677.
    [48]Arkan MC,Hevener AL,Greten FR,et al.IKK-beta links inflammation to obesity-induced insulin resistance.Nat Med,2005,11(2):191-198.
    [49]Huang X,Charbeneau RA,Fu Y,et al.Resistance to diet-induced obesity and improved insulin sensitivity in mice with a regulator of G protein signalinginsensitive G184S Gnai2 allele[J].Diabetes.2008;57(1):77-85.
    [50]Hogan SP,Seidu L,Blanchard C,et al.Resistin-like molecule beta regulates innate colonic function:barrier integrity and inflammation susceptibility[J].J Allergy Clin Immunol.2006;118(1):257-268.
    [51]Shi H,Kokoeva MV,Inouye K,TLR4 links innate immunity and fatty acid-induced insulin resistance[J].J Clin Invest.2006;116(11):3015-3025.
    [52]Mantena SK,Vaughn DP,Andringa KK,et al.High fat diet induces dysregulation of hepatic oxygen gradients and mitochondrial function in vivo[J].Biochem J.2009;417(1):183-93.
    [53]倪鸿昌,李俊,金涌,等.大鼠实验性高脂血症和高脂血症性脂肪肝模型研 究[J].中国药理学通报,2004,20(6):703-706.
    [54]陈育尧,石彩霞,陈业豪.大鼠高血脂及脂肪肝模型的建立[J].中药药理与临床,2007,27(5):216-218.
    [55]Brunt EM,Janney CG;Di Bisceglie AM,et al.Nonalcoholic steatohepatitis:aproposal for grading and staging the histological lesions[J].Am J Gastroenterol.1999,94(9):2467-2474.
    [56]王泰龄,刘霞,周元平,等.慢性肝炎炎症活动度及纤维化程度计分方案[J].中华肝脏病杂志,1998,6(4):195-197.
    [57]Tilg H,Moschen AR.Insulin resistance,inflammation,and non-alcoholic fatty liver disease[J].Trends Endocrinol Metab.2008,19(10):371-379.
    [58]Cong WN,Tao RY,Tian JY,et al.The establishment of a novel non-alcoholic steatohepatitis model accompanied with obesity and insulin resistance in mice[J].Life Sci.2008;82(19-20):983-990.
    [59]Samuel VT,Liu ZX,Qu X,et al.Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease[J].J Biol Chem.2004;279(31):32345-32353.
    [60]Bugianesi E,Zannoni C,Vanni E,et al.Non-alcoholic fatty liver and insulin resistance:a cause-effect relationship[J]? Dig Liver Dis.2004;36(3):165-173.
    [61]丘振宇,王亚琴,许喜林.红曲霉的特点及应用研究[J].食品工业科技,2006,27(12):186-188.
    [62]Carswell EA,Old LJ,Kassel RL,et al.An endotoxin-induced serum factor that causes necrosis of tumors[J].Proc Natl Acad Sci USA.1975;72(9):3666-3670.
    [63]Ajuwon KM,Spurlock ME.Adiponectin inhibits LPS-induced NF-kappaB activation and IL-6 production and increases PPARgamma2 expression in adipocytes[J].Am J Physiol Regul lntegr Comp Physiol.2005;288(5):R1220-1225.
    [64]Jarrar MH,Baranova A,Collantes R,et al.Adipokines and cytokines in non-alcoholic fatty liver disease[J].Aliment Pharmacol Ther.2008;27(5):412-421.
    [65]Dolga AM,Nijholt IM,Ostroveanu A,et al.Lovastatin induces neuroprotection through tumor necrosis factor receptor 2 signaling pathways[J].J Alzheimers Dis.2008;13(2):111-122.
    [66]Zieleniak A,W(?)jcik M,Wo(?)niak LA.Structure and physiological functions of the human peroxisome proliferator-activated receptor gamma[J].Arch Immunol Ther Exp(Warsz).2008;56(5):331-345.
    [67]Kersten S,Seydoux J,Peters JM,et al.Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting[J].J Clin Invest.1999;103(11):1489-1498.
    [68]Chao PM,Yang MF,Tseng YN,et al.Peroxisome proliferation in liver of rats fed oxidized frying oil[J].J Nutr Sci Vitaminol.2005;51(5):361-8.
    [69]魏保国,范建高.脂肪肝性肝病的流行现状与自然转归[J].肝脏,2006,11(6):439.
    [70]宋剑南.气在痰瘀相关过程中的物质基础[J].中医杂志,2001,42(4):242-243.
    [71]陈银玲.从现代研究论“痰瘀同源”[J].内蒙古中医药,1994,(2):33-34.
    [72]Chitturis S,Abeygtmasekera S,FarreU GC,et al.NASH and insulin resistance:Insulin hypersecretion and specific association with the insulin resistance syndrome.Hepatology,2002;35(2):373-379.
    [73]Willner,IR,Waters B,Patil SR,et al.Ninety patients thnonalcoholic steatohepatitis:insulin resistance,familial tendency,and severity of disease.Am J Gasterolenterol,2001;96(10):2957-2961.
    [74]Kido Y,Kltllo H,Whiter DJ.Interaction between insulin receptor and IRS proteins in IR / IRS-1+ / - and IR / IRS-2+ / - mice.Diabetes 1999,48(suppl 1):A10.
    [75]Valenti L,Fracanzani AL,Dongiovannl P,et al.tumor necrosis factor alpha promoter polymorphisms and insulin resistance in nonalcoholic fatty liver disease[J].astroenterology,2002;122(2):274-280.
    [76]周迎生,迟家敏.肿瘤坏死因子a在胰岛索抵抗发病机制中的作用[J].国外医 学·内科学分册,2000,27(3):115-118.
    [77]Wang CN,O' Brien L,brindley DN,et al.Effects of cell-permeable ceramides and tumor necrosis factor-alpha on insulin signaling and glucose uptake in 3T3-L1 adipocytes[J].Diabetes,1998,Jan;47(1):24-31.
    [78]Roden M,Price TB,Perseghin G,et al.Mechanism of free fatty acid-induced insulin resistance in humans[J].J Clin Invest,1996 Jun 15;97(12):2859-2865.
    [79]梁坚,祝斌,王婉梅,等.脂肪肝患者肿瘤坏死因子-α与胰岛素抵抗的关系[J].中国基层医药,2004,1(9):1025-1027.
    [80]Kakunla T,Lee Y,Higa M,et al.Leptin,troglitazone,and the expressing of sterol regnhtory element binding proteins in liver and pancreatic islets[J].Proc Natl Acad Sci USA,2000,97:8536.
    [81]Ruan H,Hacohen N,Golub TR,et al.Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes:nucleac factor-kappaB actb ation by TNF-alpha is obligatory [J].Diabetes.2002;51(5):1319.
    [82]成其讯,赵勇摘.IL-6在癌性恶病质中的作用可能是因其降低小鼠脂肪组织3T3-L_1脂肪组织的脂蛋白酯酶活性[J].国外医学·免疫学分册,1993,5:284
    [83]Clafien PA,Camargo CA,JR,et al.Reasetant cytokines and neutrophil adhesion after warm ischemia in cirrhotic and noncirrhotic human livers[J].Hepatology,1996,23:1456
    [84]Fickenseher H,Her S,Kupers H,et al.The interleukin-10 family of cytokines [J].TrendsImmunol,2002,23(3):89-96.
    [85]Kakum u S,Okurnura A,Ishikawa T,Yano M,et al.Serum levels of IL-10,IL-15 an d soluble tumor necrosis factor alpha receptots in type C chronic liver disease[J].Cfin Exp Immunol 1997;109:458-463.
    [86]达炜,朱金水,陈尼维,等.肝纤维化大鼠肝星状细胞凋亡的体内研究[J].世界华人消化杂志,2002,10(8):978-979.
    [87]Lee HJ,Choi SS,Park MK,et al.Fenofibrate lowers abdomina and skeletal adiposity and improves insulin sensitivity in OLETF rats[J].Biochem Biophys Res Commun,2002,296:293-299.
    [88]Vozarova B,W eyer C,Hanson K,et al.Circulating Interleukin-6 in Relation to Adiposity,Insulin Action,and Insulin Secretion[J].Obes Res,2001,9:414-417.
    [89]Idzior-Walus B.Fibrate influence on lipids and insulin resistanc in patients with metabolic syndrome(in Polish)[J].Przegl Lek,2001,58:924-927.
    [90]Reddy JK.Nonalcoholic steatosis and steatohepatitis:Ⅲ.Peroxisomal β-oxidation,PPARa,and steatohepatitis.Am J Physiol Gastrointest laver Physiol,2001,281:1333-1339.
    [91]Everett L,Galli A,Crabb D.The role of hepatic peroxisome-pronferator-activated receptors(PPARs)in health and disease[J].Liver,2000,20:191-199.
    [92]Clarke SD.Nonalcoholic steatosis and steatohepatitis:I.Molecular m echanism for polyunsaturated fatty acid regulation of gene transcription[J].Am J PhysioI Gastrointest Liver Physiol,2001,281:865-869.
    [93]Jacob George,马雄,叶丽静(译).非酒精性脂肪性肝炎:病理机制与治疗新概念[J].肝脏,2008,3(1):156-57.
    [94]周玉芳,张茂良.特制医用调脂红曲的制备和药用价值[J].中国中医基础医学杂志,2000,6(3):37-38.
    [95]吴敏,王文妲,张文高,等.降脂红曲微粉治疗高脂血症临床研究[J].山东中医药大学学报,2005,29(6):433-435.
    [96]余艳辉,瞿湘萍,李智,等.云南红曲粉调血脂作用及抗动脉粥样斑块形成作用[J].中国药理学通报,2000,16(5):587-588.
    [97]王银叶,韦薇,李长龄.特种红曲对鹌鹑实验性脂肪肝的治疗作用[J].中国临床药理学与治疗学.2002,7(4):293-295.
    [1]R.K.Ockner,J.A.Manning,R.B.Poppenhausen,W.K.L.Ho,A binding protein for fatty acids in cytosol of intestinal mucosa,liver,myocardium,and other tissues[J].Science,177(1972) 56-58.
    [2]S.Mishkin,L.Stein,Z.Gatmaitan,I.M.Arias,The bindingof fatty acids to cytoplasmic proteins:Binding to Z-protein in liver and other tissues of the rat[J].Biochem.Biophys.Res.Commun,47(1972) 997-1003.
    [3]Van Nieuwenhoven FA,Van der Vusse GJ,Glatz JF.Membraneassociated and cytoplasmic fatty acid binding proteins[J].Lipids,1996;31(Suppl):223-227.
    [4]Chuang S,Velkov T,Horne J,Porter C J,ScanlonMJ.Characterization of the drug binding specificity of rat liver fattv acid binding protein[J].J Med Chem,2008;51:3755-3764.
    [5]Sacchettini JC,Gordon JI.Rat intestinanl fatty acid bindingprotein,A model system for analyzing the forces that can bind fatty acids to proteins[J].J Biol Chem,1993;268:18399-18402.
    [6]He Y,Yang X,Wang H.Estephan R.Francis F.Kodukula S,Storch I,Stark RE.Solution-state molecular structure of apo and oleate-liganded liver fatty acid-binding protein[J].Biochemistry,2007:46:12543-12556.
    [7]王振辉,董明纲,常晓彤,侯小平.脂肪酸结合蛋白与高脂血症形成机制的研究进展[J].中国综合临床,2005,21(4):375-376
    [8]R.E.Burrier,P.Brecher,Binding of lysophosphatidylcholine to the rat liver fatty acid binding protein[J].Biochim.Biophys[J].Acta,879(1986):229-239.
    [9]Judith Storch,Alfred E.A.Thumser.The fatty acid transport function of fatty acid-binding proteins[J].Biochimica et Biophysica Acta,1486(2000):28-44.
    [10]Besnard P,Niot I,Poirier H,Clement L,Bernard A.New insights into the fatty acid-binding protein(FABP) family in the small intestine[J].Mol Cell Biochem 2002,239:139-147.
    [11]M.Y.Wu-Rideout,C.Elson,E.Shrago,The role of fatty acid binding protein on the metabolism of fatty acids inisolated rat hepatocytes[J],Biochem.Biophys.Res.Commun.71(1976) 809-816.
    [12]M.McCormack,P.Brecher,E(?)ect of liver fatty acid binding protein on fatty acid movement between liposomes and rat liver microsomes[J],Biochem.J.244(1987) 717-723.
    [13]B.A.Luxon,R.A.Weisiger,Sex di(?)erences in intracellular fatty acid transport:Role of cytoplasmic binding proteins[J].Am.J.Physiol.265(1993)G831-G841.
    [14]Richieri GV,Low PJ,Ogata RT,Kleinfeld AM.Thermodynamics of fatty acid binding to engineered mutants of the adipocyte and intestinal fatty acid-binding proteins.J Biol Chem,1998;273:7397-7405
    [15]Ockner RK,Manning JA.Fatty acid-binding protein in small intestine.Identification,isolation,and evidence for its role in cellular fatty acid transport [J].Lipids 1996;31:5223-5227
    [16]邹增丁,陈立祥,苏建明.脂肪酸结合蛋白生物学特性及对脂肪代谢调控的研究进展.饲料工业[J],2007,28(11):24-26.
    [17]冯爱娟,陈东风.肝细胞L-FABP、FATP4在大鼠非酒精性脂肪性肝病形成中的表达及意义[J].China Hepatol,October 2005;10(13):776-779
    [18]Zhou YT,Wang ZW,Higa M,et al.Reversing adipocyte differentiation:implications for treatment of obesity[J].Proc Natl Acad Sci USA,1999,96(5):2391-23951.
    [19]Cavus U,Coskun F,Yavuz B,et al.Heart-type,fatty-acid binding protein can be a diagnostic marker in acute coronary syndromes[J].Natl Med Assoc,2006,98(7):1067-1070.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700