用户名: 密码: 验证码:
PKC-βII激活在糖尿病大鼠心肌微血管损伤中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     糖尿病与心血管疾病的密切关系得到了研究者的广泛关注。当糖尿病患者发生心血管事件而给予血管再通治疗时再灌注事件发生率增高,证明了缺血再灌注(ischemic reperfusion I/R)在糖尿病病人的易损性,也即糖尿病病人在发生缺血性心脏病后心肌细胞死亡数量、心功能损伤程度及再灌注后无复流现象的发生均远远高于非糖尿病缺血性心脏病患者。糖尿病患者发病后最常出现的病理损伤即是糖尿病微血管并发症,可以累及多个器官,出现复杂多样的临床表现,但多数研究显示其病理基础殊途同归,都与微血管内皮细胞屏障功能损伤有关。这些现象给予研究者提示:糖尿病患者缺血再灌注损伤加重可能与发生缺血事件前即存在心脏微血管功能损害有关。
     糖尿病微血管并发症早期的病理损害主要是内皮细胞连接破坏,细胞屏障功能降低,使损伤性因子在血管内外的交换加速,损害血管功能并加重血管内皮细胞凋亡,此种病理现象在视网膜、肾脏、心脏组织中均广泛存在,其病理机制认为在高血糖或糖尿病状态下PKC激活,特别是其亚基PKC–βII的激活在血管损伤中起到至关重要的作用。PKC通路的激活导致细胞内信号通路的改变及血管功能的障碍而促使糖尿病微血管病变的发生和发展。高度选择性PKC–β抑制剂Ruboxistaurin(Rx)的应用使PKC–βII激活在糖尿病微血管病变发生中作用的研究更为深入。但PKC–βII激活与心肌微血管屏障功能变化的病理关系研究尚少,具体机制还没有得到明确肯定的结果。而PKC–βII激活是否在糖尿病缺血再灌注后微血管损伤中也具有重要作用,尚未见报道。本课题拟分别从动物和细胞水平观察PKC-βII激活在糖尿病大鼠心肌微血管屏障功能变化中的作用及PKC-βII激活对糖尿病大鼠心肌微血管I/R损伤的影响,选择性PKC–β抑制剂在此病理过程中的重要保护作用。
     研究目的
     1.建立糖尿病大鼠模型,明确糖尿病大鼠心脏组织是否存在PKC-βII激活, PKC-βII激活与糖尿病大鼠心肌微血管内皮通透性变化及细胞连接病理性破坏的联系;
     2.建立糖尿病大鼠心脏I/R模型,观察糖尿病大鼠I/R后心肌微血管损伤特点,并验证PKC-β抑制剂是否具有保护作用,从而证明PKC-βII激活参与糖尿病大鼠I/R后心肌微血管损伤的病理机制;
     3.在高糖培养心肌微血管内皮细胞实验中观察高糖作用下单层心肌微血管内皮细胞通透性变化及PKC-βII激活影响屏障功能的机制;
     4.在体外模拟高糖培养心肌微血管内皮细胞缺血再灌注实验中观察单层心肌微血管内皮细胞模拟I/R后,细胞屏障功能的变化及PKC-β抑制剂预处理后的作用。在细胞实验中证实PKC-βII激活参与高糖环境心肌微血管内皮细胞I/R后损伤的病理机制。
     研究方法
     1.选取体重120-150g雄性SD大鼠,高脂饲料喂养8w ,腹腔注射50mg/kg STZ,以2次随机血糖≥16.7mmol/L认为糖尿病模型成功。
     2.戊巴比妥钠(30 mg/kg )腹腔麻醉大鼠,行左侧开胸术,制备心肌缺血/再灌注大鼠模型。大鼠心脏缺血30 min,再灌注72h。
     3.以硝酸镧为示踪剂透射电镜下检测糖尿病大鼠心肌微血管内皮细胞通透性,以树脂(Mercox,SPI)灌注心脏,扫描电镜下观察微血管铸型。
     4.免疫荧光方法检测糖尿病大鼠心脏组织PKC-βII及VE-cadherin的表达。免疫组化检测缺血再灌注后心脏Phospho -LIMK2表达。
     5.八道生理记录仪记录缺血再灌注前后血流动力学指标±LVdp/dtmax差值(缺血后±LVdp/dtmax -缺血前±LVdp/dtmax)变化。
     6.硫黄素S染色检测缺血再灌注后糖尿病大鼠心脏无复流面积。利用硫黄素S使血管损伤无复流区血管不着色,计算心肌无复流面积。
     7.无菌分离成年大鼠左心室组织,去除内外膜及冠脉组织,心肌剪为1mm3组织块,经酶消化,条件培养及细胞纯化后获得心肌微血管内皮细胞。
     8.用In Vitro Vascular Permeability Assay Kit检测单层心肌微血管内皮细胞通透性。
     9.Western blot方法检测糖尿病大鼠心脏组织及培养细胞中PKC-βII, VE-cadherin,phospho-β-catenin及缺血再灌注后心脏组织及培养细胞中phospho-LIMK2的表达。
     10.TUNEL染色检测组织和培养心肌微血管内皮细胞的凋亡。以CD31,TUNUL和DAPI三染的方式来计算缺血再灌注72h后糖尿病大鼠CMECs凋亡指数。
     11.FITC标记的鬼笔环肽染色CMECs细胞骨架F-actin,荧光显微镜下观察。
     12.以G-actin / F-actin assay kit定量测定F-actin的变化。
     研究结果
     1.糖尿病大鼠心脏组织PKC-βII激活改变心肌微血管屏障功能。
     (1)检测空腹血糖水平升高验证成功制备了糖尿病大鼠模型。
     (2)免疫荧光显示糖尿病大鼠心脏组织PKC-βII激活及VE-cadherin排列紊乱,给予Rx治疗后,PKC-βII激活减少、VE-cadherin的表达维持连续。
     (3)Western blot结果证实糖尿病大鼠心脏PKC-βII (1.06±0.09 vs. 0.76±0.06,P<0.01)及phospho-β-catenin (0.74±0.13 vs.0.47±0.11, P<0.01)表达较非糖尿病大鼠增加。Rx治疗可下调PKC-βII(0.79±0.10 vs. 0.97±0.11,P<0.05)及Phospho-β-catenin(0.59±0.07 vs. 0.80±0.11, P<0.05)表达。
     (4)硝酸镧颗粒示踪电镜观察发现糖尿病大鼠心肌微血管屏障功能破坏,扫描电镜观察Mercox灌注发现心肌微血管内皮细胞连接不完整,而Rx治疗可有明显改善。
     2.PKC-βII激活参与糖尿病大鼠I/R后心肌微血管损伤加重的发生机制。
     (1)糖尿病大鼠缺血再灌注前后±LVdp/dtmax差值增加, I/R对心功能损伤加重,给予Rx治疗可保护糖尿病大鼠心功能。
     (2)糖尿病大鼠I/R后心脏无复流面积明显大于假手术组( 20.0±1.7% vs. 0%)及非糖尿病组(20.0±1.7% vs.14.3±1.8%, P<0.01),Rx治疗可降低糖尿病大鼠无复流面积(16.4±1.9% vs. 19.4±1.6%, P<0.05)。
     (3)糖尿病大鼠I/R心肌微血管内皮细胞病理损伤加重,肿胀和空泡结构出现。Rx治疗具有保护作用。
     (4)糖尿病大鼠I/R后CMECs凋亡指数明显高于假手术组( 12.6±2.2% vs.4.8±1.0% , P<0.01 )及非糖尿病对照组( 12.6±2.2% vs.7.8±0.8%, P<0.01),Rx治疗可降低CMECs凋亡指数(9.5±1.5%vs. 12.2±2.1%, P<0.05)。
     (5)Phospho-LIMK2表达在糖尿病组明显高于假手术(1.01±0.10 vs. 0.66±0.11, P<0.01)及非糖尿病对照组(1.01±0.10 vs. 0.60±0.09, P<0.01), Rx治疗降低Phospho -LIMK2表达(0.76±0.08 vs. 0.97±0.10, P<0.01)。
     3.高糖培养单层心肌微血管内皮细胞PKC-βII激活,屏障功能降低。
     (1)FITC-Dextran检测高糖培养基中CMECs单层细胞通透性较普通培养基增加(394.50±36.92 vs. 282.10±14.93, P<0.01)。加入不同浓度Rx (1, 10, 100nmol/L)预处理后,单层细胞通透性明显降低(P<0.01)。
     ( 2 )高糖培养CMECs PKC-βII (1.17±0.13 vs.0.71±0.07, P<0.01) ,phospho-β-catenin(0.92±0.11 vs. 0.56±0.07, P<0.01)表达增高,Rx(10nmol/L)预处理细胞可降低PKC-βII及phospho-β-catenin表达(P<0.01)。VE-cadherin(c-19)蛋白总量无明显变化。
     4.PKC-βII激活参与高糖环境心肌微血管内皮细胞SI/R后损伤加重的病理机制。
     (1)高糖培养单层细胞经历SI/R后通透性较Sham组(590.40±34.38 vs. 359.20±22.80, P<0.01)及普通低糖培养基组(590.40±34.38 vs. 383.70±37.58, P<0.01 )显著增加, Rx ( 10nmol/L )预处理后,通透性可明显降低(432.00±30.83 vs. 571.10±32.60 , P<0.01)。
     (2)高糖培养CMECs给予SI/R后Phospho -LIMK2表达明显高于Sham组(1.11±0.09vs. 0.31±0.09, P<0.01)及普通低糖培养基组(1.11±0.09 vs. 0.43±0.15, P<0.01),Rx预处理可降低Phospho -LIMK2表达(0.60±0.08 vs.1.28±0.11,P<0.01)。
     (3)高糖培养基CMECs AI明显高于Sham组(13.3±1.3% vs. 5.7±1.4%, P<0.01)及普通低糖培养基(13.3±1.3% vs. 7.8±0.8%, P<0.01)。Rx预处理后AI明显降低(9.1±1.1% vs.12.8±1.8%, P<0.01)。
     (4)高糖培养基中F-actin / G-actin较Sham组(10.73±1.32 vs. 6.58±1.34, P<0.01)及普通培养基组(10.73±1.32 vs. 7.73±0.97, P<0.01)增高。给予Rx预处理后F-actin / G-actin可降低(7.32±1.02 vs.10.24±1.38, P<0.05)。
     研究结论
     1.应用STZ诱导的糖尿病大鼠证实糖尿病状态可激活心脏PKC-βII表达,出现以微血管屏障功能降低为主要表现的病理改变。同时发现phospho-β-catenin表达增加,VE-cadherin排列紊乱可能参与病理机制。
     2.糖尿病大鼠心脏缺血再灌注后心功能损害加重,心肌无复流面积增加,微血管内皮细胞的通透性恶化、凋亡增加。这一系列的病理变化与糖尿病大鼠PKC-βII激活诱导I/R时Rho激酶异常激活,LIMK2磷酸化增加有关;
     3.高糖可致培养心肌微血管内皮细胞中PKC-βII激活,从而使黏附连接蛋白β-catenin发生磷酸化改变, VE-cadherin-catenin连接复合体破坏是CMECs通透性增加,屏障功能损害的结构基础;
     4.培养于高糖环境的心肌微血管内皮细胞PKC-βII激活,SI/R后诱导Rho-Kinase异常激活,使LIMK2磷酸化表达增加,受其调控的下游分子F-actin组分增加。细胞屏障功能维持因素VE-cadherin和F-actin的失平衡是高糖培养心肌微血管内皮细胞SI/R损伤加重的主要机制。
     研究提示控制糖尿病大鼠PKC-βII激活所诱导的慢性微血管并发症对预防糖尿病大鼠发生严重的心肌微血管缺血再灌注损伤有非常重要的意义。
Background
     Amount of researchers showed interest in close relationships between diabetes and cardiovascular disease. If diabetes patients received revascularization, accidence related with reperfusion often happened. These indicated diabetic heart is more sensitive to ischemic reperfusion injury than the nondiabetic heart. This phenomenon was confirmed by cardiacmyocyte death increase, severe impaired heart function and incidence of no-reflow rose. Cardiac microvascular barrier dysfunction, commonly occurring before microvascular sclerosis, is considered to be one of the initiating mechanisms that underlie the pathogenesis of diabetes microvascular complications. These phenomenons indicate endothelial barrier dysfunction probably significantly contributes to subsequent functional and cellular injury during I/R through a variety of pathological pathways and I/R in diabetes extending into the microvasculature probably is more severe.
     Early impairment of microvascular complication of diabetes was deterioration of cell junction and cell barrier function. This pathologic change may increase paracellular flux of injury factor, which could worse inflammatory reaction, aggravate apoptosis of endothelium and deteriorate microvascular function. Above pathology phenomena wildly existed in microangiopathy-prone tissues, such as the retina, renal glomeruli and heart. PKC was activated, which is strongly implicated in the pathogenesis of diabetic microangiopathy. PKC-βII isoforms exhibit a greater increase in the membrane fractions of many vascular tissues than the other isoforms in diabetes. Ruboxistaurin(Rx), a high selective PKC-βinhibitor, make the study about the role of PKC activation in microvascular complication more deeply. However, research about the role of PKC-βII activation in cardiac microvascular barrier function was seldom and the mechanism didn’t confirm. It has not been previously established whether PKC-βII activation play important role in I/R injury of cardiac microvessels in diabetes. Under this condition, this study paid attention to the role of PKC-βII activation in cardiac microvascular barrier function and ischemia reperfusion injury in cardiac micvasculture on diabetic rats.
     AIM
     1. Diabetic rat model was established and to determine whether PKC-βII activation existed in heart tissue of diabetic rats. Pathologic relationship between cardiac microvascular barrier dysfunction and PKC-βII activation was explored;
     2. The model of diabetic rat subjected to I/R was established and to observe characters of cardiac microvascular impairment in diabetic rat. In addition, to demonstrate whether this effect could be prevented by a PKC-βinhibitor and to prove PKC-βII activation involved in the mechanism by which CMECs were impaired during I/R.
     3. To observe permeability of CMECs monolayer in high glucose environment and the mechanism of PKC-βII activation influence barrier function.
     4. To elucidate whether barrier function aggravated in CMECs monolayer cultured in high glucose medium subjected to SI/R. To proved PKC-βII activation involved in the mechanism by which CMECs impairment worse during I/R.
     Methods
     1. Male Sprague-Dawley rat, 120-150 g, dieted with high glucose and high cholesterol for 8 weeks, diabetes was induced with a single intraperitoneal injection of streptozotocin (50 mg/kg, Sigma). Random serum glucose greater than 16.7mmol/L were considered success.
     2. Diabetic rats were anesthetized with sodium pentobarbital (30 mg/kg, i.p.), and experienced left thoracotomy. And established I/R experimental models. Rats were subjected to 30 min myocardial ischemia and 72 h reperfusion.
     3. Cardiac microvascular permeability and ultrastructure were compared with Lanthanum as a tracer. Casting of cardiac microvessels perfused by Mercox observed under SEM.
     4. PKC-βII location and VE-cadherin rearrangement in diabetic heart tissue were examined by immunofluorescence. Phosphorylated LIM kinase 2 in heart tissue after I/R was determined by immunohistological method.
     5.±LVdp/dtmax of after I/R and±LVdp/dtmax of before I/R were recorded by 8–orbits physiological grapher.
     6. Thioflavin S was injected into the heart to define the region of no-reflow. Thioflavin S is used as a standard marker for identifying zones of no-reflow and to calculated no-reflow area.
     7. After removal of the endocardial endothelium and the epicardial coronaries, the left ventricles were cut into small pieces and incubated in 2 ml 0.2% collagens, isolated and purified .Cardiac microvascular endothelium cells(CMECs).
     8. Quantitatively assess permeability of CMECs monolayer using In Vitro Vascular Permeability Assay kit.
     9. PKC-βII, VE-cadherin, phospho-β-catenin and Phosphorylated LIMK2 was determined by western blot analysis.
     10. TUNEL staining detected apoptosis of CMECs in diabetic rat and in high glucose medium subjected to I/R. Three staining of CD31, TUNUL and DAPI were used to obtain AI of CMECs of diabetic rats after I/R.
     11. F-actin was stained with FITC-phalloidin and cells were visualized with fluorescence microscopy.
     12.G-actin / F-actin assay kit was used to quantitatively detected F-actin.
     Results
     1. PKC-βII activation play a key role in microvascular barrier dysfunction on diabetic rat’s heart.
     (1) Successfully established diabetic rat model with FPG increase.
     (2) IF examined PKC-βII activation and VE-cadherin rearrangement in diabetic rats’heart. PKC-βII was downregulated and VE-cadherin expression was regular after Rx treatment
     (3) Relative expression of PKC-βII (1.06±0.09 vs. 0.76±0.06,P<0.01)and P-β-catenin(0.74±0.13 vs.0.47±0.11, P<0.01)in diabetic rats increased compared with that in non-diabetic control. PKC-βII expression (( 0.79±0.10 vs. 0.97±0.11,P<0.05) and P-β-catenin (0.59±0.07 vs. 0.80±0.11, P<0.05) were significantly downregulated by pretreatment with Rx.
     (4) Lanthanum as a tracer to found cariac microvascular dysfunction in diabetic rat and the surfaces of cardiac microvascular casting weren’t integrity inder electron microscope. Rx administration could attenuate this disturbance.
     2. PKC-βII activation had important role in cardiac microvascular function impairment aggravated in diabetic rat during I/R.
     (1)±LVdp/dt decreased in DM group compared with non-diabetic control and sham, and Rx administration could improve±LVdp/dt in DM group.
     (2) No-reflow size in diabetic rats significantly larger than sham (20.0±1.7% vs. 0%) and non-diabetic control (20.0±1.7% vs.14.3±1.8%, P<0.01), Treatment with Rx significantly reduced the no-reflow size (16.4±1.9% vs. 19.4±1.6%, P<0.05).
     (3)CMECs were severely impaired after I/R in diabetic rats. The edema and vacuolus were represented in diabetic rats. Rx pretreatment could attenuate this severe pathology.
     (4)AI of CMECs in diabetic heart increased compared with that in sham (12.6±2.2% vs.8.1±1.7%, P<0.01)and non-diabetic control(12.6±2.2% vs.7.8±0.8%, P<0.01). AI of CMECs in Rx treated group reduced(9.5±1.5% vs. 12.2±2.1%, P<0.05).
     (5)Relative expression of Phospho-LIMK2 increased compared with that in Sham (1.01±0.10 vs. 0.66±0.11, P<0.01)and non-diabetic control(1.01±0.10 vs. 0.60±0.09, P<0.01 ) . Phospho -LIMK2 expression was significantly downregulated by Rx administration(0.76±0.08 vs. 0.97±0.10, P<0.01).
     3. PKC-βII activation decrease the barrier function of CMECs monolayer in High glucose medium.
     (1) Permeability of monolayer cell in high glucose medium was higher than in normal medium (394.50±36.92 vs. 282.10±14.93, P<0.01).However, the addition of PKC-βII i?nhibitor, Rx (1, 10, 100nmol/L), ?resulted in permeability decreased (P<0.01).
     (2) PKC-βII (1.17±0.13 vs.0.71±0.07, P<0.01)and phospho-β-catenin(0.92±0.11 vs. 0.56±0.07, P<0.01) expression in CMECs incubated with high glucose medium increased compared with that in normal medium. PKC-βII and phospho-β-catenin expression was significantly down regulated given Rx (10nmol/L) pretreatment (P<0.01). VE-cadherin(c-19)didn’t alter in CMECs cultured in high glucose medium.
     4. PKC-βII activation was involved in the mechanism by which CMECs impairment worse during I/R.
     (1) Permeability of monolayer cell in high glucose medium was higher than in sham (590.40±34.38 vs. 359.20±22.80, P<0.01) and in normal medium (590.40±34.38 vs. 383.70±37.58 P<0.01).However, the addition of Rx (10nmol/L) could resulte in permeability decreased (432.00±30.83 vs. 571.10±32.60P<0.01).
     (2) Phospho -LIMK2 of CMECs in high glucose medium increased compared with that in sham (1.11±0.09vs. 0.31±0.09, P<0.01)and in normal medi( 1.11±0.09vs. 0.43±0.15, P<0.01 ) . Phospho -LIMK2 expression was significantly downregulated by pretreatment with Rx ( 0.60±0.08 vs.1.28±0.11,P<0.01).
     (3) AI of CMECs in high glucose medium subjected to I/R increased compared with that in sham (13.3±1.3% vs. 5.7±1.4%, P<0.01)and in normal medium (13.3±1.3% vs. 7.8±0.8%, P<0.01). AI could be decreased by pretreatment with Rx(9.1±1.1% vs.12.8±1.8%, P<0.01).
     (4)The ratios of F-actin to G-actin in CMECs incubated with high glucose medium increased compared with that in sham (10.73±1.32 vs. 6.58±1.34, P<0.01)and in normal medium (10.73±1.32 vs. 7.73±0.97, P<0.01).Pretreatment with Rx (10nmol/L) could reduce it.(7.32±1.02 vs.10.24±1.38, P<0.05).
     Conclusion
     1. STZ induced diabetic rat model was used to verify that diabetic state induced activation of PKC-βII and microvascular complication displaying in permeability increase or microvascular barrier dysfunction. Phospho-β-catenin expression and VE-cadherin rearrangement involved in this mechanism;
     2. Exaggerated no-reflow areas accompanying with severe impairment of cardiac function and aberrant microvascular barrier function presented in diabetic rat model after I/R and this effect could be prevented by a PKC-βinhibitor pretreatment. PKC-βII-dependent Rho kinase activation in diabetes in response to I/R and phosphor- LIMK2 increase contributed to microvascular damage and the severe no-reflow phenomenon;
     3. High glucose microenvironment could activate PKC-βII in cultured CMECs and lead to phospho-β-catenin increase. It promoted the dissociation of VE-cadherin–catenin complex and deteriorated the CMECs barrier function;
     4. PKC-βII was activated in CMECs cultured in high glucose, and in this state subjected to I/R, Rho kinase was excessively activated and phospho-LIMK2 increased. Phospho-LIMK2 was involved in structural alterations in cytoskeletal filaments and polymerization of F-actin which formed concentrical force. Loss of equilibrium in VE-cadherin and F-actin could aggravate CMECs impairment after I/R.
     These results indicated pretreatment for diabetic microvascular complication induced by PKC-βII could be helpful to attenuate the risk of I/R injury.
引文
[1] Helms RB. Implications of population growth on prevalence of diabetes. A look at the future. Diabetes care 1992;15 Suppl 1:6-9.
    [2] King H, Aubert RE, Herman WH. Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections. Diabetes care 1998;21:1414-1431.
    [3]中国心脏调查组.中国住院冠心病患者糖代谢异常研究——中国心脏调查.中华内分泌代谢杂志,2006,22(1):7-10
    [4] Chan JC, Cockram CS. Diabetes in the Chinese population and its implications for health care. Diabetes care 1997;20:1785-1790.
    [5] Pan XR, Yang WY, Li GW, Liu J. Prevalence of diabetes and its risk factors in China, 1994. National Diabetes Prevention and Control Cooperative Group. Diabetes care 1997;20:1664-1669.
    [6] Effect of pregnancy on microvascular complications in the diabetes control and complications trial. The Diabetes Control and Complications Trial Research Group. Diabetes care 2000;23:1084-1091.
    [7] Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. Jama 2003;290:2159-2167.
    [8] The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. The New England journal of medicine 1993;329:977-986.
    [9] Alexander JS, Jackson SA, Chaney E, Kevil CG, Haselton FR. The role ofcadherin endocytosis in endothelial barrier regulation: involvement of protein kinase C and actin-cadherin interactions. Inflammation 1998;22:419-433.
    [10] Chung SS, Chung SK. Aldose reductase in diabetic microvascular complications. Current drug targets 2005;6:475-486.
    [11] Dagher Z, Park YS, Asnaghi V, Hoehn T, Gerhardinger C, Lorenzi M. Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes 2004;53:2404-2411.
    [12] Tomlinson DR, Willars GB, Carrington AL. Aldose reductase inhibitors and diabetic complications. Pharmacology & therapeutics 1992;54:151-194.
    [13] Demaine AG. Polymorphisms of the aldose reductase gene and susceptibility to diabetic microvascular complications. Current medicinal chemistry 2003;10:1389-1398.
    [14] Sivenius K, Pihlajamaki J, Partanen J, Niskanen L, Laakso M, Uusitupa M. Aldose reductase gene polymorphisms and peripheral nerve function in patients with type 2 diabetes. Diabetes care 2004;27:2021-2026.
    [15] Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes care 1996;19:257-267.
    [16] Yorek MA. The role of oxidative stress in diabetic vascular and neural disease. Free radical research 2003;37:471-480.
    [17] Aronson D. Hyperglycemia and the pathobiology of diabetic complications. Advances in cardiology 2008;45:1-16.
    [18] Endemann DH, Schiffrin EL. Nitric oxide, oxidative excess, and vascular complications of diabetes mellitus. Current hypertension reports 2004;6:85-89.
    [19] Spitaler MM, Graier WF. Vascular targets of redox signalling in diabetes mellitus. Diabetologia 2002;45:476-494.
    [20] Yoshizumi M, Tsuchiya K, Tamaki T. Signal transduction of reactive oxygenspecies and mitogen-activated protein kinases in cardiovascular disease. J Med Invest 2001;48:11-24.
    [21] Ceriello A, Quagliaro L, Catone B, Pascon R, Piazzola M, Bais B, et al. Role of hyperglycemia in nitrotyrosine postprandial generation. Diabetes care 2002;25:1439-1443.
    [22] Ceriello A, Quagliaro L, Piconi L, Assaloni R, Da Ros R, Maier A, et al. Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes 2004;53:701-710.
    [23] Wautier JL, Schmidt AM. Protein glycation: a firm link to endothelial cell dysfunction. Circulation research 2004;95:233-238.
    [24] Yonekura H, Yamamoto Y, Sakurai S, Watanabe T, Yamamoto H. Roles of the receptor for advanced glycation endproducts in diabetes-induced vascular injury. Journal of pharmacological sciences 2005;97:305-311.
    [25] Gao X, Zhang H, Schmidt AM, Zhang C. AGE/RAGE produces endothelial dysfunction in coronary arterioles in type 2 diabetic mice. American journal of physiology 2008;295:H491-498.
    [26] Hudson BI, Schmidt AM. RAGE: a novel target for drug intervention in diabetic vascular disease. Pharmaceutical research 2004;21:1079-1086.
    [27] Shoji T, Koyama H, Morioka T, Tanaka S, Kizu A, Motoyama K, et al. Receptor for advanced glycation end products is involved in impaired angiogenic response in diabetes. Diabetes 2006;55:2245-2255.
    [28] Yamamoto H, Watanabe T, Yamamoto Y, Yonekura H, Munesue S, Harashima A, et al. RAGE in diabetic nephropathy. Current molecular medicine 2007;7:752-757.
    [29] Yamamoto Y, Yamagishi S, Yonekura H, Doi T, Tsuji H, Kato I, et al. Rolesof the AGE-RAGE system in vascular injury in diabetes. Annals of the New York Academy of Sciences 2000;902:163-170; discussion 170-162.
    [30] Idris I, Donnelly R. Protein kinase C beta inhibition: A novel therapeutic strategy for diabetic microangiopathy. Diab Vasc Dis Res 2006;3:172-178.
    [31] Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res 2007;55:498-510.
    [32] Idris I, Gray S, Donnelly R. Protein kinase C activation: isozyme-specific effects on metabolism and cardiovascular complications in diabetes. Diabetologia 2001;44:659-673.
    [33] Way KJ, Chou E, King GL. Identification of PKC-isoform-specific biological actions using pharmacological approaches. Trends in pharmacological sciences 2000;21:181-187.
    [34] Avignon A, Sultan A. PKC-B inhibition: a new therapeutic approach for diabetic complications? Diabetes & metabolism 2006;32:205-213.
    [35] Budhiraja S, Singh J. Protein kinase C beta inhibitors: a new therapeutic target for diabetic nephropathy and vascular complications. Fundamental & clinical pharmacology 2008;22:231-240.
    [36] Yokota T, Ma RC, Park JY, Isshiki K, Sotiropoulos KB, Rauniyar RK, et al. Role of protein kinase C on the expression of platelet-derived growth factor and endothelin-1 in the retina of diabetic rats and cultured retinal capillary pericytes. Diabetes 2003;52:838-845.
    [37] Park JY, Takahara N, Gabriele A, Chou E, Naruse K, Suzuma K, et al. Induction of endothelin-1 expression by glucose: an effect of protein kinase C activation. Diabetes 2000;49:1239-1248.
    [38] Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813-820.
    [39] Le Sueur LP, Collares-Buzato CB, da Cruz-Hofling MA. Mechanisms involved in the blood-brain barrier increased permeability induced by Phoneutria nigriventer spider venom in rats. Brain research 2004;1027:38-47.
    [40] Malhotra A, Reich D, Reich D, Nakouzi A, Sanghi V, Geenen DL, et al. Experimental diabetes is associated with functional activation of protein kinase C epsilon and phosphorylation of troponin I in the heart, which are prevented by angiotensin II receptor blockade. Circulation research 1997;81:1027-1033.
    [41] Inoguchi T, Battan R, Handler E, Sportsman JR, Heath W, King GL. Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proceedings of the National Academy of Sciences of the United States of America 1992;89:11059-11063.
    [42] Yamaguchi H, Igarashi M, Hirata A, Sugae N, Tsuchiya H, Jimbu Y, et al. Altered PDGF-BB-induced p38 MAP kinase activation in diabetic vascular smooth muscle cells: roles of protein kinase C-delta. Arteriosclerosis, thrombosis, and vascular biology 2004;24:2095-2101.
    [43] Velarde V, Jenkins AJ, Christopher J, Lyons TJ, Jaffa AA. Activation of MAPK by modified low-density lipoproteins in vascular smooth muscle cells. J Appl Physiol 2001;91:1412-1420.
    [44] Gaudreault N, Perrin RM, Guo M, Clanton CP, Wu MH, Yuan SY. Counter regulatory effects of PKCbetaII and PKCdelta on coronary endothelial permeability. Arteriosclerosis, thrombosis, and vascular biology 2008;28:1527-1533.
    [45] Sharma K, Danoff TM, DePiero A, Ziyadeh FN. Enhanced expression of inducible nitric oxide synthase in murine macrophages and glomerular mesangial cells by elevated glucose levels: possible mediation via protein kinase C.Biochemical and biophysical research communications 1995;207:80-88.
    [46] Craven PA, Studer RK, DeRubertis FR. Impaired nitric oxide release by glomeruli from diabetic rats. Metabolism: clinical and experimental 1995;44:695-698.
    [47] Watanabe D, Suzuma K, Suzuma I, Ohashi H, Ojima T, Kurimoto M, et al. Vitreous levels of angiopoietin 2 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. American journal of ophthalmology 2005;139:476-481.
    [48] Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. The New England journal of medicine 1994;331:1480-1487.
    [49] Malhotra A, Kang BP, Cheung S, Opawumi D, Meggs LG. Angiotensin II promotes glucose-induced activation of cardiac protein kinase C isozymes and phosphorylation of troponin I. Diabetes 2001;50:1918-1926.
    [50] Wickley PJ, Shiga T, Murray PA, Damron DS. Propofol decreases myofilament Ca2+ sensitivity via a protein kinase C-, nitric oxide synthase-dependent pathway in diabetic cardiomyocytes. Anesthesiology 2006;104:978-987.
    [51] Kang N, Alexander G, Park JK, Maasch C, Buchwalow I, Luft FC, et al. Differential expression of protein kinase C isoforms in streptozotocin-induced diabetic rats. Kidney international 1999;56:1737-1750.
    [52] Meier M, Park JK, Overheu D, Kirsch T, Lindschau C, Gueler F, et al. Deletion of protein kinase C-beta isoform in vivo reduces renal hypertrophy but not albuminuria in the streptozotocin-induced diabetic mouse model. Diabetes 2007;56:346-354.
    [53] Naruse K, Rask-Madsen C, Takahara N, Ha SW, Suzuma K, Way KJ, et al. Activation of vascular protein kinase C-beta inhibits Akt-dependent endothelial nitric oxide synthase function in obesity-associated insulin resistance. Diabetes 2006;55:691-698.
    [54] Tuttle KR, Anderson PW. A novel potential therapy for diabetic nephropathy and vascular complications: protein kinase C beta inhibition. Am J Kidney Dis 2003;42:456-465.
    [55] Schambelan M, Blake S, Sraer J, Bens M, Nivez MP, Wahbe F. Increased prostaglandin production by glomeruli isolated from rats with streptozotocin-induced diabetes mellitus. The Journal of clinical investigation 1985;75:404-412.
    [56] Craven PA, Caines MA, DeRubertis FR. Sequential alterations in glomerular prostaglandin and thromboxane synthesis in diabetic rats: relationship to the hyperfiltration of early diabetes. Metabolism: clinical and experimental 1987;36:95-103.
    [57]张代富译糖尿病与心血管疾病.人民卫生出版社, 2006,第一版
    [58] Cotter MA, Jack AM, Cameron NE. Effects of the protein kinase C beta inhibitor LY333531 on neural and vascular function in rats with streptozotocin-induced diabetes. Clin Sci (Lond) 2002;103:311-321.
    [59] Del Maschio A, Zanetti A, Corada M, Rival Y, Ruco L, Lampugnani MG, et al. Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions. The Journal of cell biology 1996;135:497-510.
    [60] Kevil CG, Payne DK, Mire E, Alexander JS. Vascular permeability factor/vascular endothelial cell growth factor-mediated permeability occurs through disorganization of endothelial junctional proteins. The Journal ofbiological chemistry 1998;273:15099-15103.
    [61] Leach L, Eaton BM, Westcott ED, Firth JA. Effect of histamine on endothelial permeability and structure and adhesion molecules of the paracellular junctions of perfused human placental microvessels. Microvascular research 1995;50:323-337.
    [62] McDonald DM, Thurston G, Baluk P. Endothelial gaps as sites for plasma leakage in inflammation. Microcirculation 1999;6:7-22.
    [63] Dejana E. Endothelial cell-cell junctions: happy together. Nature reviews 2004;5:261-270.
    [64]Navarro P, Caveda L, Breviario F, Mandoteanu I, Lampugnani MG, Dejana E. Catenin-dependent and -independent functions of vascular endothelial cadherin. The Journal of biological chemistry 1995;270:30965-30972.
    [65] Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science (New York, NY 2004;303:1483-1487.
    [66] Wright TJ, Leach L, Shaw PE, Jones P. Dynamics of vascular endothelial-cadherin and beta-catenin localization by vascular endothelial growth factor-induced angiogenesis in human umbilical vein cells. Experimental cell research 2002;280:159-168.
    [67] Guo M, Breslin JW, Wu MH, Gottardi CJ, Yuan SY. VE-cadherin and beta-catenin binding dynamics during histamine-induced endothelial hyperpermeability. American journal of physiology 2008;294:C977-984.
    [68] Tinsley JH, Wu MH, Ma W, Taulman AC, Yuan SY. Activated neutrophils induce hyperpermeability and phosphorylation of adherens junction proteins in coronary venular endothelial cells. The Journal of biological chemistry 1999;274:24930-24934.
    [69] Bates DO, Curry FE. Vascular endothelial growth factor increases hydraulicconductivity of isolated perfused microvessels. The American journal of physiology 1996;271:H2520-2528.
    [70] Bates DO, Curry FE. Vascular endothelial growth factor increases microvascular permeability via a Ca(2+)-dependent pathway. The American journal of physiology 1997;273:H687-694.
    [71] Hippenstiel S, Krull M, Ikemann A, Risau W, Clauss M, Suttorp N. VEGF induces hyperpermeability by a direct action on endothelial cells. The American journal of physiology 1998;274:L678-684.
    [72] Becker PM, Verin AD, Booth MA, Liu F, Birukova A, Garcia JG. Differential regulation of diverse physiological responses to VEGF in pulmonary endothelial cells. American journal of physiology 2001;281:L1500-1511.
    [73] Ma H, Zhang HF, Yu L, Zhang QJ, Li J, Huo JH, et al. Vasculoprotective effect of insulin in the ischemic/reperfused canine heart: role of Akt-stimulated NO production. Cardiovascular research 2006;69:57-65.
    [74] Scarabelli T, Stephanou A, Rayment N, Pasini E, Comini L, Curello S, et al. Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation 2001;104:253-256.
    [75] Scarabelli TM, Stephanou A, Pasini E, Comini L, Raddino R, Knight RA, et al. Different signaling pathways induce apoptosis in endothelial cells and cardiac myocytes during ischemia/reperfusion injury. Circulation research 2002;90:745-748.
    [76] Kloner RA, Ganote CE, Jennings RB. The "no-reflow" phenomenon after temporary coronary occlusion in the dog. The Journal of clinical investigation 1974;54:1496-1508.
    [77] Kloner RA, Dai W. Glycoprotein IIb/IIIa inhibitors and no-reflow. Journal of the American College of Cardiology 2004;43:284-286.
    [78] Jennings RB, Schaper J, Hill ML, Steenbergen C, Jr., Reimer KA. Effect of reperfusion late in the phase of reversible ischemic injury. Changes in cell volume, electrolytes, metabolites, and ultrastructure. Circulation research 1985;56:262-278.
    [79] Jennings RB, Reimer KA. The cell biology of acute myocardial ischemia. Annual review of medicine 1991;42:225-246.
    [80] Dauber IM, VanBenthuysen KM, McMurtry IF, Wheeler GS, Lesnefsky EJ, Horwitz LD, et al. Functional coronary microvascular injury evident as increased permeability due to brief ischemia and reperfusion. Circulation research 1990;66:986-998.
    [81] Krug A, Du Mesnil de R, Korb G. Blood supply of the myocardium after temporary coronary occlusion. Circulation research 1966;19:57-62.
    [82] Galinanes M, Lawson CS, Ferrari R, Limb GA, Derias NW, Hearse DJ. Early and late effects of leukopenic reperfusion on the recovery of cardiac contractile function. Studies in the transplanted and isolated blood-perfused rat heart. Circulation 1993;88:673-683.
    [83] Manche A, Edmondson SJ, Hearse DJ. Dynamics of early postischemic myocardial functional recovery. Evidence of reperfusion-induced injury? Circulation 1995;92:526-534.
    [84] Kotani J, Nanto S, Mintz GS, Kitakaze M, Ohara T, Morozumi T, et al. Plaque gruel of atheromatous coronary lesion may contribute to the no-reflow phenomenon in patients with acute coronary syndrome. Circulation 2002;106:1672-1677.
    [85] Piana RN, Paik GY, Moscucci M, Cohen DJ, Gibson CM, Kugelmass AD, et al. Incidence and treatment of 'no-reflow' after percutaneous coronary intervention. Circulation 1994;89:2514-2518.
    [86] Gregorini L, Marco J, Kozakova M, Palombo C, Anguissola GB, Marco I, et al. Alpha-adrenergic blockade improves recovery of myocardial perfusion and function after coronary stenting in patients with acute myocardial infarction. Circulation 1999;99:482-490.
    [87] Watanabe T, Nanto S, Uematsu M, Ohara T, Morozumi T, Kotani J, et al. Prediction of no-reflow phenomenon after successful percutaneous coronary intervention in patients with acute myocardial infarction: intravascular ultrasound findings. Circ J 2003;67:667-671.
    [88] Reffelmann T, Kloner RA. Microvascular alterations after temporary coronary artery occlusion: the no-reflow phenomenon. Journal of cardiovascular pharmacology and therapeutics 2004;9:163-172.
    [89] Reffelmann T, Hale SL, Dow JS, Kloner RA. No-reflow phenomenon persists long-term after ischemia/reperfusion in the rat and predicts infarct expansion. Circulation 2003;108:2911-2917.
    [90] Reffelmann T, Hale SL, Li G, Kloner RA. Relationship between no reflow and infarct size as influenced by the duration of ischemia and reperfusion. American journal of physiology 2002;282:H766-772.
    [91] Reffelmann T, Kloner RA. The no-reflow phenomenon: A basic mechanism of myocardial ischemia and reperfusion. Basic research in cardiology 2006;101:359-372.
    [92] Wita K, Lelek M, Filipecki A, Turski M, Wrobel W, Tabor Z, et al. Microvascular damage prevention with thrombaspiration during primary percutaneous intervention in acute myocardial infarction. Coronary artery disease 2009;20:51-57.
    [93] Jorapur V, Steigen TK, Buller CE, Dzavik V, Webb JG, Strauss BH, et al. Distribution and determinants of myocardial perfusion grade following latemechanical recanalization of occluded infarct-related arteries postmyocardial infarction: a report from the occluded artery trial. Catheter Cardiovasc Interv 2008;72:783-789.
    [94]Gibson CM, Murphy SA, Rizzo MJ, Ryan KA, Marble SJ, McCabe CH, et al. Relationship between TIMI frame count and clinical outcomes after thrombolytic administration. Thrombolysis In Myocardial Infarction (TIMI) Study Group. Circulation 1999;99:1945-1950.
    [95] Ito H, Iwakura K, Oh H, Masuyama T, Hori M, Higashino Y, et al. Temporal changes in myocardial perfusion patterns in patients with reperfused anterior wall myocardial infarction. Their relation to myocardial viability. Circulation 1995;91:656-662.
    [96] Sciagra R, Bolognese L, Rovai D, Sestini S, Santoro GM, Cerisano G, et al. Detecting myocardial salvage after primary PTCA: early myocardial contrast echocardiography versus delayed sestamibi perfusion imaging. J Nucl Med 1999;40:363-370.
    [97] Iwakura K, Ito H, Takiuchi S, Taniyama Y, Nakatsuchi Y, Negoro S, et al. Alternation in the coronary blood flow velocity pattern in patients with no reflow and reperfused acute myocardial infarction. Circulation 1996;94:1269-1275.
    [98] Villanueva FS. Myocardial contrast echocardiography in acute myocardial infarction. The American journal of cardiology 2002;90:38J-47J.
    [99]Bremerich J, Wendland MF, Arheden H, Wyttenbach R, Gao DW, Huberty JP, et al. Microvascular injury in reperfused infarcted myocardium: noninvasive assessment with contrast-enhanced echoplanar magnetic resonance imaging. Journal of the American College of Cardiology 1998;32:787-793.
    [100]Yarom R, Zirkin H, Stammler G, Rose AG. Human coronary microvessels in diabetes and ischaemia. Morphometric study of autopsy material. The Journal ofpathology 1992;166:265-270.
    [101]Warley A, Powell JM, Skepper JN. Capillary surface area is reduced and tissue thickness from capillaries to myocytes is increased in the left ventricle of streptozotocin-diabetic rats. Diabetologia 1995;38:413-421.
    [102]Vogel WM, Apstein CS. Effects of alloxan-induced diabetes on ischemia-reperfusion injury in rabbit hearts. Circulation research 1988;62:975-982.
    [103]Di Filippo C, Marfella R, Cuzzocrea S, Piegari E, Petronella P, Giugliano D, et al. Hyperglycemia in streptozotocin-induced diabetic rat increases infarct size associated with low levels of myocardial HO-1 during ischemia/reperfusion. Diabetes 2005;54:803-810.
    [104]Panes J, Kurose I, Rodriguez-Vaca D, Anderson DC, Miyasaka M, Tso P, et al. Diabetes exacerbates inflammatory responses to ischemia-reperfusion. Circulation 1996;93:161-167.
    [105]Marfella R, Di Filippo C, Esposito K, Nappo F, Piegari E, Cuzzocrea S, et al. Absence of inducible nitric oxide synthase reduces myocardial damage during ischemia reperfusion in streptozotocin-induced hyperglycemic mice. Diabetes 2004;53:454-462.
    [106]Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science (New York, NY 1996;272:728-731.
    [107]Grafe M, Auch-Schwelk W, Hertel H, Terbeek D, Steinheider G, Loebe M, et al. Human cardiac microvascular and macrovascular endothelial cells respond differently to oxidatively modified LDL. Atherosclerosis 1998;137:87-95.
    [108]Grafe M, Graf K, Auch-Schwelk W, Terbeek D, Hertel H, Fleck E. Cultivation and characterization of micro- and macrovascular endothelial cellsfrom the human heart. European heart journal 1993;14 Suppl I:74-81.
    [109]娄晋宁.微血管内皮细胞的培养及其在医学研究中的应用.微循环学杂志,2004 ;14 (3):5-8
    [110]Hewett PW. Vascular endothelial cells from human micro- and macrovessels: isolation, characterisation and culture. Methods in molecular biology (Clifton, NJ 2009;467:95-111.
    [111]Mason JC, Lidington EA, Yarwood H. Isolation and analysis of large and small vessel endothelial cells. Methods in molecular medicine 2007;135:305-321.
    [112]Cha ST, Talavera D, Demir E, Nath AK, Sierra-Honigmann MR. A method of isolation and culture of microvascular endothelial cells from mouse skin. Microvascular research 2005;70:198-204.
    [113]Muller AM, Hermanns MI, Cronen C, Kirkpatrick CJ. Comparative study of adhesion molecule expression in cultured human macro- and microvascular endothelial cells. Experimental and molecular pathology 2002;73:171-180.
    [114]Manconi F, Markham R, Fraser IS. Culturing endothelial cells of microvascular origin. Methods Cell Sci 2000;22:89-99.
    [115]Nishida M, Carley WW, Gerritsen ME, Ellingsen O, Kelly RA, Smith TW. Isolation and characterization of human and rat cardiac microvascular endothelial cells. The American journal of physiology 1993;264:H639-652.
    [116]Predescu D, Predescu S, Malik AB. Transport of nitrated albumin across continuous vascular endothelium. Proceedings of the National Academy of Sciences of the United States of America 2002;99:13932-13937.
    [117]Wojciak-Stothard B, Potempa S, Eichholtz T, Ridley AJ. Rho and Rac but not Cdc42 regulate endothelial cell permeability. Journal of cell science 2001;114:1343-1355.
    [118]Shin K, Margolis B. ZOning out tight junctions. Cell 2006;126:647-649.
    [119]Venkiteswaran K, Xiao K, Summers S, Calkins CC, Vincent PA, Pumiglia K, et al. Regulation of endothelial barrier function and growth by VE-cadherin, plakoglobin, and beta-catenin. American journal of physiology 2002;283:C811-821.
    [120]Guo XH, Huang QB, Chen B, Wang SY, Li Q, Zhu YJ, et al. Advanced glycation end products induce actin rearrangement and subsequent hyperpermeability of endothelial cells. Apmis 2006;114:874-883.
    [121]Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiological reviews 2006;86:279-367.
    [122]Lee TY, Gotlieb AI. Microfilaments and microtubules maintain endothelial integrity. Microscopy research and technique 2003;60:115-127.
    [123]dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, et al. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiological reviews 2003;83:433-473.
    [124]van der Heijden M, Versteilen AM, Sipkema P, van Nieuw Amerongen GP, Musters RJ, Groeneveld AB. Rho-kinase-dependent F-actin rearrangement is involved in the inhibition of PI3-kinase/Akt during ischemia-reperfusion-induced endothelial cell apoptosis. Apoptosis 2008;13:404-412.
    [125]Bao W, Hu E, Tao L, Boyce R, Mirabile R, Thudium DT, et al. Inhibition of Rho-kinase protects the heart against ischemia/reperfusion injury. Cardiovascular research 2004;61:548-558.
    [126]Talpur N, Echard B, Ingram C, Bagchi D, Preuss H. Effects of a novel formulation of essential oils on glucose-insulin metabolism in diabetic and hypertensive rats: a pilot study. Diabetes, obesity & metabolism 2005;7:193-199.
    [127]Talpur N, Echard BW, Yasmin T, Bagchi D, Preuss HG. Effects of niacin-bound chromium, Maitake mushroom fraction SX and (-)-hydroxycitricacid on the metabolic syndrome in aged diabetic Zucker fatty rats. Molecular and cellular biochemistry 2003;252:369-377.
    [128]Mehta NN, Sheetz M, Price K, Comiskey L, Amrutia S, Iqbal N, et al. Selective PKC beta inhibition with ruboxistaurin and endothelial function in type-2 diabetes mellitus. Cardiovascular drugs and therapy / sponsored by the International Society of Cardiovascular Pharmacotherapy 2009;23:17-24.
    [129]Yuan SY, Breslin JW, Perrin R, Gaudreault N, Guo M, Kargozaran H, et al. Microvascular permeability in diabetes and insulin resistance. Microcirculation 2007;14:363-373.
    [130]He Z, King GL. Protein kinase Cbeta isoform inhibitors: a new treatment for diabetic cardiovascular diseases. Circulation 2004;110:7-9.
    [131]Igarashi M, Wakasaki H, Takahara N, Ishii H, Jiang ZY, Yamauchi T, et al. Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. The Journal of clinical investigation 1999;103:185-195.
    [132]Avogaro A, Fadini GP, Gallo A, Pagnin E, de Kreutzenberg S. Endothelial dysfunction in type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis 2006;16 Suppl 1:S39-45.
    [133]Gutterman DD. Vascular dysfunction in hyperglycemia: is protein kinase C the culprit? Circulation research 2002;90:5-7.
    [134]Raposo C, Zago GM, da Silva GH, da Cruz Hofling MA. Acute blood-brain barrier permeabilization in rats after systemic Phoneutria nigriventer venom. Brain research 2007;1149:18-29.
    [135]Clarke M, Dodson PM. PKC inhibition and diabetic microvascular complications. Best practice & research 2007;21:573-586.
    [136]宋力,黄巧冰,赵克森.蛋白激酶C与内皮细胞骨架蛋白及血管通透性研究进展.中国微循环,2003;7(3):184-186
    [137]Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiological reviews 2004;84:869-901.
    [138]Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, et al. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proceedings of the National Academy of Sciences of the United States of America 1999;96:9815-9820.
    [139]Vestweber D. VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arteriosclerosis, thrombosis, and vascular biology 2008;28:223-232.
    [140]Huber AH, Stewart DB, Laurents DV, Nelson WJ, Weis WI. The cadherin cytoplasmic domain is unstructured in the absence of beta-catenin. A possible mechanism for regulating cadherin turnover. The Journal of biological chemistry 2001;276:12301-12309.
    [141]Shasby DM, Ries DR, Shasby SS, Winter MC. Histamine stimulates phosphorylation of adherens junction proteins and alters their link to vimentin. American journal of physiology 2002;282:L1330-1338.
    [142]Tinsley JH, Ustinova EE, Xu W, Yuan SY. Src-dependent, neutrophil-mediated vascular hyperpermeability and beta-catenin modification. American journal of physiology 2002;283:C1745-1751.
    [143]Capes SE, Hunt D, Malmberg K, Gerstein HC. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet 2000;355:773-778.
    [144]Liu X, Wei J, Peng DH, Layne MD, Yet SF. Absence of heme oxygenase-1 exacerbates myocardial ischemia/reperfusion injury in diabetic mice. Diabetes 2005;54:778-784.
    [145]Marionneau C, Aimond F, Brunet S, Niwa N, Finck B, Kelly DP, et al. PPARalpha-mediated remodeling of repolarizing voltage-gated K+ (Kv) channels in a mouse model of metabolic cardiomyopathy. Journal of molecular and cellular cardiology 2008;44:1002-1015.
    [146]Gao X, Xu X, Belmadani S, Park Y, Tang Z, Feldman AM, et al. TNF-alpha contributes to endothelial dysfunction by upregulating arginase in ischemia/reperfusion injury. Arteriosclerosis, thrombosis, and vascular biology 2007;27:1269-1275.
    [147]Jaffe R, Charron T, Puley G, Dick A, Strauss BH. Microvascular obstruction and the no-reflow phenomenon after percutaneous coronary intervention. Circulation 2008;117:3152-3156.
    [148]Zhang C, Xu X, Potter BJ, Wang W, Kuo L, Michael L, et al. TNF-alpha contributes to endothelial dysfunction in ischemia/reperfusion injury. Arteriosclerosis, thrombosis, and vascular biology 2006;26:475-480.
    [149]Muller-Marschhausen K, Waschke J, Drenckhahn D. Physiological hydrostatic pressure protects endothelial monolayer integrity. American journal of physiology 2008;294:C324-332.
    [150]Nwariaku FE, Liu Z, Zhu X, Turnage RH, Sarosi GA, Terada LS. Tyrosine phosphorylation of vascular endothelial cadherin and the regulation of microvascular permeability. Surgery 2002;132:180-185.
    [151]Bernard O. Lim kinases, regulators of actin dynamics. The international journal of biochemistry & cell biology 2007;39:1071-1076.
    [152]Sumi T, Matsumoto K, Nakamura T. Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. The Journal of biological chemistry 2001;276:670-676.
    [153]Glyn MC, Lawrenson JG, Ward BJ. A Rho-associated kinase mitigatesreperfusion-induced change in the shape of cardiac capillary endothelial cells in situ. Cardiovascular research 2003;57:195-206.
    [154]Yada T, Shimokawa H, Hiramatsu O, Kajita T, Shigeto F, Tanaka E, et al. Beneficial effect of hydroxyfasudil, a specific Rho-kinase inhibitor, on ischemia/reperfusion injury in canine coronary microcirculation in vivo. Journal of the American College of Cardiology 2005;45:599-607.
    [155]Rochitte CE, Kim RJ, Hillenbrand HB, Chen EL, Lima JA. Microvascular integrity and the time course of myocardial sodium accumulation after acute infarction. Circulation research 2000;87:648-655.
    [156]Park JH, Okayama N, Gute D, Krsmanovic A, Battarbee H, Alexander JS. Hypoxia/aglycemia increases endothelial permeability: role of second messengers and cytoskeleton. The American journal of physiology 1999;277:C1066-1074.
    [157]Johnson EK, Schelling ME, Quitadamo IJ, Andrew S, Johnson EC. Cultivation and characterization of coronary microvascular endothelial cells: a novel porcine model using micropigs. Microvascular research 2002;64:278-288.
    [158]Cooke JP. The endothelium: a new target for therapy. Vascular medicine (London, England) 2000;5:49-53.
    [159]Quyyumi AA. Endothelial function in health and disease: new insights into the genesis of cardiovascular disease. The American journal of medicine 1998;105:32S-39S.
    [160]Birdsey GM, Dryden NH, Amsellem V, Gebhardt F, Sahnan K, Haskard DO, et al. Transcription factor Erg regulates angiogenesis and endothelial apoptosis through VE-cadherin. Blood 2008;111:3498-3506.
    [161]Corada M, Liao F, Lindgren M, Lampugnani MG, Breviario F, Frank R, et al. Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein andmodulate endothelial permeability. Blood 2001;97:1679-1684.
    [162]Magee JC, Stone AE, Oldham KT, Guice KS. Isolation, culture, and characterization of rat lung microvascular endothelial cells. The American journal of physiology 1994;267:L433-441.
    [163]Hewett PW, Murray JC. Human microvessel endothelial cells: isolation, culture and characterization. In vitro cellular & developmental biology 1993;29A:823-830.
    [164]Korn ED, Carlier MF, Pantaloni D. Actin polymerization and ATP hydrolysis. Science (New York, NY 1987;238:638-644.
    [165]Steinmetz MO, Goldie KN, Aebi U. A correlative analysis of actin filament assembly, structure, and dynamics. The Journal of cell biology 1997;138:559-574.
    [166]Baldwin AL, Thurston G. Mechanics of endothelial cell architecture and vascular permeability. Critical reviews in biomedical engineering 2001;29:247-278.
    [167]Bazzoni G, Dejana E. Pores in the sieve and channels in the wall: control of paracellular permeability by junctional proteins in endothelial cells. Microcirculation 2001;8:143-152.
    [168]Hamid SA, Bower HS, Baxter GF. Rho kinase activation plays a major role as a mediator of irreversible injury in reperfused myocardium. American journal of physiology 2007;292:H2598-2606.
    [169]Wolfrum S, Dendorfer A, Rikitake Y, Stalker TJ, Gong Y, Scalia R, et al. Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection. Arteriosclerosis, thrombosis, and vascular biology 2004;24:1842-1847.
    [170]Ndozangue-Touriguine O, Hamelin J, Breard J. Cytoskeleton and apoptosis.Biochemical pharmacology 2008;76:11-18.
    [171]Sebbagh M, Renvoize C, Hamelin J, Riche N, Bertoglio J, Breard J. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nature cell biology 2001;3:346-352.
    [172]Mills JC, Stone NL, Erhardt J, Pittman RN. Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. The Journal of cell biology 1998;140:627-636.
    [173]Vardouli L, Moustakas A, Stournaras C. LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-beta. The Journal of biological chemistry 2005;280:11448-11457.
    [174]Amano T, Tanabe K, Eto T, Narumiya S, Mizuno K. LIM-kinase 2 induces formation of stress fibres, focal adhesions and membrane blebs, dependent on its activation by Rho-associated kinase-catalysed phosphorylation at threonine-505. The Biochemical journal 2001;354:149-159.
    [175]Chen X, Macara IG. Par-3 mediates the inhibition of LIM kinase 2 to regulate cofilin phosphorylation and tight junction assembly. The Journal of cell biology 2006;172:671-678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700