用户名: 密码: 验证码:
冷应激对鸡肝脏脂肪代谢与炎性因子的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
寒冷是北方地区动物面临的主要应激源,研究表明寒冷地区冷应激可直接影响畜禽的健康及福利。低温可以增加家禽血清中游离脂肪酸、尿酸水平,降低血糖水平、脂质代谢增强。免疫反应和代谢调节高度统一,功能上相互依赖。冷应激后机体大量的能量被用于分解代谢,而保障供给免疫和炎症的活化的能量减少,使机体产生代谢性炎症。本实验探讨了冷应激对鸡肝脏脂质代谢和炎性因子的影响,应用基因克隆技术在原核表达系统中表达了PPARα和AMPKα并制备了多克隆抗体,以雏鸡为研究对象,进行急、慢性冷应激(12±1℃)处理,检测了血清生化指标、肝脏脂联素、PPARα、AMPKα等脂质代谢相关基因表达及含量、肝脏炎症相关基因表达及含量、肝脏热休克蛋白基因表达。结果表明:
     1.利用原核表达载体表达PPARα和AMPKα融合蛋白免疫新西兰白兔,成功制备了兔抗鸡PPARα和AMPKα多克隆抗体。
     2.急、慢性冷应激可引起鸡血清FFA、TG、GHO、LDL、HDL含量和ALT活性改变,提示冷应激能够使机体脂质代谢增加,为机体提供能量供应;还表明冷应激可引起肝脏的损伤。
     3.急、慢性冷应激可引起鸡肝脏脂联素、AdipoR1和AdipoR2含量以及mRNA表达量增加,提示冷应激可能通过脂联素途径增加机体脂质代谢。
     4.急、慢性冷应激时,鸡肝脏PPARα、AMPKα蛋白表达增加,肝脏AMPKα1、AMPKα2、 CPT1、ACAO含量增加,肝脏ACC、丙二酰辅酶A含量降低,肝脏PPARα、LXRα、AMPKα1、 AMPKα2、CPT1mRNA表达增加,肝脏ACC mRNA表达降低,提示冷应激可能通过脂联素-PPARα-AMPKα途径增加机体脂质代谢。
     5.急、慢性冷应激时,鸡肝脏炎性基因PGE synthase、Cox-2、NF-kB蛋白表达增加,肝脏PGE synthase、Cox-2、NF-kB、TNFα、iNOS、HO-1mRNA表达增加,提示这些基因的表达可能参与了冷应激致鸡肝脏炎症的过程。
     6.急、慢性冷应激时,鸡肝脏HSP70、GRP78蛋白及nRNA表达量升高,并首次证实,急、慢性冷应激可引起鸡肝脏HSP60、HSP90mRNA表达增加。提示机体可以通过HSP途径抵抗冷应激致鸡肝脏的损伤。
     综上所述,冷应激可通过脂联素-PPARa-AMPKa途径调节鸡肝脏脂质代谢,并引起ALT活性增加,伴有肝脏PGE synthase、Cox-2、NF-kB、TNFα、iNOS、HO-1)和HSP70、GRP78、 HSP60、HSP90表达上调,表明冷应激可致鸡脂质代谢紊乱、肝脏损伤,并伴随着炎症相关基因和热休克蛋白基因的上调,为探讨冷应激致鸡代谢性炎症的机制提供理论基础和实验依据。
Cold stress is the most common stress factor to the animals in the cold region. Studies have demonstrated that cold stress could affect the health and welfare of animals. Low temperature can increase the free fatty acids and trioxypurine levels in serum, decrease the level of blood glucose and enhance the lipid metabolism in poultry. Immune response and metabolic regulation have highly unity and functional interdependence. During cold stress large amounts of body energy is used for anabolic, however the energy to protect the supply of immune and inflammatory activation reduced, which is related to metabolic inflammation. In this study, coding sequences of PPARa and AMPKa were cloned by the methods of molecular biology. As the experimental animals, chickens were treated with acute and chronic cold stress (12±1℃) to investigate the effect of cold stress on lipid metabolism and inflammatory factors in chicken liver. Biochemical indicator in serum, the expression and content of adiponectin, PPARα, AMPKα and lipid metabolism-related genes in liver, and the expression of inflammation-related and HSP genes in liver were detected. The results showed as follows:
     1. Fusion proteins of PPARα and AMPKα were expressed in prokaryotic system. The polyclonal antibodies were prepared by using expressed fusion proteins.
     2. Acute and chronic cold stress could influence the content of FFA, TG, GHO, LDL, HDL and the activity of ALT in serum. It indicated that cold stress could accelerate fat dissolution to provide the energy for the body. It also indicated that cold stress could cause liver damage.
     3. Acute and chronic cold stress could increase the adiponectin and its receptors' mRNA expression and concentration in liver. It indicated that cold stress might change the liver lipid metabolism through adiponectin pathway in chickens.
     4. Acute and chronic cold stress could increase the expression of PPARα, AMPKα protein in liver, increase the concentration of AMPKα1, AMPKα2, CPT1, ACAO and decrease the concentration of ACC, malonyl CoA in liver, increase the expression of PPARα, LXRα, AMPKα1, AMPKα2, CPT1mRNA and decrease the expression of ACC mRNA in liver. It indicated that cold stress might change the liver lipid metabolism through adiponectin-PPARα-AMPKα pathway in chickens.
     5. Acute and chronic cold stress could increase the expression of PGE synthase, Cox-2, NF-κB protein and the expression of PGE synthase, Cox-2, NF-κB, TNFα, iNOS, HO-1mRNA in liver. It indicated that these genes might be involved in the process of liver inflammation of chicken caused by cold stress.
     6. Acute and chronic cold stress could increase the HSP70and GRP78' mRNA and protein expression and we first verified that acute and chronic cold stress could increase the HSP60and HSP90' mRNA expression. It indicated that organism could resistance to the damage in chicken's liver through HSP pathway caused by cold stress.
     In present study, it indicated that cold stress could change the liver lipid metabolism through adiponectin-PPARα-AMPKα pathway and increase the activity of ALT in chickens. It also clarified that cold stress could increase the expression of PGE synthase, Cox-2, NF-kB, TNFα, iNOS, HO-1gene and HSP gene and the expression of HSP70, GRP78, HSP60, HSP90. It indicated that cold stress could cause lipid metabolism disorders, liver damage and accompanied with increasing in inflammation-related genes and heat shock protein gene. This study provides theoretical basis and experimental evidence for exploring the mechanisms of chicken metabolic inflammation caused by cold stress.
引文
[1]Selye H. A syndrome produced by diverse nocuous agents [J]. J Neuropsychiatry Clin Neurosci,1998,10(2):230-1.
    [2]屠云洁,耿照玉,陈国宏,等.冷应激对家禽神经内分泌系统的影响[J].安徽农业科学,2009,(24):11555-11557.
    [3]Tsutsayeva AA, Sevryukova LG. Effect of cold exposure on survival and stress protein expression of Drosophila melanogaster at different development stages[J]. Cryo Letters, 2001,22(3):145-50.
    [4]Dhanalakshmi S, Devi RS, Srikumar R, et al. Protective effect of Triphala on cold stress-induced behavioral and biochemical abnormalities in rats[J]. Yakugaku Zasshi, 2007,127(11):1863-7.
    [5]Mujahid A, Furuse M. Oxidative damage in different tissues of neonatal chicks exposed to low environmental temperature[J]. Comp Biochem Physiol A Mol Integr Physiol, 2009,152(4):604-8.
    [6]Mujahid A, Furuse M. Homeothermy in neonatal chicks exposed to low environmental temperature with or without intracerebroventricular administration of corticotropin-releasing factor[J]. FEBS Lett,2008,582(20):3052-60.
    [7]Haman F, Peronnet F, Kenny GP, et al. Effect of cold exposure on fuel utilization in humans: plasma glucose, muscle glycogen, and lipids[J]. J Appl Physiol,2002,93(1):77-84.
    [8]Diot C, Douaire M. Characterization of a cDNA sequence encoding the peroxisome proliferator activated receptor alpha in the chicken[J]. Poult Sci,1999,78(8):1198-202.
    [9]Ramachandran R, Ocon-Grove OM, Metzger SL. Molecular cloning and tissue expression of chicken AdipoRl and AdipoR2 complementary deoxyribonucleic acids[J]. Domest Anim Endocrinol,2007,33(1):19-31.
    [10]Trujillo ME, Scherer PE. Adipose tissue-derived factors:impact on health and disease[J]. Endocr Rev,2006,27(7):762-78.
    [11]Cassidy A, Skidmore P, Rimm EB, et al. Plasma adiponectin concentrations are associated with body composition and plant-based dietary factors in female twins[J]. J Nutr, 2009,139(2):353-8.
    [12]Maddineni S, Metzger S, Ocon O, et al. Adiponectin gene is expressed in multiple tissues in the chicken:food deprivation influences adiponectin messenger ribonucleic acid expression[J]. Endocrinology,2005,146(10):4250-6.
    [13]Collins SM. Stress and the Gastrointestinal Tract IV. Modulation of intestinal inflammation by stress:basic mechanisms and clinical relevance[J]. Am J Physiol Gastrointest Liver Physiol,2001,280(3):G315-8.
    [14]李金敏.谷氨酰胺对慢性冷应激雏鸡肝脏损伤的影响[D].东北农业大学.2009.
    [15]汤绍芳,李红涛,邱明才.代谢性炎症与代谢综合征[J].医学与哲学(临床决策论坛版),2009,(12):48-50.
    [16]Scherer PE, Williams S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes[J]. J Biol Chem,1995,270(45):26746-9.
    [17]Kadowaki T, Yamauchi T, Kubota N, et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome[J]. J Clin Invest,2006,116(7):1784-92.
    [18]Yoda-Murakami M, Taniguchi M, Takahashi K, et al. Change in expression of GBP28/adiponectin in carbon tetrachloride-administrated mouse liver[J]. Biochem Biophys Res Commun,2001,285(2):372-7.
    [19]Kaser S, Moschen A, Cayon A, et al. Adiponectin and its receptors in non-alcoholic steatohepatitis[J]. Gut,2005,54(1):117-21.
    [20]Delaigle AM, Jonas JC, Bauche IB, et al. Induction of adiponectin in skeletal muscle by inflammatory cytokines:in vivo and in vitro studies[J]. Endocrinology, 2004,145(12):5589-97.
    [21]Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects[J]. Nature,2003,423(6941):762-9.
    [22]Yamauchi T, Nio Y, Maki T, et al. Targeted disruption of AdipoRl and AdipoR2 causes abrogation of adiponectin binding and metabolic actions[J]. Nat Med,2007,13(3):332-9.
    [23]Proszkowiec-Weglarz M, Richards MP, Ramachandran R, et al. Characterization of the AMP-activated protein kinase pathway in chickens[J]. Comp Biochem Physiol B Biochem Mol Biol,2006,143(1):92-106.
    [24]Combs TP, Berg AH, Obici S, et al. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30[J]. J Clin Invest,2001,108(12):1875-81.
    [25]Tomas E, Tsao TS, Saha AK, et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain:acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation[J]. Proc Natl Acad Sci U S A,2002,99(25):16309-13.
    [26]Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity[J]. Nat Med,2001,7(8):941-6.
    [27]Shulman GI. Cellular mechanisms of insulin resistance[J]. J Clin Invest,2000,106(2):171-6.
    [28]Kumada M, Kihara S, Sumitsuji S, et al. Association of hypoadiponectinemia with coronary artery disease in men[J]. Arterioscler Thromb Vase Biol,2003,23(1):85-9.
    [29]Yamauchi T, Kamon J, Waki H, et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis[J]. J Biol Chem, 2003,278(4):2461-8.
    [30]Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase[J]. Nat Med, 2002,8(11):1288-95.
    [31]Minokoshi Y, Kim YB, Peroni OD, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase[J]. Nature,2002,415(6869):339-43.
    [32]Combs TP, Pajvani UB, Berg AH, et al. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity [J]. Endocrinology,2004,145(1):367-83.
    [33]Pajvani UB, Du X, Combs TP, et al. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity[J]. J Biol Chem,2003,278(11):9073-85.
    [34]Nishizawa H, Shimomura I, Kishida K, et al. Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein[J]. Diabetes,2002,51(9):2734-41.
    [35]Combs TP, Berg AH, Rajala MW, et al. Sexual differentiation, pregnancy, calorie restriction, and aging affect the adipocyte-specific secretory protein adiponectin[J]. Diabetes, 2003,52(2):268-76.
    [36]Matsuzawa Y, Shimomura I, Kihara S, et al. Importance of adipocytokines in obesity-related diseases[J]. Horm Res,2003,60 Suppl 3:56-9.
    [37]Matsuzawa Y, Funahashi T, Kihara S, et al. Adiponectin and metabolic syndrome[J]. Arterioscler Thromb Vasc Biol,2004,24(1):29-33.
    [38]吴卫东,荆西民,岳静静.有氧运动对ApoE基因缺陷小鼠主动脉脂联素受体1蛋白表达的影响[J].中国体育科技,2012,(01):116-118.
    [39]Bjursell M, Ahnmark A, Bohlooly-Y M, et al. Opposing effects of adiponectin receptors 1 and 2 on energy metabolism[J]. Diabetes,2007,56(3):583-93.
    [40]Liu Y, Michael MD, Kash S, et al. Deficiency of adiponectin receptor 2 reduces diet-induced insulin resistance but promotes type 2 diabetes[J]. Endocrinology, 2007,148(2):683-92.
    [41]Tsochatzis E, Papatheodoridis GV, Archimandritis AJ. The evolving role of leptin and adiponectin in chronic liver diseases[J]. Am J Gastroenterol,2006,101(11):2629-40.
    [42]Vuppalanchi R, Marri S, Kolwankar D, et al. Is adiponectin involved in the pathogenesis of nonalcoholic steatohepatitis? A preliminary human study[J]. J Clin Gastroenterol, 2005,39(3):237-42.
    [43]Liu C, Chen P, Jeng Y, et al. Serum adiponectin correlates with viral characteristics but not histologic features in patients with chronic hepatitis C[J]. J Hepatol,2005,43(2):235-242.
    [44]亓立峰.过氧化物酶体增殖剂受体与脂质代谢调控[J].中国兽药杂志,2003,(07):33-35+32.
    [45]Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily byperoxisome proliferators[J]. Nature,1990,347(6294):645-50.
    [46]Castrillo A, Tontonoz P. Nuclear receptors in macrophage biology:at the crossroads of lipid metabolism and inflammation[J]. Annu Rev Cell Dev Biol,2004,20:455-80.
    [47]柳晓峰,李辉.PPAR基因与脂肪代谢调控[J].遗传,2006,(02):243-248.
    [48]Dreyer C, Keller H, Mahfoudi A, et al. Positive regulation of the peroxisomal beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR)[J]. Biol Cell,1993,77(1):67-76.
    [49]Kersten S, Seydoux J, Peters JM, et al. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting[J]. J Clin Invest,1999,103(11):1489-98.
    [50]Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, et al. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene[J]. EMBO J,1996,15(19):5336-48.
    [51]Chinetti G, Griglio S, Antonucci M, et al. Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages[J]. J Biol Chem,1998,273(40):25573-80.
    [52]Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta[J]. Proc Natl Acad Sci U S A,1997,94(9):4312-7.
    [53]Motojima K, Passilly P, Peters JM, et al. Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor alpha and gamma activators in a tissue- and inducer-specific manner[J]. J Biol Chem,1998,273(27):16710-4.
    [54]Poirier H, Niot I, Monnot MC, et al. Differential involvement of peroxisome-proliferator-activated receptors alpha and delta in fibrate and fatty-acid-mediated inductions of the gene encoding liver fatty-acid-binding protein in the liver and the small intestine[J]. Biochem J,2001,355(Pt 2):481-8.
    [55]Rakhshandehroo M, Hooiveld G, Muller M, et al. Comparative analysis of gene regulation by the transcription factor PPARalpha between mouse and human[J]. PLoS One, 2009,4(8):e6796.
    [56]Aoyama T, Peters JM, Iritani N, et al. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha)[J]. J Biol Chem,1998,273(10):5678-84.
    [57]Paul HS, Gleditsch CE, Adibi SA. Mechanism of increased hepatic concentration of carnitine by clofibrate[J]. Am J Physiol,1986,251(3 Pt 1):E311-5.
    [58]McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis[J]. Eur J Biochem,1997,244(1):1-14.
    [59]Makowski L, Noland RC, Koves TR, et al. Metabolic profiling of PPARalpha-/-mice reveals defects in carnitine and amino acid homeostasis that are partially reversed by oral carnitine supplementation[J]. FASEB J,2009,23(2):586-604.
    [60]Tugwood JD, Issemann I, Anderson RG, et al. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5'flanking sequence of the rat acyl CoA oxidase gene[J]. EMBO J,1992,11 (2):433-9.
    [61]Nicolas-Frances V, Dasari VK, Abruzzi E, et al. The peroxisome proliferator response element (PPRE) present at positions -681/-669 in the rat liver 3-ketoacyl-CoA thiolase B gene functionally interacts differently with PPARalpha and HNF-4[J]. Biochem Biophys Res Commun,2000,269(2):347-51.
    [62]Savas U, Machemer DE, Hsu MH, et al. Opposing roles of peroxisome proliferator-activated receptor alpha and growth hormone in the regulation of CYP4A11 expression in a transgenic mouse model[J]. J Biol Chem,2009,284(24):16541-52.
    [63]Watts GF, Barrett PH, Ji J, et al. Differential regulation of lipoprotein kinetics by atorvastatin and fenofibrate in subjects with the metabolic syndrome[J]. Diabetes, 2003,52(3):803-11.
    [64]Vu-Dac N, Chopin-Delannoy S, Gervois P, et al. The nuclear receptors peroxisome proliferator-activated receptor alpha and Rev-erbalpha mediate the species-specific regulation of apolipoprotein A-I expression by fibrates[J]. J Biol Chem, 1998,273(40):25713-20.
    [65]Eriksson M, Carlson LA, Miettinen TA, et al. Stimulation of fecal steroid excretion after infusion of recombinant proapolipoprotein A-Ⅰ. Potential reverse cholesterol transport in humans[J]. Circulation,1999,100(6):594-8.
    [66]Schultze AE, Alborn WE, Newton RK, et al. Administration of a PPARalpha agonist increases serum apolipoprotein A-Ⅴ levels and the apolipoprotein A-Ⅴ/apolipoprotein C-Ⅲ ratio[J]. J Lipid Res,2005,46(8):1591-5.
    [67]Staels B, Vu-Dac N, Kosykh VA, et al. Fibrates downregulate apolipoprotein C-Ⅲ expression independent of induction of peroxisomal acyl coenzyme A oxidase. A potential mechanism for the hypolipidemic action of fibrates [J]. J Clin Invest,1995,95(2):705-12.
    [68]Birjmohun RS, Hutten BA, Kastelein JJ, et al. Efficacy and safety of high-density lipoprotein cholesterol-increasing compounds:a meta-analysis of randomized controlled trials[J]. J Am Coll Cardiol,2005,45(2):185-97.
    [69]Babaev VR, Ishiguro H, Ding L, et al. Macrophage expression of peroxisome proliferator-activated receptor-alpha reduces atherosclerosis in low-density lipoprotein receptor-deficient mice[J]. Circulation,2007,116(12):1404-12.
    [70]Tordjman K, Bernal-Mizrachi C, Zemany L, et al. PPARalpha deficiency reduces insulin resistance and atherosclerosis in apoE-null mice[J]. J Clin Invest,2001,107(8):1025-34.
    [71]Fu X, Menke JG, Chen Y, et al.27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells[J]. J Biol Chem,2001,276(42):38378-87.
    [72]Tontonoz P, Mangelsdorf DJ. Liver X receptor signaling pathways in cardiovascular disease[J]. Mol Endocrinol,2003,17(6):985-93.
    [73]Terasaka N, Hiroshima A, Koieyama T, et al. T-0901317, a synthetic liver X receptor ligand, inhibits development of atherosclerosis in LDL receptor-deficient mice[J]. FEBS Lett, 2003,536(1-3):6-11.
    [74]Alberti S, Schuster G, Parini P, et al. Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRbeta-deficient mice[J]. J Clin Invest,2001,107(5):565-73.
    [75]Bradley MN, Hong C, Chen M, et al. Ligand activation of LXR beta reverses atherosclerosis and cellular cholesterol overload in mice lacking LXR alpha and apoE[J]. J Clin Invest,2007,117(8):2337-46.
    [76]Ogawa S, Lozach J, Benner C, et al. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors[J]. Cell,2005,122(5):707-21.
    [77]Tangirala RK, Bischoff ED, Joseph SB, et al. Identification of macrophage liver X receptors as inhibitors of atherosclerosis[J]. Proc Natl Acad Sci U S A,2002,99(18):11896-901.
    [78]Ghisletti S, Huang W, Ogawa S, et al. Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma[J]. Mol Cell, 2007,25(1):57-70.
    [79]Hardie DG. The AMP-activated protein kinase pathway--new players upstream and downstream[J]. J Cell Sci,2004,117(Pt 23):5479-87.
    [80]杨航,杨吉春,管又飞.AMPK在机体糖脂代谢中的作用[J].生理科学进展,2009,(03):249-252.
    [81]Shaw RJ, Lamia KA, Vasquez D, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin[J]. Science,2005,310(5754):1642-6.
    [82]Saha AK, Avilucea PR, Ye JM, et al. Pioglitazone treatment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo[J]. Biochem Biophys Res Commun, 2004,314(2):580-5.
    [83]Assifi MM, Suchankova G, Constant S, et al. AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats[J]. Am J Physiol Endocrinol Metab,2005,289(5):E794-800.
    [84]Dentin R, Benhamed F, Pegorier JP, et al. Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation[J]. J Clin Invest,2005,115(10):2843-54.
    [85]Peralta C, Bartrons R, Serafin A, et al. Adenosine monophosphate-activated protein kinase mediates the protective effects of ischemic preconditioning on hepatic ischemia-reperfusion injury in the rat[J]. Hepatology,2001,34(6):1164-73.
    [86]You M, Matsumoto M, Pacold CM, et al. The role of AMP-activated protein kinase in the action of ethanol in the liver[J]. Gastroenterology,2004,127(6):1798-808.
    [87]Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, et al. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2[J]. Science, 2001,291(5513):2613-6.
    [88]Witters LA, Kemp BE. Insulin activation of acetyl-CoA carboxylase accompanied by inhibition of the 5'-AMP-activated protein kinase[J]. J Biol Chem,1992,267(5):2864-7.
    [89]Andreelli F, Foretz M, Knauf C, et al. Liver adenosine monophosphate-activated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin[J]. Endocrinology, 2006,147(5):2432-41.
    [90]Muoio DM, Seefeld K, Witters LA, et al. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle:evidence that sn-glycerol-3-phosphate acyltransferase is a novel target[J]. Biochem J,1999,338 (Pt 3):783-91.
    [91]Inoue M, Sato EF, Nishikawa M, et al. Cross talk of nitric oxide, oxygen radicals, and superoxide dismutase regulates the energy metabolism and cell death and determines the fates of aerobic life[J]. Antioxid Redox Signal,2003,5(4):475-84.
    [92]Gonzalez DR, Treuer AV, Dulce RA. Neuronal nitric oxide synthase in heart mitochondria: a matter of life or death[J]. J Physiol,2009,587(Pt 12):2719-20.
    [93]Davidson SM, Duchen MR. Effects of NO on mitochondrial function in cardiomyocytes: Pathophysiological relevance[J]. Cardiovasc Res,2006,71(1):10-21.
    [94]Rodeberg DA, Chaet MS, Bass RC, et al. Nitric oxide:an overview[J]. Am J Surg, 1995,170(3):292-303.
    [95]Weitzberg E, Hezel M, Lundberg JO. Nitrate-nitrite-nitric oxide pathway:implications for anesthesiology and intensive care[J]. Anesthesiology,2010,113(6):1460-75.
    [96]Lee YJ, Choi B, Lee EH, et al. Immobilization stress induces cell death through production of reactive oxygen species in the mouse cerebral cortex[J]. Neurosci Lett, 2006,392(1-2):27-31.
    [97]孙锦平,田淑君.针刺足三里穴对冷应激性溃疡大鼠下丘脑与肾上腺NOS表达的影响[J].中华物理医学与康复杂志,2005,(05):276-279.
    [98]王金涛,孙晓玉,徐世文.冷应激对雏鸡下丘脑NO代谢的影响[J].中国兽医科学,2007,(05):429-434.
    [99]徐世文.甘露寡糖抗雏鸡冷应激机理的研究[D].东北农业大学.2006.
    [100]Kaushik S, Kaur J. Effect of chronic cold stress on intestinal epithelial cell proliferation and inflammation in rats[J]. Stress,2005,8(3):191-7.
    [101]杨晓敏.应激状态下环加氧酶-2基因表达调控的研究进展[J].医学分子生物学杂志,2005,(03):194-197.
    [102]Cianchi F, Cortesini C, Fantappie O, et al. Cyclooxygenase-2 activation mediates the proangiogenic effect of nitric oxide in colorectal cancer[J]. Clin Cancer Res, 2004,10(8):2694-704.
    [103]王菊勇,郭净,郑展.iNOS/COX-2与恶性肿瘤[J].现代肿瘤医学,2012,(01):183-186.
    [104]徐俊,宋于刚,桑显富,等.大鼠应激性溃疡自愈过程中环氧合酶表达的变化[J].南方医科大学学报,2006,26(1):91-93,97.
    [105]Kurihara-Yonemoto S, Handa H. Low temperature affects the processing pattern and RNA editing status of the mitochondrial cox2 transcripts in wheat[J]. Curr Genet, 2001,40(3):203-8.
    [106]肖文,李仓霞,张守信,等.寒冷应激对大鼠血浆血栓素B 2和6-酮-前列腺素F1α[含 量的改变[J].西部医学,2008,(04):704-705.
    [107]Castagliuolo I, Lamont JT, Qiu B, et al. Acute stress causes mucin release from rat colon: role of corticotropin releasing factor and mast cells[J]. Am J Physiol,1996,271(5 Pt 1):G884-92.
    [108]夏振炜,李云珠,崔文俊.人体血红素加氧酶-1的研究进展[J].生命科学2002,(04):204-207.
    [109]Otterbein LE, Choi AM. Heme oxygenase:colors of defense against cellular stress[J]. Am J Physiol Lung Cell Mol Physiol,2000,279(6):L1029-37.
    [110]Maines MD. The heme oxygenase system:a regulator of second messenger gases[J]. Annu Rev Pharmacol Toxicol,1997,37:517-54.
    [111]Llesuy SF, Tomaro ML. Heme oxygenase and oxidative stress. Evidence of involvement of bilirubin as physiological protector against oxidative damage[J]. Biochim Biophys Acta, 1994,1223(1):9-14.
    [112]Poss K.D, Tonegawa S. Heme oxygenase 1 is required for mammalian iron reutilization[J]. Proc Natl Acad Sci U S A,1997,94(20):10919-24.
    [113]Baranano DE, Rao M, Ferris CD, et al. Biliverdin reductase:a major physiologic cytoprotectant[J]. Proc Natl Acad Sci U S A,2002,99(25):16093-8.
    [114]Taneja C, Prescott L, Koneru B. Critical preservation injury in rat fatty liver is to hepatocytes, not sinusoidal lining cells[J]. Transplantation,1998,65(2):167-72.
    [115]Tilg H. The role of cytokines in non-alcoholic fatty liver disease[J]. Dig Dis, 2010,28(1):179-85.
    [116]Uysal KT, Wiesbrock SM, Marino MW, et al. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function[J]. Nature,1997,389(6651):610-4.
    [117]Iimuro Y, Fujimoto J. TLRs, NF-kappaB, JNK, and Liver Regeneration.LID-598109 [pii][J]. Gastroenterol Res Pract,2010,2010.
    [118]Karin M. NF-kappaB as a critical link between inflammation and cancer[J]. Cold Spring Harb Perspect Biol,2009, 1(5):a000141.
    [119]林宇,许莉,王小明.氧应激在TNFa诱导血管内皮细胞HO-1基因表达中的作用[J].齐齐哈尔医学院学报,2006,(09):1025-1026.
    [120]Wei L, Wu RB, Yang CM, et al. Cardioprotective effect of a hemoglobin-based oxygen carrier on cold ischemia/reperfusion injury[J]. Cardiology,2011,120(2):73-83.
    [121]Hansen JJ, Bross P, Westergaard M, et al. Genomic structure of the human mitochondrial chaperonin genes:HSP60 and HSP10 are localised head to head on chromosome 2 separated by a bidirectional promoter[J]. Hum Genet,2003,112(1):71-7.
    [122]Pelham HR. Speculations on the functions of the major heat shock and glucose-regulated proteins[J]. Cell,1986,46(7):959-61.
    [123]Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines[J]. Cell, 1998,92(3):351-66.
    [124]Fang YC, Cheng M. The effect of C-terminal mutations of HSP60 on protein folding[J]. J Biomed Sci,2002,9(3):223-33.
    [125]Itoh H, Komatsuda A, Ohtani H, et al. Mammalian HSP60 is quickly sorted into the mitochondria under conditions of dehydration[J]. Eur J Biochem,2002,269(23):5931-8.
    [126]李雯.热应激蛋白抗应激机理的研究进展[J].四川畜牧兽医,2009,(11):28-29+32.
    [127]Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity[J]. Nat Rev Immunol,2002,2(3):185-94.
    [128]Ortiz C, Cardemil L. Heat-shock responses in two leguminous plants:a comparative study[J].J Exp Bot,2001,52(361):1711-9.
    [129]张莹.GRP78的研究进展[J].国外医学(生理、病理科学与临床分册),2005,(03):251-253.
    [130]Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer[J]. Nat Rev Cancer, 2005,5(10):761-72.
    [131]吕朝辉.冷应激致雏鸡十二指肠损伤机制的研究[D].东北农业大学.2009.
    [132]王金涛.寒冷应激对雏鸡免疫器官能量代谢与免疫功能的影响[D].东北农业大学.2009.
    [133]贾海燕.谷氨酰胺在冷应激雏鸡肺损伤中保护作用的研究[D].东北农业大学.2009.
    [134]张久丽.鸡SelN的体内分布及硒对其在肌组织中转录的调控[D].2010.
    [135]Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Res,2001,29(9):e45.
    [136]Lefebvre P, Chinetti G, Fruchart JC, et al. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis[J]. J Clin Invest,2006,116(3):571-80.
    [137]Lee JY, Hashizaki H, Goto T, et al. Activation of peroxisome proliferator-activated receptor-alpha enhances fatty acid oxidation in human adipocytes[J]. Biochem Biophys Res Commun,2011,407(4):818-22.
    [138]Vingtdeux V, Chandakkar P, Zhao H, et al. Small-Molecule Activators of AMP-Activated Protein Kinase (AMPK), RSVA314 and RSVA405, Inhibit Adipogenesis[J]. Mol Med, 2011,17(9-10):1022-30.
    [139]Sozio MS, Lu C, Zeng Y, et al. Activated AMPK inhibits PPAR-{alpha} and PPAR-{gamma} transcriptional activity in hepatoma cells[J]. Am J Physiol Gastrointest Liver Physiol, 2011,301(4):G739-47.
    [140]聂纪芹,汪龚泽,刘朝奇.annexinA2基因片段的克隆、表达、纯化及多克隆抗体的制备[J].中国免疫学杂志,2012,(01):67-70.
    [141]Horvath TL, Warden CH, Hajos M, et al. Brain uncoupling protein 2:uncoupled neuronal mitochondria predict thermal synapses in homeostatic centers[J]. J Neurosci, 1999,19(23):10417-27.
    [142]Wang JT, Li S, Li JL, et al. Effects of cold stress on the messenger ribonucleic acid levels of peroxisome proliferator-activated receptor-{gamma} in spleen, thymus, and bursa of Fabricius of chickens[J]. Poult Sci,2009,88(12):2549-54.
    [143]Richards MP. Genetic regulation of feed intake and energy balance in poultry[J]. Poult Sci, 2003,82(6):907-16.
    [144]Vallerand AL, Jacobs I. Energy metabolism during cold exposure[J]. Int J Sports Med, 1992,13 Suppl 1:S191-3.
    [145]Coimbra CC, Migliorini RH. Cold-induced free fatty acid mobilization is impaired in rats with lesions in the preoptic area[J]. Neurosci Lett,1988,88(1):1-5.
    [146]Wang JT, Zhang XJ, Xu SW. [Effects of cold stress on energy metabolism in the chicken][J]. Zhongguo Ying Yong Sheng Li Xue Za Zhi,2009,25(2):172-6.
    [147]Neschen S, Morino K, Hammond LE, et al. Prevention of hepatic steatosis and hepatic insulin resistance in mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 knockout mice[J]. Cell Metab,2005,2(1):55-65.
    [148]任延铭,王安.温度和能量对笼养育成蛋鸭的生长、性发育及代谢的影响[J].东北农业大学学报,2008,(10):66-70.
    [149]Basha PM, Poojary A. Oxidative macromolecular alterations in the rat central nervous system in response to experimentally co-induced chlorpyrifos and cold stress:a comparative assessment in aging rats[J]. Neurochem Res,2012,37(2):335-48.
    [150]Sanchez O, Arnau A, Pareja M, et al. Acute stress-induced tissue injury in mice:differences between emotional and social stress[J]. Cell Stress Chaperones,2002,7(1):36-46.
    [151]Mochida S, Arai M, Ohno A, et al. Oxidative stress in hepatocytes and stimulatory state of Kupffer cells after reperfusion differ between warm and cold ischemia in rats[J]. Liver, 1994,14(5):234-40.
    [152]陈鑫,王安,艾涛.低温和维生素E对育成期笼养蛋鸭生产性能及血液生化指标的影响[J].东北农业大学学报,2008,(01):84-89.
    [153]Maeda N, Shimomura I, Kishida K, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30[J]. Nat Med,2002,8(7):731-7.
    [154]Zhu M, Miura J, Lu LX, et al. Circulating adiponectin levels increase in rats on caloric restriction:the potential for insulin sensitization[J]. Exp Gerontol,2004,39(7):1049-59.
    [155]Tilg H, Moschen AR. Adipocytokines:mediators linking adipose tissue, inflammation and immunity[J]. Nat Rev Immunol,2006,6(10):772-83.
    [156]Guerre-Millo M. Adiponectin:an update[J]. Diabetes Metab,2008,34(1):12-8.
    [157]Heiker JT, Kosel D, Beck-Sickinger AG. Molecular mechanisms of signal transduction via adiponectin and adiponectin receptors[J]. Biol Chem,2010,391(9):1005-18.
    [158]Brady LJ, Romsos DR, Brady PS, et al. The effects of fasting on body composition, glucose turnover, enzymes and metabolites in the chicken[J]. J Nutr,1978,108(4):648-57.
    [159]Leveille GA, Romsos DR, Yeh Y, et al. Lipid biosynthesis in the chick. A consideration of site of synthesis, influence of diet and possible regulatory mechanisms[J]. Poult Sci, 1975,54(4):1075-93.
    [160]Koska J, Ksinantova L, Sebokova E, et al. Endocrine regulation of subcutaneous fat metabolism during cold exposure in humans[J]. Ann N Y Acad Sci,2002,967:500-5.
    [161]Delporte ML, Funahashi T, Takahashi M, et al. Pre-and post-translational negative effect of beta-adrenoceptor agonists on adiponectin secretion:in vitro and in vivo studies[J]. Biochem J,2002,367(Pt 3):677-85.
    [162]Fruebis J, Tsao TS, Javorschi S, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice[J]. Proc Natl Acad Sci U S A,2001,98(4):2005-10.
    [163]Imai J, Katagiri H, Yamada T, et al. Cold exposure suppresses serum adiponectin levels through sympathetic nerve activation in mice[J]. Obesity (Silver Spring), 2006,14(7):1132-41.
    [164]Imbeault P, Depault I, Haman F. Cold exposure increases adiponectin levels in men[J]. Metabolism,2009,58(4):552-9.
    [165]Yoda M, Nakano Y, Tobe T, et al. Characterization of mouse GBP28 and its induction by exposure to cold[J]. Int J Obes Relat Metab Disord,2001,25(1):75-83.
    [166]Donnelly KL, Smith CI, Schwarzenberg SJ, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease[J]. J Clin Invest, 2005,115(5):1343-51.
    [167]Auboeuf D, Rieusset J, Fajas L, et al. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans:no alteration in adipose tissue of obese and NIDDM patients[J]. Diabetes,1997,46(8):1319-27.
    [168]Reddy JK, Hashimoto T. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha:an adaptive metabolic system[J]. Annu Rev Nutr,2001,21:193-230.
    [169]Hansmannel F, Clemencet MC, Le JC, et al. Functional characterization of a peroxisome proliferator response-element located in the intron 3 of rat peroxisomal thiolase B gene[J]. Biochem Biophys Res Commun,2003,311(1):149-55.
    [170]Yoon MJ, Lee GY, Chung JJ, et al. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha[J]. Diabetes,2006,55(9):2562-70.
    [171]Attie AD, Krauss RM, Gray-Keller MP, et al. Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia[J]. J Lipid Res,2002,43(11):1899-907.
    [172]任冰稳,叶平,刘永学,等.束缚应激对心脏PPARα、PPARβ和M-CPT-I mRNA表达的影响[J].西南国防医药,2010,20(1):10-12.
    [173]Tseng YC, Chen RD, Lucassen M, et al. Exploring uncoupling proteins and antioxidant mechanisms under acute cold exposure in brains of fish[J]. PLoS One,2011,6(3):e18180.
    [174]Minami A, Nagao M, Arakawa K, et al. Abscisic acid-induced freezing tolerance in the moss Physcomitrella patens is accompanied by increased expression of stress-related genes[J]. J Plant Physiol,2003,160(5):475-83.
    [175]Willy PJ, Umesono K, Ong ES, et al. LXR, a nuclear receptor that defines a distinct retinoid response pathway[J]. Genes Dev,1995,9(9):1033-45.
    [176]Joshi S, Rao S, Girigosavi S, et al. Differential effects of fish oil and folic acid supplementation during pregnancy in rats on cognitive performance and serum glucose in their offspring[J]. Nutrition,2004,20(5):465-72.
    [177]Repa JJ, Turley SD, Lobaccaro JA, et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers[J]. Science,2000,289(5484):1524-9.
    [178]Laffitte BA, Repa JJ, Joseph SB, et al. LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes[J]. Proc Natl Acad Sci U S A, 2001,98(2):507-12.
    [179]Laffitte BA, Joseph SB, Chen M, et al. The phospholipid transfer protein gene is a liver X receptor target expressed by macrophages in atherosclerotic lesions[J]. Mol Cell Biol, 2003,23(6):2182-91.
    [180]Peet DJ, Turley SD, Ma W, et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha[J]. Cell,1998,93(5):693-704.
    [181]Menze MA, Clavenna MJ, Hand SC. Depression of cell metabolism and proliferation by membrane-permeable and -impermeable modulators:role for AMP-to-ATP ratio[J]. Am J Physiol Regul Integr Comp Physiol,2005,288(2):R501-10.
    [182]Hardie DG, Hawley SA. AMP-activated protein kinase:the energy charge hypothesis revisited[J]. Bioessays,2001,23(12):1112-9.
    [183]Murase T, Misawa K, Haramizu S, et al. Nootkatone, a characteristic constituent of grapefruit, stimulates energy metabolism and prevents diet-induced obesity by activating AMPK[J]. Am J Physiol Endocrinol Metab,2010,299(2):E266-75.
    [184]Lage R, Dieguez C, Vidal-Puig A, et al. AMPK:a metabolic gauge regulating whole-body energy homeostasis[J]. Trends Mol Med,2008,14(12):539-49.
    [185]Liao Y, Takashima S, Maeda N, et al. Exacerbation of heart failure in adiponectin-deficient mice due to impaired regulation of AMPK and glucose metabolism[J]. Cardiovasc Res, 2005,67(4):705-13.
    [186]Fujita K, Maeda N, Sonoda M, et al. Adiponectin protects against angiotensin Ⅱ-induced cardiac fibrosis through activation of PPAR-alpha[J]. Arterioscler Thromb Vase Biol, 2008,28(5):863-70.
    [187]Joly E, Roduit R, Peyot ML, et al. Glucose represses PPARalpha gene expression via AMP-activated protein kinase but not via p38 mitogen-activated protein kinase in the pancreatic beta-cell[J]. J Diabetes,2009,1(4):263-72.
    [188]Kim KJ, Lee MS, Jo K, et al. Piperidine alkaloids from Piper retrofractum Vahl. protect against high-fat diet-induced obesity by regulating lipid metabolism and activating AMP-activated protein kinase[J]. Biochem Biophys Res Commun,2011,411 (1):219-25.
    [189]郑萍.AMPK对仔猪肝细胞应激状态下脂质代谢的调节作用[D].2005.
    [190]Rider MH, Hussain N, Horman S, et al. Stress-induced activation of the AMP-activated protein kinase in the freeze-tolerant frog Rana sylvatica[J]. Cryobiology, 2006,53(3):297-309.
    [191]Hillgartner FB, Charron T, Chesnut KA. Alterations in nutritional status regulate acetyl-CoA carboxylase expression in avian liver by a transcriptional mechanism[J]. Biochem J,1996,319 (Pt 1):263-8.
    [192]Li P, Li XB, Fu SX, et al. Alterations of fatty acid beta-oxidation capability in the liver of ketotic cows[J]. J Dairy Sci,2012,95(4):1759-66.
    [193]Cohen P, Hardie DG. The actions of cyclic AMP on biosynthetic processes are mediated indirectly by cyclic AMP-dependent protein kinase[J]. Biochim Biophys Acta, 1991,1094(3):292-9.
    [194]Iverson AJ, Bianchi A, Nordlund AC, et al. Immunological analysis of acetyl-CoA carboxylase mass, tissue distribution and subunit composition[J]. Biochem J, 1990,269(2):365-71.
    [195]Bartlett K, Eaton S. Mitochondrial beta-oxidation[J]. Eur J Biochem,2004,271(3):462-9.
    [196]Lien TF, Horng YM. The effect of supplementary dietary L-carnitine on the growth performance, serum components, carcase traits and enzyme activities in relation to fatty acid beta-oxidation of broiler chickens[J]. Br Poult Sci,2001,42(1):92-5.
    [197]吴永魁.仔猪冷应激反应中激素、HSP70及其mRNA的动态分析[D].吉林大学.2006.
    [198]秦明,王景杰,赵保民.预防性针刺足三里穴对冷应激大鼠胃粘膜损伤的影响[J].西南国防医药,2005,(02):133-136.
    [199]Lee KS, Lim BV, Jang MH, et al. Hypothermia inhibits cell proliferation and nitric oxide synthase expression in rats[J]. Neurosci Lett,2002,329(1):53-6.
    [200]裴海涛.冷应激溃疡大鼠下丘脑和肾上腺一氧化氮合成酶2与内皮素-1表达及针刺保护机制的研究[J].中国康复理论与实践,2005,(01):22-24.
    [201]张子威,吕朝晖,徐世文.急、慢性冷应激对雏鸡十二指肠抗氧化功能及NO, iNOS的影响.中国畜牧兽医学会2010年学术年会——第二届中国兽医临床大会论文集(下册),2010.
    [202]Kurumbail RG, Stevens AM, Gierse JK, et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents[J]. Nature,1996,384(6610):644-8.
    [203]何义富,金娟,魏伟.环氧化酶-2催化的前列腺素信号在肝细胞癌中作用[J].中国药理学通报,2008,(05):561-564.
    [204]Tanaka A, Hatazawa R, Takahira Y, et al. Preconditioning stress prevents cold restraint stress-induced gastric lesions in rats:roles of COX-1, COX-2, and PLA2[J]. Dig Dis Sci, 2007,52(2):478-87.
    [205]McCoubrey WK Jr, Huang TJ, Maines MD. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3[J]. Eur J Biochem, 1997,247(2):725-32.
    [206]Ryter SW, Choi AM. Heme oxygenase-1:redox regulation of a stress protein in lung and cell culture models[J]. Antioxid Redox Signal,2005,7(1-2):80-91.
    [207]李术,贾海燕.谷氨酰胺对冷应激雏鸡肺组织中HO-1和HSP70 mRNA表达的影响.见:石放雄,主编.全国动物生理生化第十一次学术交流会论文摘要汇编,2010.
    [208]Swardfager W, Lanctot K, Rothenburg L, et al. A meta-analysis of cytokines in Alzheimer's disease[J]. Biol Psychiatry,2010,68(10):930-41.
    [209]Shulga N, Mosammaparast N, Wozniak R, et al. Yeast nucleoporins involved in passive nuclear envelope permeability[J]. J Cell Biol,2000,149(5):1027-38.
    [210]Wong HR. Heat shock proteins. Facts, thoughts, and dreams. A. De Maio. Shock 11:1-12, 1999[J]. Shock,1999,12(4):323-5.
    [211]Wu C. Heat shock transcription factors:structure and regulation[J]. Annu Rev Cell Dev Biol,1995,11:441-69.
    [212]张文利,高雪芹,韩金祥,等.HSP60、HSP70、HSP90α在结直肠癌组织中的表达及其与病理组织学分级的关系[J].癌症,2009,(06):612-618.
    [213]Truettner JS, Hu K, Liu CL, et al. Subcellular stress response and induction of molecular chaperones and folding proteins after transient global ischemia in rats[J]. Brain Res, 2009,1249:9-18.
    [214]计红,吴永魁,胡仲明,等.不同强度冷应激下仔猪淋巴细胞HSP70 mRNA的转录规律[J].应用与环境生物学报,2007,(04):507-509.
    [215]李士泽,任宝波,杨焕民,等.不同强度冷应激对大鼠肌肉、脾脏和肝脏中HSP70表达的影响[J].应用与环境生物学报,2006,(02):235-238.
    [216]屠云洁,陈国宏,耿照玉,等.雏鹅冷应激反应中HPT轴HSP70mRNA的动态表达规律[J].中国农业科学,2010,(07):1473-1479.
    [217]计红,吴永魁,李士泽,等.冷刺激不同时间仔猪3种组织HSP70表达的Western blot检测分析[J].黑龙江八一农垦大学学报,2010,(02):44-47.
    [218]于宪一,李术,陈蕾,等.冷应激对雏鸡肠组织中HSP70 mRNA表达的影响[J].东北农业大学学报,2011,(03):90-93.
    [219]Shim SB, Lee SH, Kim CK, et al. The effects of long-duration, low-temperature ground transportation on physiological and biochemical indicators of stress in mice[J]. Lab Anim (NY),2008,37(3):121-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700