用户名: 密码: 验证码:
附睾蛋白酶抑制蛋白的B细胞表位分析及抗生育效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界人口持续增长的压力和非计划妊娠对生殖健康的危害使人们深刻认识到进一步完善避孕措施的迫切性。目前针对男性的避孕措施仅限于安全套和输精管结扎,前者不够方便,后者不可逆,因而远远不能满足需求。开发更方便、高效、安全、可逆的男性避孕方法成为计划生育研究的重要课题。迄今,男性避孕疫苗候选分子很多,但尚面临避孕效果不理想以及T细胞介导的免疫损伤等局限。针对这两个局限,设计新的疫苗形式和免疫策略实现突破,对开发安全、有效的避孕疫苗具有重要意义。
     附睾蛋白酶抑制蛋白(Epidydimal protease inhibitor, Eppin)基因的发现为男性避孕疫苗的开发带来了曙光。Eppin蛋白特异表达于睾丸和附睾,在精子成熟中具有重要作用。抗Eppin抗体可直接破坏Eppin-精囊凝固蛋白(Semenogelin, Sg)复合体,干扰Eppin调控前列腺特异性抗原对Sg的水解作用,影响精子活动力,进而抑制生育力。利用重组Eppin蛋白免疫雄猴获得了较理想的避孕效果(78%),停止免疫后,71%的受试雄猴恢复了生育力。由此可见,Eppin可望作为男性避孕的有效靶点,但仍需针对男性避孕疫苗存在的上述局限寻求突破。筛选获得Eppin优势中和B细胞表位,并通过免疫小鼠研究其抗生育有效性和安全性是本研究的目的。
     出于安全考虑,全长蛋白不适于用作疫苗,找出真正抑制生育的关键性表位并增强其免疫原性和避孕效果是关键。基于免疫学基本理论,我们设想,用全长Eppin蛋白免疫,将会产生针对其各个表位的记忆细胞克隆,当只用某个表位肽再次免疫时,则只有针对该表位的记忆细胞被激活、增殖进而分泌抗体。如果初次免疫采用重组人Eppin蛋白(recombinant human Eppin, rhEppin),加强免疫分别采用各候选表位肽,则可以通过所产生的抗体滴度高低来判断该表位是否优势表位;而通过分析被免疫小鼠的生育力抑制效果及其抗血清对精子活力的体外抑制能力,则可判断该表位是否中和性表位。因此,我们拟采用该策略来筛选Eppin的优势中和B细胞表位并研究其抗生育潜能。
     本研究首先通过RT-PCR法从人新鲜睾丸组织扩增获得Eppin cDNA,构建入原核表达载体,诱导表达并经纯化获得重组人Eppin蛋白(第一部分)。同时,通过计算机软件分析Eppin蛋白二级结构及表面特性,预测出Eppin蛋白的B细胞表位所在区域;并通过与抗血清的结合试验进行初步筛选,得出Eppin候选优势B细胞表位区段(第二部分)。最后,采用rhEppin初次免疫,上述候选表位肽加强免疫的策略,观察各个表位肽刺激抗体产生、抗体对精子活力的抑制能力,以此进一步筛选出其优势中和B细胞表位,并以rhEppin重复免疫为对照,分析其抗生育潜能及安全性(第三部分)。
     结果发现:①通过分析Eppin蛋白二级结构及表面特性(包括蛋白质的理化性质、亲水性、可塑性、溶剂可及性及免疫原性等),初步预测出Eppin蛋白的B细胞表位区域在第19~31、30~44、58~70、73~85、94~102、103~115、113~124、125~132区段;与抗血清的结合试验发现第58~70、19~31、103~115、113~124区域的抗原性相对较强,从而初步筛选得出了Eppin候选优势B细胞表位(前述四个肽分别命名为肽A~D)。②进一步采用rhEppin初次免疫-候选表位肽加强免疫的筛选策略,发现用四个候选表位肽加强免疫时都能激发产生高滴度的抗体,并维持至8~9个月,而仅B肽、C肽和D肽加强免疫时所获得的抗血清能与人精子天然Eppin蛋白结合,其中仅C肽加强免疫获得的抗血清能显著抑制人精子活力。从而获知Eppin优势中和B细胞表位所在区段为Eppin103-115。③接受rhEppin初次免疫-表位肽C加强免疫的雄鼠(EC组),只能使26.6%的雌鼠受孕,与PBS组(88.9%)相比显著降低,说明雄鼠的生育力受到抑制;而免疫8~9个月后,伴随抗体滴度下降,该组雄鼠能使雌鼠的受孕率达80%,与PBS组(87%)无显著差别,说明避孕作用具有可逆性。④接受rhEppin重复免疫的雄鼠(Eppin组),产生的抗体滴度虽略高于EC组,而抗生育效果两组相当。Eppin组和EC组都只是显著抑制了附睾精子的活力,而性激素水平、精子生成等均未受影响。各组织器官的病理检查也未发现异常。但理论上,采用rhEppin初次免疫-候选表位肽加强免疫策略,产生的抗体更多针对该表位肽,从而更具有安全性。
     本研究结果表明计算机表位预测结合蛋白初免-表位肽加强免疫策略是筛选蛋白优势中和B细胞表位的有效方法和又一选择;Eppin蛋白的第103-115区段是Eppin优势中和B细胞表位所在区域;rhEppin初次免疫-表位肽C加强免疫策略用于免疫避孕具有较好的安全性和有效性。鉴于Eppin蛋白在人和鼠的遗传差异,尚需在灵长类动物进一步研究证实。
The global population expands rapidly and the current family planning methods can’t meet the needs of different people in their reproductive lives, which urge the development of additional contraceptive methods. There are several birth control methods for women; however, for men, the available choices are limited to condoms and vasectomy. Therefore, it is necessary to develop male contraceptives that are safer, more effective, economical, and reversible as well. Contraceptive vaccine (CV) has been taken for many years as a promising approach with such potential advantages. Till today, there are many candidate molecules for male contraceptive vaccine development, but none of them has been proved to be a successful contraceptive agent. The two main limitations confronted by CV development are imcomplete fertility inhibition and immune injury mediated by cytotoxic T lymphocyte (CTL). It is of great importance to design a new vaccine modality which could break through the limitations.
     One promising candidate for the development of immunocontraceptives is Eppin (epididymis protease inhibitor),a ~ 133 amino acid protein secreted by the epididymidis/ testis in an androgen-dependent manner, which associates with the sperm surface during epididymal transit and seems to be important for sperm maturation. Eppin on the surface of spermatozoa and in semen is bound to semenogelin, which is involved in coagulum formation in the ejaculate. Antibodies to Eppin interfere with the normal interaction of Eppin with the sperm surface and with semenogelin, which can to some degree explain the infertility due to Eppin. When used for active immunization of male monkey, eppin shows the capacity to block fertility. Seven out of nine male monkeys developed high titers specific to Eppin, and all of these high-titer monkeys were infertile. Five out of seven high-titer males recovered fertility when stopping innoculating. This study revealed that Eppin is a promising target for male contraception. However, there still needs further research to identify its immunodominant neutralizing B-cell epitopes and decide its efficacy and safety as a CV for males.
     However, previous studies showed that the full-length nature protein was generally not suitable for vaccine immunogen on considering of safety. This might be an obstacle of Eppin as a whole protein to be a successful contraceptive vaccine for human use. In view of this, studies should be geared towards delineating appropriate sperm-specific epitopes and enhancing the immunogenic and efficacy on the epitope peptide. We supposed theoretically that priming with full length Eppin could induce a large population of B-cells specific to a variety of epitopes, but when boosting with an epitope-based peptide, only epitope-specific memory cells undergo rapid expansion upon re-exposure to the same antigen but not the other population of B-cells. Immunodominant epitope could thus be decided by the antibody titers and the neutralizing eptitope by the bioactivity of the epitope-specific antibody. Therefore we employed the Eppin prime-epitope peptide boost strategy to identify the immunodominant neutralizing B-cell epitope of Eppin and determine its immunocontraceptive efficacy simultaneously.
     Eppin cDNA was obtained by RT-PCR from fresh human testis, and then cloned into prokaryotic expression plasmid which was induced by IPTG. Recombinant human Eppin (rhEppin) was purified and identified (PartⅠ). On the other hand, the B-cell epitope of Eppin was preliminarily predicted through its secondary structure and surface characteristics, then the predicted epitope peptide were scanned by peptide combination assay thus got the candidate B-cell epitopes of Eppin (PartⅡ). Finally, the modality of rhEppin prime-epitope peptide boost was employed to further analyze the four candidate B-cell epitopes (PartⅢ).
     The results showed that:①By preliminarily analyzing Eppin secondary structure and surface characteristics, the predicted B-cell epitope of Eppin located at 19~31、30~44、58~70、73~85、94~102、103~115、113~124、125~132 domains which were scanned by peptide combination assay and found that 58~70、19~31、103~115、113~124 domain showed positive results and thus got the candidate B-cell epitope of Eppin (the four eptitopes were designated as peptide A~D respectively).②Further analyzing the four candidate B-cell epitopes by the strategy of rhEppin prime-epitope peptide boost, the result showed that all the four candidate epitopes could induce high antibody titers which maintained 8~9 months after immunization, however, only the antisera from peptide B, C and D boosted mice showed the capacity to combined with natural Eppin in semen. Most interestingly, only the antisera from peptide C boosted mice exhibit the inhibition potential on human sperm motility. Therefore the immunodomiant neutralizing B-cell epitope of Eppin is Eppin103-115.③The mice received rhEppin prime-epitope peptide C boost (EC group) could fertilize 26.6% of the female mice caged with them, which was significantly lower than the control (88.9%). Eight to nine months later when the antibody titers reduced, the mice of EC group regained its fertility (the fertility rate of co-caged female mice is 80%), which showed no difference with the PBS group. The result indicated that the contraceptive effect was reversible.④The mice received rhEppin repeated immunization (Eppin group) had a slightly higher antibody titres, and a similar antifertility efficacy with EC group. The protein prime-peptide boost strategy is theoretically safer because the antibodies induced by protein prime-peptide boost strategy were mainly directed to epitope peptide C. However, mice from both Eppin group and EC group showed no change of sex hormones and spermatogenesis. Pathologic examination of the important organs showed no abnormality.
     The results of this research indicated that epitope prediction by computer combined with the protein prime-peptide boost strategy is an effective method and a beneficial alternative to analyse B-cell epitope. The immunodominant neutralizing B-cell epitope of Eppin located at the 103~115 amnio acids. And more importantly, rhEppin prime-epitope peptide C boost is an effective and safe modality for male contraception. On thinking of the genetic difference between human and mice, the research result needs further confirmation in non-human primate.
引文
1. Page, S. T., Amory, J. K. and Bremner, W. J., Advances in male contraception. Endocr Rev 2008. 29: 465-493.
    2. Frayne, J. and Hall, L., The potential use of sperm antigens as targets for immunocontraception; past, present and future. J Reprod Immunol 1999. 43: 1-33.
    3. Suri, A., Sperm specific proteins-potential candidate molecules for fertility control. Reprod Biol Endocrinol 2004. 2: 10.
    4. Kamischke, A. and Nieschlag, E., Progress towards hormonal male contraception. Trends Pharmacol Sci 2004. 25: 49-57.
    5. Mruk, D. D., New perspectives in non-hormonal male contraception. Trends Endocrinol Metab 2008. 19: 57-64.
    6. Hormones and breast cancer. Hum Reprod Update 2004. 10: 281-293.
    7. Primakoff, P., Lathrop, W., Woolman, L., Cowan, A. and Myles, D., Fully effective contraception in male and female guinea pigs immunized with the sperm protein PH-20. Nature 1988. 335: 543-546.
    8. Herr, J. C., Flickinger, C. J., Homyk, M., Klotz, K. and John, E., Biochemical and morphological characterization of the intra-acrosomal antigen SP-10 from human sperm. Biol Reprod 1990. 42: 181-193.
    9. Suri, A., Contraceptive vaccines targeting sperm. Expert Opin Biol Ther 2005. 5: 381-392.
    10. O'Rand M, G., Widgren, E. E., Sivashanmugam, P., Richardson, R. T., Hall, S. H., French, F. S., VandeVoort, C. A., Ramachandra, S. G., Ramesh, V. and Jagannadha Rao, A., Reversible immunocontraception in male monkeys immunized with eppin. Science 2004. 306: 1189-1190.
    11. Naz, R. K., Antisperm immunity for contraception. J Androl 2006. 27: 153-159.
    12. Naz, R. K., Gupta, S. K., Gupta, J. C., Vyas, H. K. and Talwar, A. G., Recent advances in contraceptive vaccine development: a mini-review. Hum Reprod 2005. 20: 3271-3283.
    13. Jagadish, N., Rana, R., Selvi, R., Mishra, D., Shankar, S., Mohapatra, B. and Suri, A., Molecular cloning and characterization of the macaque sperm associated antigen 9(SPAG9): an orthologue of human SPAG9 gene. Mol Reprod Dev 2005. 71: 58-66.
    14. Jagadish, N., Rana, R., Selvi, R., Mishra, D., Garg, M., Yadav, S., Herr, J. C., Okumura, K., Hasegawa, A., Koyama, K. and Suri, A., Characterization of a novel human sperm-associated antigen 9 (SPAG9) having structural homology with c-Jun N-terminal kinase-interacting protein. Biochem J 2005. 389: 73-82.
    15. Jagadish, N., Rana, R., Mishra, D., Kumar, M. and Suri, A., Sperm associated antigen 9 (SPAG9): a new member of c-Jun NH2 -terminal kinase (JNK) interacting protein exclusively expressed in testis. Keio J Med 2005. 54: 66-71.
    16. Jagadish, N., Rana, R., Mishra, D., Garg, M., Chaurasiya, D., Hasegawa, A., Koyama, K. and Suri, A., Immunogenicity and contraceptive potential of recombinant human sperm associated antigen (SPAG9). J Reprod Immunol 2005. 67: 69-76.
    17. Rana, R., Jagadish, N., Garg, M., Mishra, D., Dahiya, N., Chaurasiya, D. and Suri, A., Immunogenicity study of recombinant human sperm-associated antigen 9 in bonnet macaque (Macaca radiata). Hum Reprod 2006. 21: 2894-2900.
    18. Chen, H., Griffiths, G., Galileo, D. S. and Martin-DeLeon, P. A., Epididymal SPAM1 is a marker for sperm maturation in the mouse. Biol Reprod 2006. 74: 923-930.
    19. Evans, E. A., Zhang, H. and Martin-DeLeon, P. A., SPAM1 (PH-20) protein and mRNA expression in the epididymides of humans and macaques: utilizing laser microdissection/RT-PCR. Reprod Biol Endocrinol 2003. 1: 54.
    20. Hardy, C. M., Clydesdale, G., Mobbs, K. J., Pekin, J., Lloyd, M. L., Sweet, C., Shellam, G. R. and Lawson, M. A., Assessment of contraceptive vaccines based on recombinant mouse sperm protein PH20. Reproduction 2004. 127: 325-334.
    21. Pomering, M., Jones, R. C., Holland, M. K., Blake, A. E. and Beagley, K. W., Restricted entry of IgG into male and female rabbit reproductive ducts following immunization with recombinant rabbit PH-20. Am J Reprod Immunol 2002. 47: 174-182.
    22. Morales, C. R., Badran, H., El-Alfy, M., Men, H., Zhang, H. and Martin-DeLeon, P. A., Cytoplasmic localization during testicular biogenesis of the murine mRNA for Spam1 (PH-20), a protein involved in acrosomal exocytosis. Mol Reprod Dev 2004. 69: 475-482.
    23. Kurth, B. E., Weston, C., Reddi, P. P., Bryant, D., Bhattacharya, R., Flickinger, C. J.and Herr, J. C., Oviductal antibody response to a defined recombinant sperm antigen in macques. Biol Reprod 1997. 57: 981-989.
    24. Naz, R. K. and Zhu, X., Recombinant fertilization antigen-1 causes a contraceptive effect in actively immunized mice. Biol Reprod 1998. 59: 1095-1100.
    25. Menge, A. C., Christman, G. M., Ohl, D. A. and Naz, R. K., Fertilization antigen-1 removes antisperm autoantibodies from spermatozoa of infertile men and results in increased rates of acrosome reaction. Fertil Steril 1999. 71: 256-260.
    26. Williams, J., Samuel, A. and Naz, R. K., Presence of antisperm antibodies reactive with peptide epitopes of FA-1 and YLP12 in sera of immunoinfertile women. Am J Reprod Immunol 2008. 59: 518-524.
    27. Evans, J. P., Fertilin beta and other ADAMs as integrin ligands: insights into cell adhesion and fertilization. Bioessays 2001. 23: 628-639.
    28. Hardy, C. M., Clarke, H. G., Nixon, B., Grigg, J. A., Hinds, L. A. and Holland, M. K., Examination of the immunocontraceptive potential of recombinant rabbit fertilin subunits in rabbit. Biol Reprod 1997. 57: 879-886.
    29. Naz, R. K., Effect of sperm DNA vaccine on fertility of female mice. Mol Reprod Dev 2006. 73: 918-928.
    30. Naz, R. K., Effect of fertilization antigen (FA-1) DNA vaccine on fertility of female mice. Mol Reprod Dev 2006. 73: 1473-1479.
    31. Inoue, N., Ikawa, M., Isotani, A. and Okabe, M., The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 2005. 434: 234-238.
    32. Wang, D. G., Huang, T. H., Xie, Q. D. and An, G., Investigation of recombinant mouse sperm protein izumo as a potential immunocontraceptive antigen. Am J Reprod Immunol 2008. 59: 225-234.
    33. Wang, M., Lv, Z., Shi, J., Hu, Y. and Xu, C., Immunocontraceptive potential of the Ig-like domain of Izumo. Mol Reprod Dev 2009.
    34. An, G., Huang, T. H., Wang, D. G., Xie, Q. D., Ma, L. and Chen, D. Y., In vitro and in vivo studies evaluating recombinant plasmid pCXN2-mIzumo as a potential immunocontraceptive antigen. Am J Reprod Immunol 2009. 61: 227-235.
    35. Naz, R. K., Immunocontraceptive effect of Izumo and enhancement by combination vaccination. Mol Reprod Dev 2008. 75: 336-344.
    36. Richardson, R. T., Sivashanmugam, P., Hall, S. H., Hamil, K. G., Moore, P. A., Ruben, S. M., French, F. S. and O'Rand, M., Cloning and sequencing of human Eppin: a novel family of protease inhibitors expressed in the epididymis and testis. Gene 2001. 270: 93-102.
    37. Liang, Y., Wan, Y., Qiu, L. W., Zhou, J., Ni, B., Guo, B., Zou, Q., Zou, L., Zhou, W., Jia, Z., Che, X. Y. and Wu, Y., Comprehensive antibody epitope mapping of the nucleocapsid protein of severe acute respiratory syndrome (SARS) coronavirus: insight into the humoral immunity of SARS. Clin Chem 2005. 51: 1382-1396.
    38. Clauss, A., Lilja, H. and Lundwall, A., A locus on human chromosome 20 contains several genes expressing protease inhibitor domains with homology to whey acidic protein. Biochem J 2002. 368: 233-242.
    39.吴玉章.免疫识别、分子设计与抗原工程.第三军医大学学报. 2000.22:917-918.
    40. Chou, P. Y. and Fasman, G. D., Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol 1978. 47: 45-148.
    41. Garnier, J., Osguthorpe, D. J. and Robson, B., Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 1978. 120: 97-120.
    42. Kyte, J. and Doolittle, R. F., A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982. 157: 105-132.
    43. Emini, E. A., Hughes, J. V., Perlow, D. S. and Boger, J., Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 1985. 55: 836-839.
    44. Jameson, B. A. and Wolf, H., The antigenic index: a novel algorithm for predicting antigenic determinants. Comput Appl Biosci 1988. 4: 181-186.
    45. Karande, A., Eppin: a candidate male contraceptive vaccine? J Biosci 2004. 29: 373-374.
    46. O'Rand, M. G., Widgren, E. E., Wang, Z. and Richardson, R. T., Eppin: an epididymal protease inhibitor and a target for male contraception. Soc Reprod Fertil Suppl 2007. 63: 445-453.
    47. Wang, Z., Widgren, E. E., Richardson, R. T. and Orand, M. G., Eppin: a molecular strategy for male contraception. Soc Reprod Fertil Suppl 2007. 65: 535-542.
    48. O'Rand, M. G., Widgren, E. E., Beyler, S. and Richardson, R. T., Inhibition of human sperm motility by contraceptive anti-eppin antibodies from infertile male monkeys: effect on cyclic adenosine monophosphate. Biol Reprod 2009. 80: 279-285.
    49.吕燕波,万瑛,吴玉章.SARS病毒基因组所编码的E蛋白的二级结构和B细胞表位预测.免疫学杂志. 2003.19:407-410.
    50. McCrudden, M. T., Dafforn, T. R., Houston, D. F., Turkington, P. T. and Timson, D. J., Functional domains of the human epididymal protease inhibitor, eppin. FEBS J 2008. 275: 1742-1750.
    51. Ferro, V. A. and Stimson, W. H., Investigation into suitable carrier molecules for use in an anti-gonadotrophin releasing hormone vaccine. Vaccine 1998. 16: 1095-1102.
    52. Gupta, J. C., Raina, K., Talwar, G. P., Verma, R. and Khanna, N., Engineering, cloning, and expression of genes encoding the multimeric luteinizing-hormone-releasing hormone linked to T cell determinants in Escherichia coli. Protein Expr Purif 2004. 37: 1-7.
    53. Alvarez, J. G., Lasso, J. L., Blasco, L., Nunez, R. C., Heyner, S., Caballero, P. P. and Storey, B. T., Centrifugation of human spermatozoa induces sublethal damage; separation of human spermatozoa from seminal plasma by a dextran swim-up procedure without centrifugation extends their motile lifetime. Hum Reprod 1993. 8: 1087-1092.
    54. Tayama, K., Fujita, H., Takahashi, H., Nagasawa, A., Yano, N., Yuzawa, K. and Ogata, A., Measuring mouse sperm parameters using a particle counter and sperm quality analyzer: a simple and inexpensive method. Reprod Toxicol 2006. 22: 92-101.
    55. Reddy, P. S. and Pushpalatha, T., Reduction of spermatogenesis and steroidogenesis in mice after fentin and fenbutatin administration. Toxicol Lett 2006. 166: 53-59.
    56. Jeyendran, R. S., Van der Ven, H. H., Perez-Pelaez, M., Crabo, B. G. and Zaneveld, L. J., Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. J Reprod Fertil 1984. 70: 219-228.
    57. Silber, S. J. and Grotjan, H. E., Microscopic vasectomy reversal 30 years later: a summary of 4010 cases by the same surgeon. J Androl 2004. 25: 845-859.
    58. Curtis, P. D., Richmond, M. E., Miller, L. A. and Quimby, F. W., Pathophysiology ofwhite-tailed deer vaccinated with porcine zona pellucida immunocontraceptive. Vaccine 2007. 25: 4623-4630.
    59. Govind, C. K., Srivastava, N. and Gupta, S. K., Evaluation of the immunocontraceptive potential of Escherichia coli expressed recombinant non-human primate zona pellucida glycoproteins in homologous animal model. Vaccine 2002. 21: 78-88.
    60. O'Rand, M. G., Widgren, E. E., Wang, Z. and Richardson, R. T., Eppin: an effective target for male contraception. Mol Cell Endocrinol 2006. 250: 157-162.
    61. Hilbert, A., Hudecz, F., Mezo, G., Mucsi, I., Kajtar, J., Kurucz, I., Gergely, J. and Rajnavolgyi, E., The influence of branched polypeptide carriers on the immunogenicity of predicted epitopes of HSV-1 glycoprotein D. Scand J Immunol 1994. 40: 609-617.
    62. Naz, R. K., Status of contraceptive vaccines. Am J Reprod Immunol 2009. 61: 11-18.
    1. Page, S. T., Amory, J. K. and Bremner, W. J., Advances in male contraception. Endocr Rev 2008. 29: 465-493.
    2. Naz, R. K., Status of contraceptive vaccines. Am J Reprod Immunol 2009. 61: 11-18.
    3. Walcher, P., Cui, X., Arrow, J. A., Scobie, S., Molinia, F. C., Cowan, P. E., Lubitz, W. and Duckworth, J. A., Bacterial ghosts as a delivery system for zona pellucida-2 fertility control vaccines for brushtail possums (Trichosurus vulpecula). Vaccine 2008. 26: 6832-6838.
    4. Li, H. P., He, X. J., Tang, C. L., Yao, X. Y. and Li, D. J., Fusion of hC3d3 to hCGbeta enhances responsiveness in vitro of human peripheral immunocompetent cells upon the antigen primary challenge. J Reprod Immunol 2008. 78: 115-124.
    5. Naz, R. K., Antisperm immunity for contraception. J Androl 2006. 27: 153-159.
    6. Naz, R. K., Gupta, S. K., Gupta, J. C., Vyas, H. K. and Talwar, A. G., Recent advances in contraceptive vaccine development: a mini-review. Hum Reprod 2005. 20: 3271-3283.
    7. Suri, A., Sperm specific proteins-potential candidate molecules for fertility control. Reprod Biol Endocrinol 2004. 2: 10.
    8. Naz, R. K. and Rajesh, C., Gene knockouts that cause female infertility: search for novel contraceptive targets. Front Biosci 2005. 10: 2447-2459.
    9. Naz, R. K. and Rajesh, P., Novel testis/sperm-specific contraceptive targets identifiedusing gene knockout studies. Front Biosci 2005. 10: 2430-2446.
    10. Naz, R. K., Engle, A. and None, R., Gene knockouts that affect male fertility: novel targets for contraception. Front Biosci 2009. 14: 3994-4007.
    11. Jagadish, N., Rana, R., Selvi, R., Mishra, D., Garg, M., Yadav, S., Herr, J. C., Okumura, K., Hasegawa, A., Koyama, K. and Suri, A., Characterization of a novel human sperm-associated antigen 9 (SPAG9) having structural homology with c-Jun N-terminal kinase-interacting protein. Biochem J 2005. 389: 73-82.
    12. Jagadish, N., Rana, R., Selvi, R., Mishra, D., Shankar, S., Mohapatra, B. and Suri, A., Molecular cloning and characterization of the macaque sperm associated antigen 9 (SPAG9): an orthologue of human SPAG9 gene. Mol Reprod Dev 2005. 71: 58-66.
    13. Jagadish, N., Rana, R., Mishra, D., Garg, M., Chaurasiya, D., Hasegawa, A., Koyama, K. and Suri, A., Immunogenicity and contraceptive potential of recombinant human sperm associated antigen (SPAG9). J Reprod Immunol 2005. 67: 69-76.
    14. Rana, R., Jagadish, N., Garg, M., Mishra, D., Dahiya, N., Chaurasiya, D. and Suri, A., Immunogenicity study of recombinant human sperm-associated antigen 9 in bonnet macaque (Macaca radiata). Hum Reprod 2006. 21: 2894-2900.
    15. Jagadish, N., Rana, R., Mishra, D., Garg, M., Selvi, R. and Suri, A., Characterization of immune response in mice to plasmid DNA encoding human sperm associated antigen 9 (SPAG9). Vaccine 2006. 24: 3695-3703.
    16. Kurth, B. E., Weston, C., Reddi, P. P., Bryant, D., Bhattacharya, R., Flickinger, C. J. and Herr, J. C., Oviductal antibody response to a defined recombinant sperm antigen in macques. Biol Reprod 1997. 57: 981-989.
    17. Chen, H., Griffiths, G., Galileo, D. S. and Martin-DeLeon, P. A., Epididymal SPAM1 is a marker for sperm maturation in the mouse. Biol Reprod 2006. 74: 923-930.
    18. Evans, E. A., Zhang, H. and Martin-DeLeon, P. A., SPAM1 (PH-20) protein and mRNA expression in the epididymides of humans and macaques: utilizing laser microdissection/RT-PCR. Reprod Biol Endocrinol 2003. 1: 54.
    19. Hardy, C. M., Clydesdale, G., Mobbs, K. J., Pekin, J., Lloyd, M. L., Sweet, C., Shellam, G. R. and Lawson, M. A., Assessment of contraceptive vaccines based on recombinant mouse sperm protein PH20. Reproduction 2004. 127: 325-334.
    20. Pomering, M., Jones, R. C., Holland, M. K., Blake, A. E. and Beagley, K. W.,Restricted entry of IgG into male and female rabbit reproductive ducts following immunization with recombinant rabbit PH-20. Am J Reprod Immunol 2002. 47: 174-182.
    21. Morales, C. R., Badran, H., El-Alfy, M., Men, H., Zhang, H. and Martin-DeLeon, P. A., Cytoplasmic localization during testicular biogenesis of the murine mRNA for Spam1 (PH-20), a protein involved in acrosomal exocytosis. Mol Reprod Dev 2004. 69: 475-482.
    22. Naz, R. K. and Zhu, X., Recombinant fertilization antigen-1 causes a contraceptive effect in actively immunized mice. Biol Reprod 1998. 59: 1095-1100.
    23. Menge, A. C., Christman, G. M., Ohl, D. A. and Naz, R. K., Fertilization antigen-1 removes antisperm autoantibodies from spermatozoa of infertile men and results in increased rates of acrosome reaction. Fertil Steril 1999. 71: 256-260.
    24. Williams, J., Samuel, A. and Naz, R. K., Presence of antisperm antibodies reactive with peptide epitopes of FA-1 and YLP12 in sera of immunoinfertile women. Am J Reprod Immunol 2008. 59: 518-524.
    25. Dube, E., Legare, C., Gaudreault, C. and Sullivan, R., Contraceptive responses of female hamsters immunized with recombinant sperm protein P26h. Contraception 2005. 72: 459-467.
    26. Evans, J. P., Fertilin beta and other ADAMs as integrin ligands: insights into cell adhesion and fertilization. Bioessays 2001. 23: 628-639.
    27. Hardy, C. M., Clarke, H. G., Nixon, B., Grigg, J. A., Hinds, L. A. and Holland, M. K., Examination of the immunocontraceptive potential of recombinant rabbit fertilin subunits in rabbit. Biol Reprod 1997. 57: 879-886.
    28. Ellerman, D. A., Da Ros, V. G., Cohen, D. J., Busso, D., Morgenfeld, M. M. and Cuasnicu, P. S., Expression and structure-function analysis of de, a sperm cysteine-rich secretory protein that mediates gamete fusion. Biol Reprod 2002. 67: 1225-1231.
    29. Ellerman, D. A., Cohen, D. J., Da Ros, V. G., Morgenfeld, M. M., Busso, D. and Cuasnicu, P. S., Sperm protein "DE" mediates gamete fusion through an evolutionarily conserved site of the CRISP family. Dev Biol 2006. 297: 228-237.
    30. Ellerman, D. A., Busso, D., Maldera, J. A. and Cuasnicu, P. S.,Immunocontraceptive properties of recombinant sperm protein DE: implications for the development of novel contraceptives. Fertil Steril 2008. 89: 199-205.
    31. Chang, J. J., Peng, J. P., Yang, Y., Wang, J. L. and Xu, L., Study on the antifertility effects of the plasmid DNA vaccine expressing partial brLDH-C4'. Reproduction 2006. 131: 183-192.
    32. O'Hern, P. A., Liang, Z. G., Bambra, C. S. and Goldberg, E., Colinear synthesis of an antigen-specific B-cell epitope with a 'promiscuous' tetanus toxin T-cell epitope: a synthetic peptide immunocontraceptive. Vaccine 1997. 15: 1761-1766.
    33. Tollner, T. L., Overstreet, J. W., Branciforte, D. and Primakoff, P. D., Immunization of female cynomolgus macaques with a synthetic epitope of sperm-specific lactate dehydrogenase results in high antibody titers but does not reduce fertility. Mol Reprod Dev 2002. 62: 257-264.
    34. Naz, R. K., Effect of sperm DNA vaccine on fertility of female mice. Mol Reprod Dev 2006. 73: 918-928.
    35. Naz, R. K., Effect of fertilization antigen (FA-1) DNA vaccine on fertility of female mice. Mol Reprod Dev 2006. 73: 1473-1479.
    36. O'Rand M, G., Widgren, E. E., Sivashanmugam, P., Richardson, R. T., Hall, S. H., French, F. S., VandeVoort, C. A., Ramachandra, S. G., Ramesh, V. and Jagannadha Rao, A., Reversible immunocontraception in male monkeys immunized with eppin. Science 2004. 306: 1189-1190.
    37. Wang, Z., Widgren, E. E., Sivashanmugam, P., O'Rand, M. G. and Richardson, R. T., Association of eppin with semenogelin on human spermatozoa. Biol Reprod 2005. 72: 1064-1070.
    38. Wang, Z., Widgren, E. E., Richardson, R. T. and O'Rand, M. G., Characterization of an eppin protein complex from human semen and spermatozoa. Biol Reprod 2007. 77: 476-484.
    39. O'Rand, M. G., Widgren, E. E., Wang, Z. and Richardson, R. T., Eppin: an effective target for male contraception. Mol Cell Endocrinol 2006. 250: 157-162.
    40. Inoue, N., Ikawa, M., Isotani, A. and Okabe, M., The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 2005. 434: 234-238.
    41. Wang, D. G., Huang, T. H., Xie, Q. D. and An, G., Investigation of recombinantmouse sperm protein izumo as a potential immunocontraceptive antigen. Am J Reprod Immunol 2008. 59: 225-234.
    42. Naz, R. K., Immunocontraceptive effect of Izumo and enhancement by combination vaccination. Mol Reprod Dev 2008. 75: 336-344.
    43. An, G., Huang, T. H., Wang, D. G., Xie, Q. D., Ma, L. and Chen, D. Y., In vitro and in vivo studies evaluating recombinant plasmid pCXN2-mIzumo as a potential immunocontraceptive antigen. Am J Reprod Immunol 2009. 61: 227-235.
    44. Kurth, B. E., Digilio, L., Snow, P., Bush, L. A., Wolkowicz, M., Shetty, J., Mandal, A., Hao, Z., Reddi, P. P., Flickinger, C. J. and Herr, J. C., Immunogenicity of a multi-component recombinant human acrosomal protein vaccine in female Macaca fascicularis. J Reprod Immunol 2008. 77: 126-141.
    45. Naz, R. and Aleem, A., Effect of immunization with six sperm peptide vaccines on fertility of female mice. Soc Reprod Fertil Suppl 2007. 63: 455-464.
    46. Hardy, C. M., Clydesdale, G. and Mobbs, K. J., Development of mouse-specific contraceptive vaccines: infertility in mice immunized with peptide and polyepitope antigens. Reproduction 2004. 128: 395-407.
    47. Berzofsky, J. A., Ahlers, J. D. and Belyakov, I. M., Strategies for designing and optimizing new generation vaccines. Nat Rev Immunol 2001. 1: 209-219.
    48. Naz, R. K. and Rajesh, C., Passive immunization for immunocontraception: lessons learned from infectious diseases. Front Biosci 2004. 9: 2457-2465.
    49. Samuel, A. S. and Naz, R. K., Isolation of human single chain variable fragment antibodies against specific sperm antigens for immunocontraceptive development. Hum Reprod 2008. 23: 1324-1337.
    1. Richardson, R. T., Sivashanmugam, P., Hall, S. H., Hamil, K. G., Moore, P. A., Ruben, S. M., French, F. S. and O'Rand, M., Cloning and sequencing of human Eppin: a novel family of protease inhibitors expressed in the epididymis and testis. Gene 2001. 270: 93-102.
    2. Clauss, A., Lilja, H. and Lundwall, A., A locus on human chromosome 20 contains several genes expressing protease inhibitor domains with homology to whey acidic protein. Biochem J 2002. 368: 233-242.
    3. Sivashanmugam, P., Hall, S. H., Hamil, K. G., French, F. S., O'Rand, M. G. and Richardson, R. T., Characterization of mouse Eppin and a gene cluster of similar protease inhibitors on mouse chromosome 2. Gene 2003. 312: 125-134.
    4. Wang, Z., Widgren, E. E., Sivashanmugam, P., O'Rand, M. G. and Richardson, R. T., Association of eppin with semenogelin on human spermatozoa. Biol Reprod 2005. 72: 1064-1070.
    5. Yenugu, S., Richardson, R. T., Sivashanmugam, P., Wang, Z., O'Rand M, G., rench, F. S. and Hall, S. H., Antimicrobial activity of human EPPIN, an androgen-regulated, sperm-bound protein with a whey acidic protein motif. BiolReprod 2004. 71: 1484-1490.
    6. McCrudden, M. T., Dafforn, T. R., Houston, D. F., Turkington, P. T. and Timson, D. J., Functional domains of the human epididymal protease inhibitor, eppin. FEBS J 2008. 275: 1742-1750.
    7. Hagiwara, K., Kikuchi, T., Endo, Y., Huqun, Usui, K., Takahashi, M., Shibata, N., Kusakabe, T., Xin, H., Hoshi, S., Miki, M., Inooka, N., Tokue, Y. and Nukiwa, T., Mouse SWAM1 and SWAM2 are antibacterial proteins composed of a single whey acidic protein motif. J Immunol 2003. 170: 1973-1979.
    8. Wang, Z., Widgren, E. E., Richardson, R. T. and O'Rand, M. G., Characterization of an eppin protein complex from human semen and spermatozoa. Biol Reprod 2007. 77: 476-484.
    9. Jarow, J. P., Semenogelin, the main protein of semen coagulum, inhibits human sperm capacitation by interfering with the superoxide anion generated during this process. J Urol 2002. 168: 2309-2310.
    10. de Lamirande, E., Yoshida, K., Yoshiike, T. M., Iwamoto, T. and Gagnon, C., Semenogelin, the main protein of semen coagulum, inhibits human sperm capacitation by interfering with the superoxide anion generated during this process. J Androl 2001. 22: 672-679.
    11. Wang, Z. J., Zhang, W., Feng, N. H., Song, N. H., Wu, H. F. and Sui, Y. G., Molecular mechanism of epididymal protease inhibitor modulating the liquefaction of human semen. Asian J Androl 2008. 10: 770-775.
    12. Wang, Z. J., Wu, H. F., Qian, L. X., Qiao, D., Shao, J. F., Zhang, W., Sui, Y. G. and Xu, Z. Q., [Correlation of epididymal protease inhibitor Eppin and Semenogelin on human ejaculated spermatozoa]. Zhonghua Nan Ke Xue 2006. 12: 428-431, 434.
    13. O'Rand M, G., Widgren, E. E., Sivashanmugam, P., Richardson, R. T., Hall, S. H., French, F. S., VandeVoort, C. A., Ramachandra, S. G., Ramesh, V. and Jagannadha Rao, A., Reversible immunocontraception in male monkeys immunized with eppin. Science 2004. 306: 1189-1190.
    14. Karande, A., Eppin: a candidate male contraceptive vaccine? J Biosci 2004. 29: 373-374.
    15. O'Rand, M. G., Widgren, E. E., Wang, Z. and Richardson, R. T., Eppin: anepididymal protease inhibitor and a target for male contraception. Soc Reprod Fertil Suppl 2007. 63: 445-453.
    16. Wang, Z., Widgren, E. E., Richardson, R. T. and Orand, M. G., Eppin: a molecular strategy for male contraception. Soc Reprod Fertil Suppl 2007. 65: 535-542.
    17. O'Rand, M. G., Widgren, E. E., Beyler, S. and Richardson, R. T., Inhibition of human sperm motility by contraceptive anti-eppin antibodies from infertile male monkeys: effect on cyclic adenosine monophosphate. Biol Reprod 2009. 80: 279-285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700