用户名: 密码: 验证码:
不同掺量纤维增强混凝土受弯性能细观数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥基材料是目前最大宗的、拥有优良特性的人造建筑材料,但随着建筑材料越来越向高强高性能化方向发展,其固有的一些弱点也愈益突出。将材料复合化是提高水泥基材性能的主要途径之一,采用纤维增强是其核心。近年来,增强纤维中的钢纤维、聚丙烯纤维和玻璃纤维增强水泥基材料发展较快,与此同时,工程实践要求纤维增强水泥基材料的基础理论研究进一步深化。纤维增强水泥基材料损伤与断裂过程中的裂纹扩展以及损伤与断裂等基本理论问题,是该领域的一个前沿课题。
     本文应用大连理工大学唐春安教授拥有自主版权的数值分析软件RFPA2D(Realistic Failure Process Analysis)对水泥基复合材料的受弯性能进行模拟。采用Weibull随机分布函数描述水泥基材料的细观非均匀性,实现了纤维增强水泥基试件微裂纹萌生、扩展直至贯通全过程的模拟。利用模拟结果深入分析不同掺量的纤维增强水泥基复合材料在弯曲条件下的破坏规律和基本力学性能,对其破坏机理进行研究,为水泥基材料的强韧化设计提供理论上的指导。本研究的主要内容包括:
     1、针对工程实践中常用的纤维增强水泥复合材料(包括玻璃纤维增强水泥、聚丙烯纤维增强水泥和钢纤维增强水泥),了解其应用范围和优缺点,对其进行数值模拟,并将数值模拟结果与已有的物理试验相比较,通过分析他们的破坏形态、声发射特征、弯曲韧性、强度变化等来研究其破坏机理。通过分析得出,无论掺钢纤维、玻璃纤维还是聚丙烯纤维,都能明显改善水泥基体的韧性性能;此外,由于钢纤维和玻璃纤维的抗拉强度较高,其对强度的改善也较明显。
     2、搜集工程中应用较多的纤维增强混凝土(包括钢纤维混凝土、玻璃纤维混凝土和聚丙烯纤维混凝土)复合材料,对其发展和应用现状进行总结,建立不同掺量纤维混凝土的细观数值模型,通过模拟结果分析其破坏过程中裂纹扩展的规律,裂纹的最终形态,荷载—位移曲线图的走势,声发射时空分布规律,弯曲韧性及抗弯强度的大小等来揭示纤维增强混凝土的破坏规律及强韧化机理。研究表明掺钢纤维和玻璃纤维能改善混凝土基体的抗弯强度,掺聚丙烯纤维则对强度提高影响不大;三种纤维均能明显增强混凝土的韧性,从而使试件的破坏由脆性逐步转变为延性。
     3、特别针对应用潜力较大、性价比较优的局部高掺量钢纤维混凝土(PHPSFRC)进行数值研究,从其破坏过程中的裂纹扩展、声发射特征、中部区域从上到下选取单元进行应力分析、不同掺量试件荷载—位移曲线和韧性比较等来探讨PHPSFRC的破坏机理。与全局掺钢纤维相比较,相同数量的纤维在PHPFRC试件中能更好的发挥增强增韧作用。相对于SIFCON而言,又极大地降低了成本,简化了施工难度。钢纤维在混凝土中的性价比得到了极大提高。
Cement-based materials is the largest, and has excellent characteristics man-made building materials, but as more and more construction materials developed in the direction of high strength and high performance, its inherent weaknesses also become increasingly prominent. The composite material is one of the main substrate to improve the performance of cement-based materials , and using fiber-reinforced is the core. In recent years, steel fiber, polypropylene fiber and glass fiber reinforced cement-based materials developed rapidly, at the same time, engineering practice requires fiber reinforced cement-based materials to further deepen the basis of theoretical research.. Some basic theoretical issues such as crack propagation in the damage and fracture process and damage and fracture of fiber reinforced cement-based material , is a leading project in this area.
     In this paper, using numerical analysis software RFPA2D (Realistic Failure Process Analysis) owned its copyright by Professor Tang Chunan in Dalian University of Technology to simulate the flexural performance of the cement-based composites . Using Weibull random distribution function to describe the mesoscopic heterogeneity of cement-based materials,on this basis,elastic damage constitutive model of unit cells has been established, by incorporating stiffness degradation in material failure process to deal with initiation and development of crack ,in order to achieve the whole process simulation include micro-crack initiation, extending until through of fiber-reinforced cement-based specimen. Recycling the simulation results analyze failure law and the basic mechanical properties of different volume fiber reinforced cementitious composites in bending,to study the mechanism of its destruction, for providing theoretical guidance for the strengthening and toughening design to cement-based materials. This study include: 1 To the fiber reinforced cement composite materials(including glass fiber reinforced cement, polypropylene fiber reinforced cement and steel fiber reinforced cement)commonly used in engineering practice, understanding of their application, advantages and disadvantages, carrying on numerical simulation to them,and comparing numerical simulation results and the physical tests, by analyzing their failure modes, acoustic emission characteristics, flexural toughness, strength changes to study the failure mechanism. Analysis indicates that, regardless of steel fiber, glass fiber or polypropylene fiber, can significantly improve the toughness properties of cement matrix; Moreover, steel fiber and glass fiber of high tensile strength, its strength also improved more significantly.
     2 Collection of fiber reinforced concrete composite materials(including steel fiber reinforced concrete, glass fiber reinforced concrete and polypropylene fiber reinforced concrete)having more application in engineering,suming up their development and application, establishing of numerical Model of different content fiber concrete,through the simulation results analysing the law of crack growth in the failure process, the final crack patterns,the trend of the load-displacement curve, temporal and spatial distribution of acoustic emission, bending toughness and the measurement of bending strength to reveal the failure law and the strengthening and thoughening mechanism of fiber reinforced concrete. Studies show that the steel fiber and glass fiber can improve the flexural strength of concrete matrix, polypropylene fiber is a little effect on the strength increased; three kinds of fiber can significantly enhance the toughness of concrete, so that the destruction of the specimen gradually changes from brittle the ductility
     3 In special,numerical study on Partially High-Percentage Steel Fiber Reinforced Concrete(PHPSRFC)wih great potential for application and good value for money have been executed,the failure mechanism of PHPSFRC has been probed from crack propagation in failure process, acoustic emission characteristics, selecting the unit from top to bottom at the central area to analyse stress, comparison at the load-displacement curve and toughness with different contents specimen.comparison with full-doped steel fiber concrete specimens, the same number of fiber samples in PHPFRC better play in reinforcing and toughening effects. Relative to SIFCON, also greatly reduces costs, simplifies the construction difficult. Steel fibers in concrete cost has been greatly enhanced
引文
[1]沈荣熹,王璋水,崔玉忠.纤维增强水泥与纤维增强混凝土[M].北京:化学工业出版社.
    [2] Hannant.D.J.纤维水泥与纤维混凝土[M].陆建业译,北京:中国建筑工业出版社.
    [3] Andrzej M. Brandt. Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering[J], Composite Structures ,2008,86: 3–9.
    [4] Banthia, N, Sheng J. Fracture toughness of micro - fiber reinforced cement composites[ J ]. Cemen t & Concrete Composites,1996, (4) : 251 - 269.
    [5] Victor C L i, MohamedMaalej. Toughening in cement based composites. PartⅡ: Fiber reinforced cementitious composites[J]. Cemen t & Concrete Composites, 1996, (4) : 239 - 249.
    [6] Li,VC andKanda T,Engineered cementitious composites for structural applications[J]. ASCE Journal Materials in Civil Engine- ering,1998,Vol.10(2):66-69
    [7] Li,VC,Damage tolerance of engineered ce-mentitous composites[J]. in Advances in Fracture Research,Proc.9th ICF Conference on Fracture,Sydney,Australia,Eds.B LKariha-loo,Y W Mai etal,Pergamon,UK,1997,619-630.
    [8] Ronald F. Zollo.Fiber-reinforced Concrete: an Overview after 30 Years of Development[J]. Cement and Concrete Compositer, 1997, (19): 107-122.
    [9]武艳霞.纤维增强混凝土断裂过程区试验研究[J].华北工学院学报. 2000, 21(3): 214-217.
    [10]徐世烺,赵国藩.混凝土断裂力学研究[M].大连:大连理工大学出版社,1991.
    [11]王利民,徐世烺.混凝土及纤维混凝土材料特性曲线[J].大连理工大学学报. 2002, 42(5).
    [12]杜明干,李庆斌.纤维混凝土界面应力传递机制的三维弹性分析[J].清华大学学报(自然科学版). 2005, 45(3).
    [13]吴中伟.纤维增强-水泥基材料的未来[J].混凝土与水泥制品.1999,(1):5-6.
    [14]时宗滨,齐巧男.浅谈纤维混凝土的应用[J].黑龙江交通科技,2008,6:40-41.
    [15]蔡植仁.玻璃纤维增强水泥国内外研究概况综述[J].华侨大学学报,1984,1:71-76
    [16]王兴龙等.聚丙烯纤维改善建筑抹灰砂浆性能的试验研究[J].工程质量,2006,8:39-42.
    [17]钟志锦等.聚丙烯纤维聚合物砂浆基本性能研究.
    [18]刘君杰.王建坤,纤维增强混凝土的应用现状[J].天津纺织科技,41(4):9-14.
    [19]尹正刚.王坚,聚丙烯纤维增强水泥基材料性能技术应用及研究的现状[J].重庆建筑,2007,10(48):43-44.
    [20]贾哲,姜波,程光旭等.纤维增强水泥基复合材料研究进展[J].混凝土,2007,214:65-68.
    [21]梁正召.三难条件下的岩石破裂过程分析及其数值试验方法研究[D].东北大学,2005.
    [22] A. Tagnit-Hamou, Y. Vanhove, N. Petrov. Microstructural analysis of the bond mechanism between polyolefin fibers and cement pastes[J]. Cement and Concrete Research 2005,35:364–370.
    [23] D. Soulioti , N.M. Barkoula , A. Paipetis. Acoustic emission behavior of steel fibre reinforced concrete under bending[J]. Construction and Building Materials, 2009,23: 3532–3536.
    [24]陈兵,张东,姚武.用声发射技术研究水泥基复合材料脆性[J].无损检测,2001,23(10):421-457.
    [25]陈兵,吕字义.水泥基复合材料微结构破坏声发射研究[J].无损检测,2004,26(4):184-187.
    [26]袁海庆,陈景涛,朱继东.层布式钢纤维—聚丙烯腈纤维混凝土力学性能试验研究[J].武汉理工大学学报,2003,25(4):31-34.
    [27]王闯,李克智,李贺军等.短切炭纤维的CVI处理及其在CFRC中的分散性[J].复合材料学报,2007,24(1):135-140.
    [28]步玉环,穆海朋,王瑞和等.复杂应力环境下纤维水泥阻裂机理试验研究[J].石油学报,2008,29(6):922-926.
    [29]宋显辉,潘志橼,王建军,碳纤维混凝土局部损伤检测的实验研究[J],武汉理工大学学报,2004,26(3):44-50.
    [30]裔裕峰,谢慧才.碳纤维水泥基材料的声发射特性实验研究[J].建筑材料学报,2007,10(3):355-358.
    [31] COX H L. The elasticity and strength of paper and other fibrous materials[J]. Brit J Appl Phys,1952,3:72-79.
    [32] HEDGEPETH J M,VAN DYKE P. Local stress concent ration in imperfect filamentary composite materials [J]. J Comp Mater,1967,1:294-304.
    [33] VAN DYKE P, HEDGEPETH J M. Stress concent ration from single-filament failures in composite materials [J]. Texile Res J,1969,39:618-626.
    [34] ZWEBEN C. An approximate met hod of analysis for notched unidirectional composites[J]. Engng Fract Mech,1974,6:1-10.
    [35] OCHIAI S, SCHUL TE K, PETERS P W M. Strain concent ration factor of fibers and matrix in unidirectional composites [J]. Compos Sci Technol,1991,41:237 - 256.
    [36] ZENG Q D,WANG Z L, LINGL. A study of t he influence of interfacial damage on stress concent ration in unidirectional composites[J]. J Compos Mater, 1997, 57: 129-135.
    [37]曾庆敦.复合材料的细观破坏与强度[M].北京:科学出版社,2002.
    [38] COL EMAN B D. On the strength of classical fibers and fiber bundle[J]. J Mech Phys Solids,1958,7:60-70.
    [39] GUCER D E,GURLAND J. Comparison of the statistics of two fracture models[J]. J Mech Phys Solids,1962,10:365-373.
    [40] ROSEN B W. Tensile failure of fibrous composites[J]. AIAA J,1964,2:1985 - 1991.
    [41] ZWEBEN C. Tensile failure of fibrous composites[J]. AIAA J,1968,6:2325-2331.
    [42]曾庆敦,马锐,范赋群.复合材料正交叠层板最终拉伸强度的细观统计分析[J].力学学报, 1994,26:451-461.
    [43] SHIA D, HUI C Y, PHOENIX S L. Statistics of f ragmentation in a single fiber composite under matrix yielding and debonding with application to the strength of multi-fiber composites [J]. Compos Sci Technol,2000,60:2107 - 2128.
    [1]梁正召.三难条件下的岩石破裂过程分析及其数值试验方法研究[D].博士论文.
    [2] Weibull W. A statistical theory of the strength of materials[J]. Stockholm, 1939.
    [3] C.沃尔科特,吴学蔺译.强度统计理论[M].北京:科学出版社,1965.
    [4]傅宇房.岩石脆性破裂过程的数值模拟试验研究[M].北京:科学出版社,1965.
    [5]唐春安.岩石声发射规律的数值模拟初探[J].岩石力学与工程学报,1997,Vol.16, No.4: 368-374.
    [6] Tang C A. Numerical simulation on progressive failure leading to collapse and associated seismicity[J]. International Journal of Rock Mechanics and Mining Science, 1997, Vol.34, No.2249-261.
    [7]唐春安,朱万成.混凝土损伤与断裂—数值模拟[M].科学出版社,2003年1月第1版,北京.
    [8]夏梦棼,韩闻生,柯孚久,白以龙.统计细观损伤力学和损伤演化诱致突变(I),力学进展,1995,Vol.25,No.1:1-40.
    [9] Ahmed Al-Ostaz and Iwona Jasiuk. Crack initiation and propagation in materials with randomly Distributed holes[J]. Engineering Fracture Mechanics, 1997, Vol.58 No.5-6: 395-420.
    [10]余天庆,钱济成.损伤理论及其应用[M]. 1993.
    [11] Mazars J,Pijaudier Cabot G. Continuum damage theory:application to concrete[J]. Journal of Engineering Mechanics, ASCE, 1987,115(2):345-365.
    [12]唐春安,王述红,傅宇方著.岩石破裂过程数值试验[M].科学出版社,2003年5月第1版,北京.
    [13]张娟霞,唐春安.钢筋混凝土破坏机理:数值试验[M]. 2008.
    [1]唐春安,朱万成.混凝土损伤与断裂—数值模拟[M].科学出版社,2003年1月第1版,北京.
    [2]时宗滨,齐巧男.浅谈纤维混凝土的应用[M].黑龙江交通科技, 2008,(6):40-41.
    [3]崔玉忠.玻璃纤维增强水泥的发展现状与前景[M].科学出版社, 2006.
    [4]蔡洛芳.谈玻璃纤维增强水泥的研究与开发[M].
    [5]丁一宁,杨楠.玻璃纤维与聚丙烯纤维混凝土性能的对比试验[J].水利水电科技进展,2007,27(1):24-26.
    [6] BRYAN H.Engineering Composite Materials[M]. 2nded.By IOM Communication Ltd.1999.
    [7]张亚芳,唐春安等.纤维增强脆性基复合材料的力学性能和破裂过程研究[J].中山大学学报(自然科学版),2006,45(1):46-49.
    [8]沈荣熹,王璋水,崔玉忠.纤维增强水泥与纤维增强混凝土[M].北京:化学工业出版社,2006:19-26.
    [9] Hannant.D.J.纤维水泥与纤维混凝土[M].陆建业译,北京:中国建筑工业出版社,1986:19-23.
    [10]海然,杨久俊,吴科如.玻璃纤维梯度分布对水泥基材料力学性能的影响[J].建筑石膏与胶凝材料,2005.6,12-14.
    [11]王红霞,向忠.基于玻璃纤维增强水泥(混凝土)材料性能分析的最佳配合比的研究[J].四川建筑科学研究,2001,27(1):57-59.
    [12]崔江余,王显耀,孙珏.聚丙烯纤维增强水泥砂浆的弯曲性能试验[J].石家庄铁道学院学报,1994,1(7):65-70.
    [13]李博修,陈勇.聚丙烯纤维砂浆性能分析[J].交通科技与经济,2009,2(11):7-9.
    [14]欧阳幼玲,陈迅捷等.纤维增强水泥复合材料断裂韧性研究[J].水利水运工程学报,2006,2:56-59.
    [15] Li, VC andKanda T. Engineered cementitious composites for structural applications[J]. ASCE Journal Materials in Civil Engine- ering, 1998,Vol.10(2):66-69.
    [16] Li, VC. Damage tolerance of engineered ce-mentitous composites,in Advances in Frac-ture Research,Proc.9th ICF Conference on Fracture[J]. Sydney, Australia, Eds.B L Kariha-loo,Y W Mai etal,Pergamon,UK,1997,619-630.
    [17]周敏,许红升等.聚丙烯纤维增强水泥砂浆的性能研究[J].化学建材,2006, 22(2):31-3.
    [18]王成启.不同几何尺寸纤维对水泥浆体性能的影响[J].水泥工程,2009,1:74-89.
    [19] N. Banthia, J. Shengb, Fracture Toughness of Micro-Fiber Reinforced Cement Composites[J], Cement & Concrete Composites 1996,18: 251-269
    [20]段吉祥,陈联平,韩常森等.钢纤维水泥净浆的试验研究[J].混凝土与水泥制品,2001,6:43-44.
    [21]徐礼华,夏冬桃,夏广政等.钢纤维和聚丙烯纤维对高强混凝土强度的影响[J].武汉理工大学学报,2007,29(4):58-60.
    [22]董香军,丁一宁.纤维高性能混凝土工作度、强度和弯曲韧性的试验研究[J].混凝土与水泥制品,2006,4:43-45.
    [1]梁炼.钢纤维混凝土的发展及其应用[J].山西建筑,2007,33(13):167-168.
    [2]罗章,李启月,凌同华.钢纤维混凝土的工程应用研究[J].江西有色金属,2003,17(2):12-15.
    [3] D.Soulioti,N.M.Barkoula, A.Paipetis.Acoustic emission behavior of steel fibre reinforced concrete under bending[J]. Construction and Building Materials,2009,23:3532–3536.
    [4] R.S,Olivito,F.A.Zuccarello.An experimental study on the tensile strength Of steel-fiber-reinforced concrete[J]. Composites: Part B (2009).
    [5] Soulioti D, Matikas TE. Mechanical properties of fibre-reinforced concrete with variable shape and content of steel fibres[J]. In: Proceedings of the 1st conference on structural materials and components, vol. C, Athens, Greece, 21–23 May;2008.p. 1287–98.
    [6]宋万明,董斌.钢纤维砼(SFRC)及其应用研究[J].昆明理工大学学报,1998,23(1):20-24.
    [7]苏跃宏,于海霞.钢纤维混凝土基本性能试验研究[J].内蒙古工业大学学报,2006,25(3):227-233.
    [8]邓宗才.钢纤维混凝土疲劳断裂与损伤特性的试验研究[J].土木工程学报,2003,36(2):20-25.
    [9]杨勇,任青文.钢纤维混凝土力学性能试验研究[J].河海大学学报(自然科学版),2006,34(1):92-94.
    [10]郝转.聚丙烯纤维混凝土的技术应用研究[J].山西水利科技,2006,162:9-16
    [11]王明明,李忠雨,左洪胜.聚丙烯纤维混凝土的性能研究及工程应用[J].施工技术,2007,36(6):91-95.
    [12]赵军,赵青.聚丙烯纤维混凝土的作用机理与应用现状[J].山西建筑,2009,35(22):173-174.
    [13] T. Aly, J. G. Sanjayan,F. Collins, Effect of polypropylene fibers on shrinkage and cracking of concretes[J]. Materials and Structures (2008) 41:1741–1753.
    [14] Yao Wu. Flexural strength and behavior of polypropylene fiber reinforced concrete beams[J]. Journal of Wuhan University of Technology-Mater.Sci.Ed,2002,17(2):54-57.
    [15]周易文.聚丙烯纤维混凝土的应用[J].科技情报开发与经济,2007,17(25):167-191
    [16]姜景,钱玉林.聚丙烯纤维混凝土阻裂机理探讨[J].吉林水利,2004,3:20-23.
    [17]唐乃岩,李秋平,刘乃芸.玻璃纤维混凝土的研究进展与工程应用[J].山东建材,1999,2:22-23.
    [18]邓宗才,李建辉,孙宏俊.纤维混凝土的抗弯冲击性能[J].公路交通科技,2005,22(6):24-64.
    [19]邓宗才,薛会青,王力.耐碱玻璃纤维混凝土的弯曲韧性,新型建筑材料[J]. 2009,5:23-24.
    [20]凌天清,蒋建明.玻璃纤维、钢纤维及复合增强混凝土的力学特性试验研究[J].中国公路学报,1994,7(1):67-74.
    [21]凌天清,蒋建明.玻璃纤维、钢纤维及其复合增强混凝土的力学特性试验研究[J].中国公路学报,1994,7(1):67-74
    [22]林江,陈志源.聚丙烯纤维—钢纤维水泥基复合材料力学性能的研究[J].
    [23]胡金生,杨秀敏,周早生等.钢纤维混凝土与聚丙烯纤维混凝土材料冲击荷载下纤维增韧特性试验研究[J].建筑结构学报,2005,26(2):101-105
    [1]易成,谢和平,孙华飞.钢纤维混凝土疲劳断裂性能与工程应用[M].北京:科学出版社,2003.
    [2] Lankard D R. Preparation. Properties and Applications of Cement-Based Composites Contining 5 to 20 percent steel Fiber[J]. Shah S P ,Skarendahl A eds. US-Sweden Joint Seminar on Steel Fiber Concrete. Swedish Cement & Concrete Research Institute. Stockholm, 1985 :1992217.
    [3]王天宏,贺智敏.注浆纤维混凝土的研究与应用[J].山西建筑,2009,35(20):163-164.
    [4] Padmarajaiah SK, Ramaswamy A. Crack width predictions for high strength concrete fully/partially prestressed beam specimens containing steel fibers[J]. Struct J, ACI 2001:852–861.
    [5] S.K. Padmarajaiah, Ananth Ramaswamy. Flexural strength predictions of steel fiber reinforced high-strength concrete in fully/partially prestressed beam specimens[J], Cement & Concrete Composites,2004, 26:275–290.
    [6] S. K. Padmarajaiah,Ananth Ramaswamy. Comparative Study on Flexural Response of Full and Partial Depth Fiber-Reinforced High-Strength Concrete[J]. JOURNAL OF MATERIALS IN CIVIL ENGINEERING,2003,3:130-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700