用户名: 密码: 验证码:
微卫星遗传标记在牙鲆群体遗传学和人工诱导雌核发育群体遗传变异分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以微卫星遗传标记(microsatellite DNA)为手段,对山东近海自然和养殖牙鲆Paralichthys olivaceus(T. & S.)进行了群体遗传学研究,以此为基础对人工诱导的牙鲆异质雌核发育群体的遗传变异及基因着丝点之间的重组率进行了分析。另外,通过对人工诱导的雌核发育异质和同质群体的研究构建了微卫星标记一着丝点连锁图谱,并分析了微卫星标记之间的连锁关系。主要结果如下:
     1、首先建立了适于牙鲆微卫星分析的方法,研究了山东近海牙鲆自然群体和一个养殖群体在10个微卫星基因座位上的遗传多样性(Po1,Po13,Po33,Po35,Po42,Po48,Po56,Po89,Po91,Po-strl),10个座位均为多态;
     它们的等位基因平均数(a)分别是6.7和6.1,每个基因座位有效等位基因数(α_e)分别为1.8~6.8和2.5~6.7,群体平均杂合度(H)分别为0.8120和0.7310;两个群体间的遗传相似性系数、遗传距离和基因分化系数为0.8558、0.1557和0.0558;自然群体内每个座位上的多态信息含量(PIC)为0.59~0.84、个体识别率(DP)为0.54~0.86、非父排除率(PPE)为0.41~0.72,其累积个体识别率和非父排除率均达到0.9999,表明所选座位属中高识别力的遗传标记,可以将它们应用于今后牙鲆雌核发育群体的遗传变异分析以及进一步的遗传育种的研究中。
     2、在人工异质雌核发育群体中,对经筛选所获得的10个基因座进行分析,Po91可能因为出现了无效等位基因而没有扩增产物,其余9个座位全都扩增出目的片段,其中2个座位(Po33和Po48)为单态,剩下7个座位表现出多态性,其多态座位比例为77.8%、平均杂合度为0.3856,明显低于自然和养殖群体。在具多态性的7个基因座位上均发生了基因一着丝点之间的重组,重组率在42.6—100%之间。结果显示通过抑制第二极体排出获得的牙鲆雌核发育群体在个体和群体水平尚具有一定的基因杂合。
     3、利用20对微卫星引物对人工诱导的具有同一亲本的牙鲆异质和同质雌核
Population genetics of the left-eyed flounder, Paralichthys olivaceus (T. & S.), including natural and cultured slocks of Shandong coastal waters of China was assessed using microsatellite markers. The genetic variations and the recombination rates between microsatellite markers and the centromere of meiogynogenetic offspring were also analyzed. In the meantime, a microsatellite-centromere mapping was constructed with the data depriving from the meiogynogenesis and mitogynogenesis stocks. The linkage relationship between microsatellite loci can be obtained from the mitogynogenesis stock. The main results shown as follows:1. The genetic variations of the natural and cultured stocks of Paralichthys olivaceus were assessed at 10 microsatellite loci (Pol, Po13, Po33, Po35, Po42, Po48, Po56, Po89, Po91, Po-strl). All loci are polymorphism. The average number alleles of per locus were 6.7 and 6.1, and the number of effective alleles (ae) of each locus in the natural and cultured stocks was 1.8-6.8 and 2.5-6.7, respectively, and The value of average heterozygosity (H) were 0.8120 and 0.7310. Genetic similarity (I), genetic distance (D) and coefficient of gene differentiation (Gst) between these two stocks were 0.8558, 0.1557 and 0.0558, respectively.The value of polymorphism information content (PIC) , power of discrimination (DP) and probability of paternity exclusion (PPE) were 0.59-0.84,0.54-0.86 and 0.41-0.72 at the 10 loci of the natural stock, respectively. The results indicated that the 10 microsatellite loci to be selected were very sensitive and could be used in the parentage and kinship determination of the artificial gynogenetic stock of left-eyed flounders and further genetic breeding study.2. Ten above polymorphism microsatellite markers were used to detect the genetic variations of the meiogynogenesis stock. There was no amplified product at
    Po91 locus because of the existence of null allele. Two loci (Po33 and Po48) were monomorphic and the rest were polymorphic in this stock. The mean proportion of polymorphic loci and the average heterozygosity were 77.8% and 0.3856, respectively. Compared with results of population genetics study, the genetic variation level of meiogynogenesis stock was lower than those of the natural and cultured stocks.Recombination was observed at the 7 polymorphic loci and the recombination rates between microsatellite locus and centromere were 42.6—100%, respectively. The results indicated that there was higher heterozygosity in the first meiogynogenetic generation owing to crossover between the homologous chromosomes during the meiosis-1 .3. Among the 20 loci used in the study on genetical analysis of meiogygenesis and mitogynogenesis stocks. A microsatellite-centromere mapping was constructed using the data depriving from the meiogynogenesis stock. The genetic distance between kopl5, Po42, Pol and the centromere was 15.8cm, 28.9cM and 32.4cM, respectively. The distance between the rest loci and the centromere was nearly 50cM, respectively.The linkage relationship between microsatellite loci were from the mitogynogenetic offspring's allele separation pattern. Po13 and Po56, Po91 and kop18, kop15 and kop21 are linkage.
引文
[1] 马克平,试论生物多样性的概念.生物多样性,1993,1(1):20-22
    [2] 贾继增,分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1—10
    [3] Park Park, Moran P, Developments in molecular genetic techniques, 《Molecular genetics in fisheries》, Chapman & Hall (England, London), 1995, 1-28
    [4] Botstein D, White RL, Skolnick M and Davis RW, Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet, 32 (3): 314-331
    [5] Liu ZJ, Cordes J F, DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 2004, 238: 1-37
    [6] Williams J G K, Kubelik AR, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res., 1990, 18 (22): 6531-6535
    [7] Welsh J, McClelland M, Fingerprinting genomes using PCR with arbitrary primers. Nucl Acids Res., 1990, 18: 7213-7218
    [8] Zabeau M, Vos P, Selective restriction fragment amplification: a general method for DNA fingerprinting. Euro Fatent Appl. 92402629 (Publ. No.0534858Al)
    [9] Vos P, Hongers R, Bleeker M, Reijans M, Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, AFLP: A new technique for DNA fingerprinting. Nucl Acids Res., 1995, 23: 4407-4414
    [10] O'Connell M, Wright J M. Microsatellite DNA in fishes. Rev fish biol fish, 1997, 7: 331-363
    [11] Zhang DX, Hewitt GM, Nuclear integrations: Challenges for mitochondrial markers. TrendEcol Evol, 1996, 11: 247-251
    [12] Orita M, Suzuki Y, Sekiya T, Hayashi K, Rapid and sensitive detection of point mutations ans DNA polymorphisms using the polymerase chain reaction. Genomics, 1989, 5: 874-879
    [13] J 萨姆布鲁克,DW 拉塞尔,分子克隆实验指南(第三版),2002:1122
    [14] Lander ES, The new genomics: global views of biology. Science, 1996, 274 (5287): 536-539
    [15] Carvalho G R, Hauser L, Molecular genetics and the stock concept in fisheries, 《Molecular genetics in fisheries》, Chapman & Hall(England, London), 1995, 54-79
    [16] 尤锋,牙鲆群体遗传多样性及鲽形目鱼类分子系统学初步研究.:[博士论文].青岛:中国科学院海洋研究所,2001
    [17] Jeffreys AJ, Wilson V, Thein SL, Hypervariable minisatellite regions in human DNA. Nature, 1985, 314, (6006): 67-73
    [18] Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Ehrlich HA, Primer-dicrcted enzymatic amplification of DNA with a thermosatable DNA polymerase. Science, 1988, 239: 487-491
    [19] Bretten RJ, Kohne DE, Repeated sequences in DNA. Science, 1968, 161: 529~540
    [20] Skinner DM, Bettie WG, Blattner FR1The repeat sequence of a hermit crab satellite deoxyribonucleic acid is (TAGG) n/(ATCC)n. Biochemistry, 1974, 13: 3930~3937
    [21] Tautz D, Renz M, Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucl Acids Res, 1984, 12: 4127~4138
    [22] Litt M, Luty JA, A hypervariable microsatellite revealed by in vetro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am JHum Genet, 1989, 44: 397~401
    [23] Dib C, Faure S, Fizames c, Samson D, Drouot N, Vignal A, Millasseay P, Marc S, Hazan J, Seboun E, Lathrop M, gyapay G, Morissette J, Weissenbach J, A comprehensive genetic map of the human genome based on 5264 microsatellite. Nature, 1996, 380: 152-154
    [24] Dietrich WF, Miller J, Steen R, et al., A comprehjensive genetic map of the mouse genome. Nature, 1996, 380: 149-152
    [25] Weber JL, Informativeness of human (dC-dA)n/(dG-dT)n polymorphisms. Genomics, 1990, 7: 524-530
    [26] Levinson G, Gutman G A, Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol, 1987, 4: 203-221
    [27] Tautz D, Schlotterer C, Simple sequences. Curr opin genet develop, 1994, 4: 832-837
    [28] Strand M, Prolla TA, Liskay R M, Petes T D, Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature, 1993, 365: 274-276
    [29] Weber J L, Wong C, Mutation of human short tandem repeats. Hum Mol Genet, 1993, 2: 1123-1128
    [30] Weissenbach J, Gyapay G, Dib C, Vignal A, et al., A second-generation linkage map of the human genome. Nature, 1992, 359: 794-801
    [31] Henderson S T, Petes T D, Instability of simple sequence DNA in Saccbaromyces cerevisiae. Mol cell boil, 1992, 12: 2749-2757
    [32] 张云武,张亚平,微卫星及其应用.动物学研究,2001,22(4):315-320
    [33] Li YC, Microsatellites: genesis, genomic distribution, function and evolutionary dynamics. 四川农业大学学报, 2001, 19 (4): 303-316
    [34] Kimura M, Crow JF, The number of alleles hat can bu maintained in a finite population. Genetics, 1964, 49: 725-738
    [35] Slatkin M, A measure of population subdivision based on microsatellite allele frequencies. Genetics, 1995, 139: 457-462
    [36] Shrivere MD, Jin L, Chakraborty R, Boerwinkle E, VNTR allele frequency distribuitions under the stepwise mutation model: a computer simulation approach. Genetics, 1993, 134: 983-993
    [37] Ohta T, Kimura M, A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res, 1973, 22: 201-204
    [38] DiRienzo A, Peterson A C, Garza J C, et al, Mutational processes of simple sequence repeat loci in human populations. Proc Natl Acad Sci, 1996, 380: 149-152
    [39] Valdes A M, Slatkin M, Freimer N B, Allele frequencies at microsatellite loci: the stepwise mutation model revised. Genetics, 1993, 133: 737-749
    [40] Iglesias A R, Kindlund E, Tammi M, Wadelius C, Some microsatellites may act as novel polymorphic cis-regulatory elements through transcription factor binding. Gene, 2004, 341: 149-165
    [41] Zane L, Bargelloni L, Patarnello T, Strategies for microsatellite isolation: a review. Mol Ecol, 2002, 11: 1-16
    [42] 徐鹏,中国对虾微卫星标记的筛选.:[硕士论文].青岛:中国科学院海洋研究所,2002
    [43] 邵昭君,赵娜,朱滨,周发林,常剑波,铲鲟微卫星引物对中华鲟的适用性研究.水生生物学报,2002,6:577-584
    [44] Nielsen JL, Gan C A, Wright J M et al., Biogeographic distributions of mitochondrial and nuclear markers for southern steelhead. Mol Mar Biol Biotech, 1994, 3: 281-293
    [45] Sekino M, Hrara M, Isolation and characterization mierosatellite DNA loci in Japan flounder Paralichthys olivaceus. Mol Ecol, 2000, 9: 2201-2203
    [46] Pardo G B, Casas L, Fortes G G, Bouza C, Martinez P, Clark M S, Sanchez L, New microsatellite markers in turbot (Scophthalmus maximus) derived from an enriched genomic library and sequence databases. Mol Ecol Notes, 2005, 5 (1): 62-64
    [47] McGowan C R, Davidson E A, Woram R A, Danzmann R G, Ferguson M M, Davidson W S, Ten polymorphic microsatellite markers from Arctic charr (Salvelinus alpinus): linkage analysis and amplification in other salmonids. Anim Genet, 2004, 35 (6): 479-481
    [48] Rodriguez F, Rexroad C E, Palti Y, Characterization of twenty-four microsatellite markers for rainbow trout (Oncorhynchus mykiss). Mol Eeol Notes, 2003, 3 (4): 619-622
    [49] Hoarau G, Cook D, Stam W T, Olsen J L, New mierosatellite primers for plaice Pleuronectes platessa L.(Teleostei: Pleuronectidae). Mol Ecol Notes, 2002, 2 (1): 60-61
    [50] Barinova A A, Kumagai K, Nakajima M, Taniguchi N, Identification and characterization of microsatellite DNA markers developed in threeline grunt Parapristipoma trilineatum. Fish Genet Breed Sci, 2002, 32: 27-32
    [51] Launey S, Krieg F, Haffray P, Bruant J S, Vannier A, Guyomard R, Twelve new microsatellite markers for gilted seabream (Sparus aurata L.): characterization, polymorphism and linkage. Mol Ecol Notes, 2003, 3 (3): 457-459
    [52] Olendorf R, Ruedi B, Hughes K A, Primers for 12 polymorphic microsatellite DNA loci from the guppy (Poecilia reticulata). Mol Ecol Notes, 2004, 4 (4): 668-671
    [53] Rivera M A J, Graham G C, Roderick G K, Isolation and characterization of nine microsatellite loci from the Hawaiian grouper Epinephelus quernus (Serranidae) for population genetic analyses. Mar Biotechnol, 2003, 5 (2): 126-129
    [54] Rico C, Ibrahim K M, Rico I, Hewitt G M, Stock composition in North Atlantic populations of whiting using microsatellite markers. J Fish Biol, 1997, 51 (3): 462-475
    [55] Miller K M, Le K D, Beacham T D, Development of tri- and tetranucleotide repeat microsatellite loci in Atlantic cod (Gadus morhua). Mol Ecol, 2000 9 (2): 238-239
    [56] Englbrecht C C, Largiader C R, Hanfling B, Tautz D, Isolation and characterization of polymorphic microsatellite loci in the European bullhead Cottus gobio L. (Osteichthyes) and their applicability to related taxa. Mol Ecol, 1999, 8 (11): 1966-1969
    [57] Ortega-Villaizan Romo M, Nakajima M, Taniguchi N, Isolation and characterization of microsatellite DNA markers in the rare species barfin flounder (Verasper moseri) and its closely related species spotted halibut (V. variegatus). Mol Ecol Notes, 2003, 3: 629-631
    [58] 李霞,白俊杰,吴淑勤等,剑尾鱼微卫星DNA的筛选.中国水产科学,2004,11(3):196-201
    [59] King T L, Eackles M S, Letcher B H, Microsatellite DNA markers for the study of Atlantic salmon (Salmo salar) kinship, population structure, and mixed-fishery analyses. Mol Ecol Notes, 2005, 5 (1): 130-132
    [60] Shimoda N, Knapik E. W, John Z, et al, Zebrafish genetic map with 2000 microsatellite markers, Genomics, 1999, 58: 219—232
    [61] Carleton K L, Streelman J T, Lee B Y, Garnhart N, Kidd M, Kocher T D, Rapid isolation of CA microsatellites from the tilapia genome. Anita Genet, 2002, 33 (2): 140-144
    [62] Clark T B, Ma L, Saillant E, Gold J R, Microsatellite DNA markers for population-genetic studies of Atlantic bluefin tuna (Thunnus thynnus thynnus) and other species of genus Thunnus. Mol Ecol Notes, 2004, 4 (1): 70-73
    [63] Takagi M, Shoji E, Taniguchi N, Microsatellite DNA polymorphism to reveal genetic divergence in ayu, Plecoglossus altivelis. Fisheries sci 65,507-512 (1999)
    [64] Crooijmans RPMA, Bierbooms VAF, Komen J, Microsatellite markers in common carp (Cyprinus carpio L.). Animal Genetics, 1997, 28: 129-134
    [65] Tan G, Karsi A, Li P, Kim S, Zheng X, Kucuktas H, Argue B J, Dunham R A, Liu Z J, Polymorphic microsatellite markers in Ictalurus punctatus and related catfish species. Mol. Ecol, 1999: 8 (10), 1758-1760
    [66] Garcia de Leon FJ, Dallas JF, Chatain B et al, Development and use of microsatellite markers in sea bass Dicentrarchus labras (Linnaeus, 1758). Mol marine biol biotechnol, 1995, 4(1): 62-68
    [67] Galbusera P, Volckaert F A, Hellemans B, Ollevier F, Isolation and characterization of microsatellite markers in the African catfish Clarias gariepinus (Burchell, 1822). Mol Eeol, 1996, 5 (5): 703-705
    [68] Takagi,M., Taniguchi, N., Cook, D. and Doyle, R. W, Isolation and characterization of microsatellite loci from red sea bream pagrus major and detection in closely related species. Fisheries sci, 1997, 63, 199-204
    [69] Furukawa S, Takeshima H, Otaka T, Mitsuboshi T, Shirasu K, Ikeda D, Kaneko G, Nishida M, Watabe S, Isolation of microsatellite markers by in silico screening implicated for genetic linkage mapping in Japanese pufferfish Takifugu rubripes. Fisheries sci, 2004, 70(4): 620-628
    [70] Rodzen J A, May B, Inheritance of microsatellite loci in the white sturgeon Acipenser transmontanus. Genome, 2002, 45: 1064-1076
    [71] Heist E J, Nicholson E H, Sipiorski J T, Keeney D B, Microsatellite markers for the Paddlefish (Polyodon spathula). Conservation Genetics, 2002, 3: 205-207
    [72] Lage C R, Kormfield I, Isolation and charccterization of microsatellite loci in Atlantic haddock (Melanogrammus aeglefinus). Mol Ecol, 1999, 8: 1355-1357
    [73] Tseng M C, Chen C A, Kao H W, Tzeng W N, Lee S C, Isolation and characterization of polymorphic microsatellite in the Japenese eel Anguilla japonica. Mar Biotechnol, 2001, 3: 275-280
    [74] Wirth T, Bernatchez L, Genetic evidence against panmixia in the European eel. Nature, 2001, 409 (6823), 1037-1040
    [75] Ohara K, Dong S, Taniguchi N, High proportion of heterozygotes in microsatellite DNA loci of wild clonal silver crucian carp, Carassius langsdorfii. Zool Sci, 1999, 16: 909-913
    [76] Mendonca H, Smith J, Brinegar C, Isolation and characterization of four microsatellite loci in the tidewater goby (Eucyclogobius newberryi). Marine Biotechnol, 2001, 3: 91-95
    [77] Ball A O, Sedberry G R . Zatcoff M S , Chapman R W , Carlin J L, Population structure of the wreckfish Polyprion americanus determined with microsatellite genetic markers. Marine Biology, 2000, 137: 1077-1090
    [78] O'Malley K G, Abbey C A, Ross K, Gold J R, Microsatellite DNA markers for kinship analysis and genetic mapping in red drum, Sciaenops ocellatus (Sciaenidae, Teleostei). Mor Ecol Notes, 2003, 3(1): 155-158
    [79] Morishima K, Nakayama 1, Arai K, Microsatellite-centromere mapping in the loach Misgurnus anguillicaudatus. Genetica, 2001, 111:59-69
    [80] Olsen J B, Lewis C J, Kretschmer E J, Wilson S L, Seeb J E, Characterization of 14 tetranucleotide microsatellite loci derived from Pacific herring. Mol Ecol Notes, 2002, 2(2): 101-103
    [81] D'Amato M E, Lunt D H, Carvalho G R, Microsatellite markers for the hake Macruronus magellanicus amplify other gadoid fish. Mol Ecol, 1999, 8 (6): 1086-1088
    [82] Waters J M, Esa Y B, Wallis G P, Characterization of microsatellite loci from a New Zealand freshwater fish (Galaxias vulgaris) and their potential for analysis of hybridization in Galaxiidae. Mol Ecol, 1998,6: 1080-1082
    [83] Westerman M E, Buonaccorsi V P, Stannard J A, Galver L, Taylor C, Lynn E A, Kimbrell C A, Vetter R D Cloning and characterization of novel microsatellite DNA markers for the grass rocktish, Sebastes rastrelliger, and cross-species amplification in 10 related Sebastes spp. Mol Ecol Notes, 2005, 5(1): 74-76
    [84] Salgueiro P, Carvalho G, Collares-Pereira M J, Coelho M M, Microsatellite analysis of genetic population structure of the endangered cyprinid Anaecypris hispanica in Portugal: implications for conservation. Biological Conservation, 2003, 109(1): 47-56
    [85] Sekino M, Hara M, Application of microsatellite markers to population genetics studies of Japanese flounder Paralichthys olivaceus, Mar Biotechnol, 2001, 3: 572-589
    [86] Kumagai K, Barinova A A, Nakajima M,et al, Genetic diversity between Japanese and Chinese threeline grunt ( Parapristipoma trilineatum ) examined by microsatellite DNA markers, Mar Biotechnol, 2004, 6: 221-228
    [87] Perez-Enriquez, Takagi RM , Taniguchi N, Genetic variability and pedigree tracing of a hatchery-reared stock of red sea bream(Pagrus major) used for stock enhancement,
     based on microsatellite DNA markers. Aquaculture, 1999, 173: 413-423
    [88] Skaala O, Hoyheim B, Glover K, et al, Microsatellite analysis in domesticated and wild Atlantic salmon (Salmo salar L.): allelic diversity and identification of individuals. Aquaculture, 2004, 240: 131-143
    [89] May B, Genetic variation at microsatellite loci in sturgeon: primer sequence homology in Acipenser and Scaphirhynehus. Can J Fish Aquat Sci, 1997, 54: 1542-1547
    [90] 朱滨,常剑波,谭细畅等,湖鲟微卫星DNA引物应用于中华鲟亲子关系分析的初步研究.水生生物学报,1999,12(6):547-553
    [91] 周莉,刘静霞,桂建芳,应用微卫星标记对雌核发育银鲫的遗传多样性初探.动物学研究,2001,22(4):257-264
    [92] 刘静霞,周莉,赵振山,桂建芳,锦鲤4个人工雌核发育家系的微卫星标记研究.动物学研究,2002,23(2):97-105
    [93] 林凯东,罗琛,鲤的微卫星引物对草鱼基因组分析的适用性的初步研究.激光生物学报,2003,12(2):121-127
    [94] Field DL, Chenmick M, Robbins K, et al, Paternity determination in captive lowland gorillas and orangutans and wild mountain gorillas by microsatellite. Primates, 1998, 39: 199-209
    [95] Hara M, Sekino M, Efficient detection of parentage in a cultured Japanese flounder Paralichthys olivaceus using microsatellite DNA marker. Aquaculture, 2003, 217: 107-114
    [96] Castro J, Bouza C, Sanchez L, et al, Gynogenesis assessment using microsatellite genetic markers in Turbot (Scophthalmus maximus). Marine Biotechnol, 2003, 5: 584-592
    [97] Postlethwai J, Johnson S L, Midson C N, et al, A genetic map for the zebrafish. Science, 1994, 264: 699-703.
    [98] Knapik E. W, Goodman A, Atkinson O S, et al, A reference cross DNA panel for zebrafish (Danio rerio) anchored with simple sequence length polymorphisms. Development, 1996, 123: 451-460
    [99] Coimbra M R M, Kobaysshi K, Koretsugu S, et al, A genetic linkage map of the Japanese flounder, Paralichthys olivaceus. Aquaculture, 2003, 220: 203-218
    [100] Kocher TD, Lee WJ, Sobolewska H, Penman D, McAndrew B, A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus). Genetics, 1998, 148: 1225-1232
    [101] Waldbieser G C, Bosworth B G, Nonneman D J, et al, A microsatellite based genetic linkage map for channel catfish, Ictalurus punctatus, Genetics, 2001, 158: 727—734
    [102] 孙效文,梁利群,鲤鱼的遗传连锁图谱(初报).中国水产科学,2000,7(1):1-5
    [103] Sun X, Liang L, A genetic linkage map of common carp (Cyprinus Carpio L.) and mapping of a locus associated with cold tolerance. Aquaculture, 2004, 238: 165-172
    [104] Cnaani A, Hallerman EM, Ron M, et al, Detection of a chromosomal region with two quantitative trait loci, affecting cold tolerance and fish size, in an F2 tilapia hybrid. Aquaculture, 2003, 223: 117-128
    [105] 尤锋,王可玲,相建海等,山东近海褐牙鲆自然与养殖群体生化遗传结构及其遗传变异的比较分析.海洋与湖沼,2001,32(5):512—518
    [106] You Feng, Xiang J H, Song L S et al, Genetic variations in natural and cultured stocks of Shandong Paralichthys olivaceus (T. & S.) as revealed by RAPD. Studia Marina Sinica, 2002, No.44: 228—234
    [107] Liu Y G, Chen S L, Li B F, Assessing the genetic structure of three Japanese flounder (Paralichthys olivaceus) stocks by microsatellite markers. Aquaculture, 2005, 243: 103-111
    [108] J 萨母布鲁克,分子克隆指南(第三版).北京:科学出版社,2002:463
    [109] Nei M, Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978. 89: 583—590
    [110] Nei M, Molecular population genetics and evolution. Amsterdam: North-Holland Publishing Company, 1975. 79—124
    [111] Odelberg S J, Repetitiwe DNA: molecular structure, polymorphism in forensic application. Chicago: Year Book Medica Publishers Inc, 1997, 26
    [112] Fisher R A, Standard calculations for evaluating a blood group system. Heredity, 1951, 5: 95—102
    [113] 王强,刘明华,张铁齐等,黑龙江水系不同水体野鲤群体的等位基因变异.中国水产科学,1996,3(1):11—16
    [114] 杜长斌,孙孝文,楼允东,应用微卫星技术对野鲤和两种鲤选育品系的遗传多样性分析.上海水产大学学报,2000,9(4):285—289
    [115] 张亚平,王文,宿兵等,大熊猫微卫星DNA的筛选及其应用.动物学研究,1995,16:301—306
    [116] Ardren W R, Borer S et al, Inheritance of 12 microsatellite loci in Oncorhynchus mykiss. J Hered, 1999, 90(5): 529-536
    [117] 陈腾,张琳琳,赖江华等,中国东乡族9个STR基因座遗传多态性研究.遗传,2002,24(3):247—250
    [118] Sekino M, Hrara M, Taniguchi N, Loss of microsatellite and mitochondrial DNA variation in hatchery strains of Japanese flounder Paralichthys olivaceus. Aquaculture, 2002, 213: 101—122
    [119] 孟宪红,孔杰,庄志猛等,真鲷自然群体和人工繁殖群体的遗传多样性.生物多样性,2000,8(3):248—252
    [120] 宋林生,李俊强,李红蕾等,用RAPD技术对我国栉孔扇贝野生种群和养殖群体的遗传结构及其遗传分化的研究.高技术通讯,2002,12(7):83—86
    [121] Coughlan J P, Imsland A K, Galvin P T et al, Microsatellite DNA variation in wild populations and farmed strains of turbot from Ireland and Norway: a preliminary study. J Fish Biol, 1998, 52: 916—922
    [122] Desvignes J F, Laroche J, Durand J D et al, Genetic variability in reared stocks of common carp (Cyprinus carpio L.) based on allozymes and microsatellites. Aquaculture, 2001, 194: 291—301
    [123] Norris A T, Bradley D G, Cunningham E P, Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmo salar) populations. Aquaculture, 1999, 180: 247—264
    [124] Clifford S L, Meginnity P, Feguson A, Genetic changes in an Atlantic salmon population resulting from escaped juvenile farm salmon. J Fish Biol, 1998, 52: 118—127
    [125] 柳广东 张秀梅,高天翔等,山东省威海市牙鲆增殖放流实验研究.海洋湖沼通报,2000.4:78—82
    [126] Arai K, Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan. Aquaculture, 2001, 197: 205-228
    [127] Felip A, Zanuy S, Carrillo M et al, Induction of triploidy and gynogenesis in teleost fish with emphasis on marine species. Genetica, 2001, 111: 175-195
    [128] Wolfus G M, Garcia D K, Warren A A. Application of the microsatellite technique for analyzing genetic diversity in shrimp breeding programs. Aquaculture, 1997, 152: 35-47
    [129] Ardren W R, Borer S, et al. Inheritance of 12 microsatellite loci in Oncorhynchus mykiss. J Hered, 1999, 90 (5): 529-536
    [130] 李莉.长牡蛎遗传标记的筛选和遗传图谱的构建:[博士论文].青岛:中国科学院海洋研究所,2003
    [131] 徐成,王可玲,徐永立等,雌核发育牙鲆同工酶基因的重组及父方基因的表达 海洋与湖沼,2002,33(1):62—67
    [132] Taniguchi N, Kijima A, Fukai J, High heterozygosity at Gpi2 in gynogenetic diploids and triploids of ayu Plecoglossus altivelis. Nippin Suisan Gakkaishi, 1987, 53 (5): 717—720
    [133] Peruzzi S, Chatain B. Pressure and cold shock induction of meiotic gynogenesis and triploidy in the European sea bass, Dicentrarchus labrax L.: relative efficiency of methods and parental variability. Aquaculture, 2000, 189: 23-37
    [134] Thorgaard G H, Allendorf F W, Knudsen K L. Gene-centromere mapping in rainbow trout: high interference over long map distances. Genetics, 1983, 103: 771-783
    [135] 尤锋,刘静.牙鲆三倍体核型的证明,海洋与湖沼,1995,26(2):115—118
    [136] Palti Y, Shirak A, Cnaani A, et al. Detection of genes with deleterious alleles in an inbred line of tilapia (Oreochromis aureus). Aquaculture, 2002, 206: 151-164
    [137] Thompson D, Scott A P, An analysis recombination data in gynogenetic diploid rainbow trout. Heredity, 1984, 53: 441-452.
    [138] Allendorf F W, Seeb J E, Knudsen K L, Thorgaard G H, Leary R F, Gene-centromere mapping of 25 loci in rainbow trout. J Hered, 1986, 77: 307-312
    [139] Arai K, Fujino K, Sei N, Chiba T, Kawamura M, Estimating rate of gene-centromere recombination at 11 isozyme loci in the Salvelinus species. Nippon Suisan Gakkaishi 1991, 57: 1043-1055
    [140] Suwa M, Arai K, Suzuki R, Suppression of the first cleavage and cytogeneticx studies on the gynogenetic loach. Fisheries Sci, 1994, 60: 673-681
    [141] Streisinger G, Singer F, Walker C, Knauber D, Dower N, Segregation analysis and gene-centromere distance in zebrafish, Genetics, 1986, 112: 311-319
    [142] Liu Q, Goudie CA, Simco B A, Davis KB, Morizot DC, Gene-centromere mapping of six enzyme loci in gynogenetic channel catfish. J Hered, 1992, 83: 245-248
    [143] Aliah RS, Taniguchi N, Gene-centromere distance of six microsatellite DNA loci in gynogenesis nishikigoi (Cyprinus carpio). Fish Genet Breed Sci, 2000, 29: 113-119
    [144] Sakamoto T, Danzmann RG, Gharbi K, et al, A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics, 2000, 155: 1331-1345
    [145] Manuel JL, Bubridge S, Kenchingon E, et al, Veligers from two population of scallop Placopecten magellanicus wxhibit different vertical distributions in the same mesocosm. J shellfish res, 1996, 15: 251-257
    [146] Kim WJ, Kim KK, Lee H, et al, Isolation and characterization of polymorphic microsatellite loci in the olive flounder (Paralichthys olivaceus). Mol Ecol Note, 2003, 3: 491-493

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700