用户名: 密码: 验证码:
电解法回收胶团强化超滤浓缩液中Cd~(2+)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镉类金属毒性较大,对人、植物和动物都能产生极大危害。水体中的镉污染主要来自于电镀厂、有色金属冶炼厂和矿山的废水排放。胶团强化超滤是基于表面活性剂独特的双亲分子结构特征,使表面活性剂和超滤技术相结合用以处理低浓度的金属离子的新方法。与传统的超滤相比,胶团强化超滤有许多的优点。如技术的成本降低了很多,而且更能有效地去除水中的镉金属离子。同时,与吸附、蒸馏和萃取法相比,胶团强化超滤法能耗低,无相交,且处理后的水可直接回用。但经胶团强化超滤处理重金属离子废水的浓缩液中含有高浓度的重金属离子和表面活性剂,需进行进一步处理,使重金属得到回收,表面活性剂得到回收利用。
     本研究采用电解法回收胶团强化超滤浓缩液中的Cd2+。我们考察了电极种类、电压、电解时间、pH、SDS与Cd2+摩尔浓度比等5个条件对Cd2+回收率的影响,对这五个影响因素进行了最优化。实验得到最佳条件为:不锈钢(阳极)-石墨(阴极),电压U为2.8V,电解时间为100min,溶液pH为4,[SDS]/[Cd2+]=5。在此条件下浓缩液中的Cd2+的回收率达到了50.26%。
     本实验还进一步研究了电解液中各种物质对电解过程的影响。研究发现表面活性剂SDS对电解有一定的阻碍作用,在电解条件相同的情况下,溶液中含有SDS时Cd2+回收率为50.26%,无SDS时回收率为72.11%。且在电解对SDS影响实验中发现SDS在电解作用下浓度有一定的减小,但并不影响SDS的重复利用。在向胶团强化超滤浓缩液中加入电解质NaCl以提高Cd2+回收率实验中,NaCl浓度为0.3mol/L时,Cd2+回收率达到60.05%。加入电解质NaCl使Cd2+回收率从50.26%增加到60.05%。
The high toxicity of metal cadmium on human,plangts and animals can be extremely harmful. Wast waters containing dissolved cadmium come from many sources such as electroplating industries, nonferrous metals smelting,mine tailing. Micellar enhanced ultrafiltration(MEUF) is a new method which is based on the surfactant of the unique characteristic of parental molecular structure that can remove low concentration heavy metals in the water.It is a technology that combined the surface active agent with ultrafiltration. Compare with the traditional ultrafiltration, MEUF has many advantages.Such as lessen cost, and more effective removal of cadmium ions.Meanwhile,MEUF compared to the method of adsorption,distillation and extraction that has low energy consumtion and no intercsction.The most important is the treated water from MEUF can be directly recycled. But the concentrated solution by dealing with the MEUF contains high concenttation of heavy meatal ions and surface active agent,so it must be need to further processing for revovering heavy metals and recycling surface active agent.
     In this study, the electrolysis method was employed to recovery Cd2+ from the concentrated solution of MEUF..Effects of type of electrode, electrolysis voltage(U) and time(t),solution pH, surfactant to Cd2+ molar ratio ([SDS]/[Cd2+]) on Cd2+ reconery efficiency were investigated.And these five factors were optimized. The optimum experimental conditions were obtained:stainless steel(anode)- graphite(catho-de),U=2V,t=100min,pH=4,[SDS]/[Cd2+]=5.And the recovery efficiency of Cd2+ in the concentrated solution was 50.26%.
     This research also further studied the electrolyte of various substances on the process of electrolysis. The study found that the surfactant has some effect of resistance to electrolysis process. The same conditions in electrolysis, the recovery efficiency of Cd2+ was 50.26% that the solution containing SDS but 72.11% without SDS. Impact on the SDS in the electrolysis experiments,the experimental results showed that SDS concentration had a certain decrease under the action of electrolysis. But did not affect the SDS reuse. Added to the concentrated liquid electrolyte NaCl to enhance the recovery efficiency of Cd2+ experiments, the recovery efficiency of Cd2+ is 60.05% when the concentration of electrolyte NaCl is 0.3mol/L. The recovery efficiency of Cd2+ from 50.26% to 60.05% by adding electrolyte NaCl.
引文
[1]黄渭澄,袁华,袁诗璞.电镀三废处理.成都:四川科学技术出版社.1983,25-28
    [2]孟祥和,胡国飞.重金属废水处理.北京:化学工业出版社.2000,13-15
    [3]崔力拓,耿世刚,李志伟.我国农田土壤镉污染现状及防治对策.现代农业科技,2006(11):184-185
    [4]王春,杨德芬,袁绍明.会理污灌区重金属污染的调查、评价及防治对策.四川环境,1998,17(3):41-46
    [5]曹惠荣,牟云霞,李巍.沈阳经济技术开发区镉污染状况调查.环境保护科学,2000,26(100):45-46
    [6]赖宝春.大余县污灌区镉污染对人体健康影响调查.环境与开发,1995,10(4):8-9
    [7]张勇,董大龙.辽宁省部分县土壤及玉米中重金属污染状况评价.辽宁农业职业技术学院学报,2001,3(1):14-17
    [8]范成新,朱育新,吉志军,等.太湖宜漠河水系沉积物的重全属污染特征.湖泊科学,2002,14(3):235-241
    [9]王金辉,沈庆红,雒伟民.关于黄浦江水系表层沉积物的现状研究.上海环境科学,2001,20(1):11-15
    [10]刘庆文.重金属离子废水的处理方法.天津化工,1995,(4):16-18
    [11]王凯荣.我国农田镉污染现状及治理利用对策.农业环境保护,1997,16(6):274-278
    [12]国家环保总局,中国环境质量报告-水质部分.1991-1995年
    [13]吴训伟.临界效应、临界浓度在镉职业危害评价中的应用.化工劳动卫生通讯,1998,12(3):116-123
    [14]孔志明,许超.环境毒理学.南京:南京大学出版社,1995,151-155
    [15]刘杰.镉的毒性和毒理学研究进展.中华劳动卫生职业病杂志,1998,16(1):2-4
    [16]白嵩,纪秀娥,白岩,等.水体镉污染对水稻幼株生长及某些生理特性的影响.吉林农业大学学报,2004,26(3):245-247
    [17]蔡保松,张国平.大、小麦对镉的吸收、运输及在籽粒中的积累.麦类作物学报,2002,23(3):82-86
    [18]孔样生,张妙霞,郭秀璞.Cd2+毒害对玉米幼苗细胞膜透性及保护酶活性的 影响.农业环境保护,1999,18(3):133-137
    [19]张敛琪,陈俊龙 环境生物毒理学.天津:天津大学出版社,1993,154-155
    [20]陈清,卢国程.微量元素与健康.北京:北京大学出版社,1989,30-32
    [21]季云晶.使用毒理手册.北京:中国环境科学出版社,1991,386-396
    [22]中国认证人员国家注册委员会编.IS014000环境管理体系国家注册审核员基础知识通用教程.北京:中国计量出版社,2000.
    [23]赵璇,吴天宝,叶裕才.我国饮用水源的重金属污染及治理技术深化问题.给水排水,1998,24(10):22-25
    [24]Barrado E, Prieto F, Medina J, et al. Purification of cadmium wastewater: Characterization and electrochemical behaviour of cadmium-bearing ferrites. Quimica Analiticaro,2001,20(1):47-53
    [25]Anastasios I Z, Konstantine A Matis. Removal of cadmium from dilute solutions by flotation. Water Science and Technology,1995,31(3-4):315-326
    [26]于秀娟,刘军深,蔡伟民,等.氢氧化镁处理含镉废水的研究.环境化学,2003,22(6):601-604
    [27]周淑珍.贵溪冶炼厂废酸废水除镉工艺探讨.硫酸工业,1996,(5):1-5
    [28]马艳飞,王九思,宋光顺,等.氢氧化镁对废水重镉吸附性能的研究.兰州铁道学院学报(自然科学版),2003,22(4):120-122
    [29]邱廷省,成先雄,郝志伟.含镉废水处理技术现状及发展.四川有色金属,2002,(4):38-41
    [30]张建梅,韩志萍,王亚军.重金属废水的治理和回收综述.湖州师范学院学报,2002,24(3):48-52
    [31]黄继国,张永祥,吕斯壕.重金属废水处理技术综述.世界地质,1999,18(4):83-86
    [32]吕新元,梁统玲.镉污染及其防治.上海环境科学,1997,(7):45
    [33]陆维国.铁氧体法处理电镀废水的应用研究.贵州环保科技,2005,11(2):32-35
    [34]方如云,张智宏,杨建男,等.铁氧体法处理含铬和镉废水的研究.江苏石油化工学院学报,1999,11(4):8-10
    [35]周军,金奇庭.电解法处理废水的研究进展.水处理技术,2000,26(3):130-135
    [36]Yan-Hui Li, Jun Ding, Zhaokun Luan, et al. Competitive adsorption of Pb2+,Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 2003,41:2787-2792
    [37]张红波,徐仲榆,莫孝文.膨胀石墨流态化电极处理酸性含镉废水的研究. 环境科学,1993,14(6):20-25
    [38]韩庆生.污水净化电化学技术.武汉:武汉大学出版社,1988,195-200
    [39]刘有才,钟宏,刘洪萍.重金属废水处理技术研究现状与发展趋势.广东化工,2005,32(4):36-39
    [40]沈华.颜料工业含镉废水治理研究.精细化工中间体,2001,31(1):38-40
    [41]张大力,卢立柱.含镉废水废渣的处理技术及动向.污染防治与技术,1994,(5):8-10
    [42]张玉梅.含镉废水处理的试验研究.环境工程,1995,13(1):15-21
    [43]廖自基.环境中微量金属元素的污染危害与迁移转化.北京:科学出版社,1989,29-35
    [45]邱廷省,成先雄,郝志伟,等.含镉废水处理技术现状及发展.四川有色属,2002,4:38-41
    [46]Zumriye Aksu. Investigation of the colum performance of cadmium biosorption by cladophora crispate flocs in a packed bed.Separation. Science and Technology, 1998, (5):667.
    [47]T. J. Butter. The removal and recovery of cadmium from dilute aqueous solutions by biosorption and electrolysis at laboratory scale. Water Res,1998,32(2): 400-405
    [48]邱廷省,成先雄.啤酒酵母吸附镉离子的试验研究.环境污染与防治,2004,26(2):95-97
    [49]Liu Y, Yang S F, Xu H, et al. Biosorption kinetics of cadmium(Ⅱ) on aerobic granular sludge. Process Biochemistry,2003,38(7):997-1001
    [50]M A Hashim, K H Chu. Biosorption of cadmium by brown, green, and red seaweeds. Chemical Engineering Journal,2004,97:249-255
    [51]P. Lodeiro, J. L. Barriada, R. Herrero, et al. The marine macroalga Cystoseira baccata as biosorbent for cadmium(Ⅱ) and lead(Ⅱ) removal:Kinetic and equilibrium studies. Environmental Pollution,2006,142(2):264-273
    [52]杨莉丽,康海彦,李娜,等.离子交换树脂吸附锡的动力学研究.离子交换与吸附,2004,20(2):138-143
    [53]周国平,罗士平,孙英.ISC聚合物去除电镀废水中镉和铬离子.水处理技术,2003,29(3):177-179
    [54]张德强,康海彦,杨莉丽,等.离子交换树脂吸附Cd(Ⅱ)和Pb(Ⅱ)的研究.环境科学与技术,2003,S1:4-5,23
    [55]王代芝,黄育刚.酸改性膨润土处理含镉(Ⅱ)废水.无机盐工业,2005,37(2):38-40
    [56]施文康.含镉、铅、汞废水的吸附实验设计.实验与创新思维,2003,(9):7-8
    [57]杨胜科,费晓华.海泡石处理含镉废水技术研究.化工矿物与加工,2004,33(9):16-17,20
    [58]陈晋阳,黄卫.用低成本的粘土矿物吸附水溶液中福离子的研究.应用科技,2002,29(2):41-43
    [59]戴汉光.微孔过滤处理含镉废水.化工环保,1992,12(3):179-180
    [60]许柯,曾光明,黄瑾辉,等.胶团强化超滤处理含镉废水.膜科学与术,2006,26(5):76-80
    [61]王玉军,骆广生,王岩,等.膜萃取处理水溶液中镉、锌离子的工艺.环境科学,2001,22(5):73-77
    [62]王岩,王玉军,骆广生,等.中空纤维膜萃取锡离子的研究.化学工程,2002,30(5):62-65
    [63]Michaels A S.Progress in separation and purification.New York:Wiley-Interscience,1968:297-333
    [64]Leung P S. In ultrafiltration menbranes and applications. New York:Plenum, 1979:415
    [65]Gargi Ghosh, Prashant K Bhattacharya. Hexavalent chromium ion removal through micellar enhanced ultrafiltration. Chemical Engineering Journal,2006, 119:45-53
    [66]Anna Witek, Andrzej Ko, et al. Simultaneous removal of phenols and Cr3+ using micellar enhanced ultrafiltration process. Desalination,2006,191:111-116
    [67]Christian S D, Scamehorn J F, Scamehorn J F, et al. In:Surfacant-based separation processes. New York:Marcel Dekker, Inc.,1989, Chapter 1
    [68]方瑶瑶,曾光明,黄瑾辉,等.MEUF去除废水中的金属离子和溶解性有机物.环境科学,2006,27(4):641-646
    [69]刘程,米裕民.表面活性剂性质理论与应用.北京:北京工业大学出版社,2003,45-55
    [70]Rau U, Hammens, Heckmann R, et al. Sophorclipid:a soure for novel compounds. Ind Crops Prod,2001,13:85-92
    [71]Banat I M. Characterization of bio surfactants and their use in pollution removal (State of the Art). ACTA Biotechnologica,1995,15(3):251-267
    [72]Tsomides H J, Hughes J B, Thomas M J, et al. Effect of surfactant addition on phenanthrene biodegradation in sediments. Environ. Toxico. Chem.,1995,14: 953-959.
    [73]Olivera N L, Commendatore M G, Esteves J L, et al. Biosurfactant enhanced degradation of residual hydrocarbons from ship bilge wastes. Ind. Microbiol. Biot.,2000,25:70-73
    [74]Hebrant M, Provin C, Brunette J P, et al. Micellar extraction of europium (Ⅲ) by a bolaform extractant and parent compounds derived from 5-pyrazolone. Colloid Surface A,2001,181:225-236
    [75]Ahmadi B S, Huang Y C, Batchelor B, et al. Binding of heavymetals to derivatives of cholesterol and sodium dodecyl sulfate. J. Environ. Eng.,1995, 121(9):645-652
    [76]Hong J J, Yang S M, Lee C H, et al. Ultrafiltration of divalent metal cations from aqueous solution using polycarboxylic acid type biosurfactant. J. Colloid. Interf. Sci.,1998,202:63-73
    [77]Baek K, Kim B K, Cho H J, et al. Removal characteristics of anionic metals by micellar enhanced ultrafiltration. J.Hazard. Mater.,2003, B99:303-311
    [78]Akita S, Yang L, Takeuchi H. Micellar-enhanced ultrafiltration of gold(III) with nonionic surfactant. J. Membr. Sci.,1997,133:189-194
    [79]Choi Y K, Lee S B, Lee D J, et al. Micellar enhanced ultrafiltration using PEO-PPO-PEO block copolymers. J.Membr. Sci.,1998,148:185-194
    [80]Talens-Alesson F I, Urbanski R, Szymanowski J. Evolution of resistance to permeation during micellar enhanced ultrafiltration of phenol and 4-nitrophenol. Colloid Surface A,2001,178:71-77
    [81]Davis D. A., Lynch H.C., Varley J.. The application of foaming for the recovery of Surfactin from B. subtilis ATCC 21332 culture. Enzyme Microb. Technol.,2001, 28:346-354
    [82]周立亚,李成海,龚福忠.微乳液及其应用.广西大学学报,1999,24(12):75-80
    [83]施利毅,华彬,张剑平.微乳液的结构及其在制备超细颗粒中的应用.功能材料,1998,29(2):136-139
    [84]Catherine Mulligan N., Raymond Yong N., Bernard Gibbs F.. Heavy metal removal by biosurfactants. Journal of Hazardous Materials,2001,85:111-125
    [85]Chaiyasit W, Silvestre M P C, McClements D J, Decker E A. J Agric Food Chem, 2000,48(8):3077-3080
    [86]Akita S, Castillo L P, Nii S, et al. Separation of Co (Ⅱ)/Ni (Ⅱ) via micellar enhanced ultrafiltration using organophosphorus acid extractant solubilized by nonionic surfactant. Membr. Sci.,1999,162(1-2):111-117
    [87]Juang R S, Xu YY, Chen C L. Separation and removal of metal ions from dilute solutions using micellar-enhanced ultrafiltration. Membr. Sci.,2003,218(1-2): 257-267
    [88]Juang Ruey-shin, Wang Shiow-wen. Electrolytic recovery of binary metals and EDTA from strong complexed solutions. Wat Res,2000,34(12):3179-3185
    [89]Reiller P, Lemordant D, Hafiane A, et al. Extraction and Release of Metal Ions by Micellar enhanced Ultrafiltration:Influence of Complexation and pH. Colloid Interface Sci.,1996,177(2):519-527
    [90]Zeng Guang-ming, Xu Ke, Huang Jin-hui, et al. Micellar enhanced ultrafiltration of phenol in synthetic wastewater using polysulfone spiral membrane. Membr. Sci.,2008,310(1-2):149-160
    [91]Chuan-Kun Liu, Chi-Wang Li. Simultaneous recovery of copper and surfactant by an electrolytic process from synthetic solution prepared to simulate a concentrate waste stream of a micellar enhanced ultrafiltration process. Desalination,2004, 169(2):185-192
    [92]陈国华,王光信,等.电化学方法应用.北京:化学工业出版社,2003,1,2-3
    [93]Y.-C. Huang, B. Batchelor and S. S. Koseoglu.The diafiltration method for the study of the binding of macromolecules to heavy metals. Membr. Sci.,1994, 89(3):257-265
    [94]GB7475-1987,水质-铜、锌、铅、镉的测定-原子吸收分光光度法.北京:国家环保总局,1987
    [95]许晶玮,庞浩,胡美龙,等.高分子/石墨复合材料的制备与导电性能的研究进展.化学通报,2007,70(8):1-5
    [96]Juang R S, Lin L C. Efficiencies of electrolytic treatment of complexed metal solutions in a stirred cell having a membrane separator. J Membr Sci,2000,171(1): 19-29
    [97]Huang C H. Effect of surfactants on recovery of nickel from nickel plating wastewater by electro winning. Water Res,1995,29(8):1821-1826
    [98]GB7494-1987,水质-阴离子表面活性剂的测定-亚甲基蓝分光光度法.北京:国家环保总局,1987
    [99]Mahmoud A. Zarraa. Effect of surface-active substances on the rate of production of copper powder from copper sulphate solutions by cementation on zinc rods in gas sparged reactors. Hydrometallurgy,1996,41(2-3):231-242
    [100]查全性.电极过程动力学导论(第二版).北京:科学出版社,2005,419-420
    [101]夏庆余,林智宏,陈震,等.电解制备高铁酸盐及其处理表面活性剂模拟废 水.净水技术,2005,24(1):20-23
    [102]刘程,李江华,等.表面活性剂应用手册(第三版).北京:化学工业出版社,2004,98-102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700