用户名: 密码: 验证码:
车用质子交换膜燃料电池瞬态响应特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC:Proton Exchange Membrane Fuel Cell)能量转换效率高,环境友好,可室温下实现快速启动,是目前很有希望应用于便携式电源、小型固定发电站、电动汽车等交通工具上的动力电源,其市场前景相当可观,已成为燃料电池研究中的主流。本文将以车用质子交换膜燃料电池为研究对象,基于集总参数模型建立PEMFC电堆模型分析动态响应特性,进行工作参数优化;基于分布参数模型建立交指型PEMFC单体模型分析膜中心温度分布特性。
     在不考虑空气系统的时间滞后基础上分析减载时PEMFC发动机输出功率的瞬态响应特性。提高工作温度和工作压力有利于改善电池的性能;电池工作温度每提高20 oC,单体的功率将增加6.09%,温度为353K时性能最佳;压力升高对电池输出性能的影响在低压段比高压段略为显著。
     在考虑空气系统的时间滞后基础上,基于集总参数模型利用MATLAB / SIMULINK软件平台建立电池的瞬态响应仿真模型。分析发动机负载从50 kW的稳态突然减载至30 kW时PEMFC发动机输出功率的瞬态响应特性。随着进气扰动的增大,电池堆的电压和功率输出所受影响也在增大。因此,为使输出的相对误差控制在±0.1%,进气扰动应低于2%。
     各种类型的质子交换膜有其最佳工作温度范围,本文基于分布参数模型利用Fluent软件的PEMFC模块建立交指型PEMFC模型,分别分析其电流密度、阴、阳极加湿对电池输出性能及膜中心温度分布的影响。结果显示膜中心温度分布随着电流密度、阴、阳极加湿的变化呈现一定的变化趋势。电流密度越大,膜中心的温差越大;电池输出性能随着阳极气体湿度增加而提高;至于阴极加湿,不同的电流密度下呈现不同的趋势。
     本文主要从计算机仿真的角度,对车用质子交换膜燃料电池的动态特性及膜中心温度分布特性进行研究,对于质子交换膜燃料电池的设计制造具有一定的指导意义,本文所建模型具有较强的可移植性和通用性,在此基础上,可进一步进行动力系统乃至整车系统的优化研究。
Proton exchange membrane fuel cell(PEMFC) has become the major type of fuel cells research for its high-energy efficiency ,pollution-free characteristics and low operation temperature. Proton exchange membrane fuel cell is the most probable for automobile bus, electrical equipment, portable power and stationary product, and it has a very good foreground. Author studied PEM Fuel Cells by establishing models for work parameters optimization and by Computer Fluid Dynamic (CFD) analysis on specific Fuel Cell model. The study aims at improving work performances of PEM Fuel Cells. The author described the study of the dynamic characteristic with two ways, based on distributed-parameter model and lumped-parameter model.
     Without regard to the time lag of air supply system, an electrochemical model of PEM Fuel Cells and a stack model under steady condition were established with Matlab software. PEMFC output performances influenced by working parameters (esp. working pressure of reactants and stack temperature) were simulated using Matlab software. It is concluded that PEM Fuel Cells’performances can be evidently improved by increasing work temperature and work pressure. Fuel cell power increases 6.09% with every 20K interval of temperature increase, while the amplitude descends slightly under high temperature condition.
     Regarding to the time lag of air supply system software MATLAB / SIMULINK were utilized to create the simulation model of fuel cell dynamic output performance as power level changes. Power output response as power level changes from 50kW to 30kW. air supply system contributes an evident impact on the fuel cell stack dynamic behavior. In order to keep stack parameters output in steady state, air pressure inequality for a given compressor is advised to be less than 2%.
     The proton exchange membranes have their own optimum range of work temperature. This is because the heat stability of PEM and proton conductibility will descend badly when the temperature exceeds a specific point. The influence of current density and gas humidification on fuel cell performance and membrane temperature distribution are discussed. The results are as follows: The membrane temperature under flow channel is higher than under shoulder and the more current density produced, the greater the current density and the membrane temperature produced; the current density and membrane temperature changes with the change of gas humidification. Under the same conditions, gas humidification in the anode is more efficiency than in the cathode to improve PEMFC performance and the degree of membrane wetting in low humidity conditions.
     Based on computer simulation , the primary research of this thesis concentrates on the internal dynamic and temperature distribution of membrane. The results provide certain instruction to PEMFC design and manufacture. Models established in this paper are to some extent transplantable and universal. Further steps can be taken to make optimization and design for power supply and vehicle systems.
引文
[1]刘朝玮,王保国,何小荣.质子交换膜燃料电池研究及应用现状.[J]现代化工, 2004, 24(9): 10-13
    [2]任学佑.质子交换膜燃料电池的研究进展[J].中国工程科学, 2005, 7(1): 86-94
    [3]陈梅.质子交换膜燃料电池研究及现状[J].华商, 2007, z3
    [4]杨贵恒,吕林,杨极.质子交换膜燃料电池及其在汽车上的应用[J].上海汽车, 2004, 6: 31-35
    [5]李忠华.质子交换膜燃料电池在电动车辆上的应用[J].上海汽车, 2006, 09: 2-5
    [6]衣宝廉,燃料电池,化学工业出版社,2000年11月
    [7]陈军,陶占泉.能源化学[M].北京:化学工业出版社, 2004
    [8]刘凤君.高效环保的燃料电池发电系统及其应用[M].机械工业出版社, 2005
    [9]陆天虹,唐亚文,刘长鹏.小型燃料电池商品化展望,电池工业,第10卷第6期,2005年12月
    [10]刘清华.渐入佳境的燃料电池汽车,全球科技经济瞭望,1999年02期
    [11]田春芝.电动汽车燃料电池系统现状研究与分析,环保节能,1002-4581(2000)04-0019-05
    [12]黄倬,屠海令,张冀强,詹锋.质子交换膜燃料电池的研究开发与应用[M].冶金工业出版社, 2000, 5
    [13]陈士忠,吴一厚.质子交换膜燃料电池(PEMFC)的实验性能研究[J].电机技术, 2004, 02
    [14]李战国,朱红.质子交换膜燃料电池的研究进展[J].化学研究, 2003, 14 (1): 69~73
    [15]衣宝廉,韩明,张恩浚.千瓦级质子交换膜燃料电池[J].中国电力, 1999, 23(2)
    [16]王林山,李瑛.燃料电池[M].北京:冶金工业出版社, 2005
    [17]田春芝.电动汽车燃料电池系统现状研究与分析[J].环保节能, 2000, 04
    [18]日本电气学会燃料电池发电与21世纪系统技术调查专门委员会编著.燃料电池技术[M].谢晓峰,范星河译.北京:化学工业出版社, 2004, 3
    [19] Bernardi D M,Verbugge M W. Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte[J].AICHE Journal,1991,37(8):1 151-1 163
    [20] Springer TE,Wilson M S,Gottesfeld S. Modeling and experimental diagnostics in polymer electrolyte fuel cell[J].Journal of Electrochemical Society,1993,140(12):3 513-3526
    [21] Rowe A,LI X. Mathematical modeling of proton exchange membrane fuel cell[J].Journal of Power Sources,2001(102):82-96.
    [22] Barbir F. Trade off design analysis of operating pressures and temperatures in PEM cell systems[C].Proceedings of the ASME Advanced Energy Systems. 1999:305-320
    [23] Gery H K,Ahluwalia R K.GC tool for fuel cell system design and analysis: user documentation[R].Argonne National Labs, Report No ANL-989,1998.
    [24]Wohr M,Bolw IN K.Dynamic modeling and simulation of a proton membrane fuel cell including mass transport limitation [J].International Journal of Hydrogen Energy ,1998,23(3):213-221.
    [25] Amphlett J C,Mann R F. A model predicting transient responses of proton exchange membrane fuel cells [J]. Journal of Power Sources,1996(61):183-191.
    [26] Pukrushpan J T,Peng H,Stefanopoulou A G .Simulation and analysis of transient fuel cell systems performance based on a dynamic reactant flow model[C].Proceedings of Asmeimec. New Orleans:Louisiana,2002:17-22.
    [27] Pathapatip P R,Xue X,Tang I .Anew dynamic model foe predicting transient phenomena in a PEM fuel cell system[J].Renewable Energy,2005(30):1-22
    [28] Xue X,Tang J A. System level lumped-parameter dynamic modeling of PEM fuel cell[J].Journal of Power Sources,2004(133):188-204.
    [29]田玉冬,朱新坚,曹广益,质子交换膜燃料电池的建模与控制,电池,第34卷第四期,2004
    [30]衣宝廉,燃料电池——原理技术应用,化学工业出版社,2003,1:9~13,4:241~242
    [31] Ronald F.Mann, John C. Amphlett, Michael A.I. Hooper, Heidi M.Jensen, etc, Development and application of a generalized steady-state electrochemical model for a PEM fuel cell, Journal of Power Sources, 2000
    [32] J.C.Amphlett, R.F.Mann, B.A.Peppley, P.R.Roberge, and A.Rodrigues, A Practical PEM Fuel Cell Model for Simulating Vehicle Power Sources, 1995
    [33]陈维民,黄文迎,庞志成,电动车用质子交换膜燃料电池堆,电源技术,Vol.24, No.3,2000
    [34]王俊,温旭辉,徐志捷,质子交换膜燃料电池电气性能实验及建模研究,电源技术,第25卷第1期, 2001年2月
    [35]余江洪.质子交换膜燃料电池堆的热模拟及优化[D].武汉:武汉理工大学, 2006
    [36]李忠华.质子交换膜燃料电池热模拟计算[D].武汉:武汉理工大学, 2007
    [37]张竹茜.质子交换膜燃料电池优化研究[D].北京:北京科技大学. 2007
    [38]朱蓉文.质子交换膜燃料电池中温度分布的模拟[D].武汉:武汉理工大学, 2006
    [39]律翠萍,叶芳,郭航等.质子交换膜燃料电池的水热管理[J].节能, 2005, 8: 5-9
    [40]崔东周,肖金生,潘牧等.质子交换膜燃料电池水、热、气管理[J].电池, 2004, 34(05): 373-375
    [41]马捷,张忠利,苏秋利等.质子交换膜燃料电池膜内水迁移和水管理[J].华北电力人学学报, 2004, 31(1): 61-65
    [42]何广利,丁信伟,由宏新等.阴、阳极加湿程度对PEMFC内部传质的影响[J].化工学报, 2005, 08
    [43]沈春晖,潘牧,罗志平等.燃料电池质子交换膜内部增湿的研究[J].电池工业, 2005, 04
    [44]刘凤君.高效环保的燃料电池发电系统及其应用[M].机械工业出版社, 2005: 156-157
    [45] J.F.Wu,B.L.Yi,M.Hou,Z.J.Hou,H.M.Zhang.Influence of catalyst layer structure on the current distribution of proton exchange membrane fuel cell.Electrochem.Solid-State Lett.,In press
    [46]孙红,王敏,孙佳,刘振鹏.交指流场氢-氧PEM燃料电池特性研究[J].沈阳建筑大学学报(自然科学版), 2007, 23(3): 505-508
    [47] John C A,Brant A P,Ela H,et al.The effect of anode flow characteristics and temperature on the performance of a direct methanol fuel cell[J].Joural of Power Source ,2001,96(1):204-213
    [48] Noponen M,Mennola T,Mikkola M,et al. Measurement of current distribution in a free-breathing pemfc[J]. Journal of Power Sources, 2002, 106 (1-2) 304-312.
    [49] Beden B, Kadirgan F, Lamy C, et al. Electrocatalytic oxidation of methanol on platinum-based binary electrodes[J]. Journal of Electroanalytical Chemistry, 1981, 27(1) : 75-85.
    [50] Kauranen P S ,Skou E ,Munk J .Kinetics of methanol oxidation on carbon-supported Pt and Pt+ Ru catalysts[J].Journal of Electronalytical Chemistry, 1996 ,404(1):1-13.
    [51] Donle H, Divisek J, Mergel J,et al.Recent developments of the measurement of the methanol permeation in a direct methanol fuel fell[J]. Journal of Power Source, 2002, 5(2):274-282.
    [52] Mennola T ,Mikkola M, Noponen M, et al. easurement of ohmic voltage losses inindividual cells of a PEMFC in a direct methanol fuel cell[J].Journal of Power Source,2002,105(2):261-272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700