用户名: 密码: 验证码:
基于Aspen Plus的水泥预分解窑过程大气污染排放和能源利用分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥工业是典型的高能耗、高污染过程工业其快速发展的同时带来了严重的资源、能源、环境等问题。因此,在水泥行业实施清洁生产技术非常必要,可以实现节能、降耗、减污、增效的清洁生产目标。由于水泥工业系统的高度复杂性,生产过程中对新二[艺及各种备选方案进行可行性评定,难以通过现场试验的方式实现。基于上述目标和困难,提出了水泥工业系统过程模拟的思路,旨在通过过程分析和模拟计算,为水泥工业实施适当的清洁生产技术提供理论和数据支持。本论文在对水泥预分解窑系统过程机理分析的基础上,基于化工流程模拟软件Aspen Plus构建了水泥预分解窑系统过程模型,对整个系统大气污染排放和替代能源利用情况进行了研究,主要内容包括:
     (1)DD(双重燃烧和脱硝)型分解炉污染气体生成过程模拟及不同替代燃料工况计算。建立DD型水泥分解炉的Aspen Plus简化模型并对其进行验证,利用该模型分析入炉燃料流量和三次风流量对分解炉温度和出口烟气组成的综合影响,及该炉型在不同燃料使用工况下对三次风的需求。研究结果表明,该模型能够较准确地预测DD型分解炉出口温度和烟气组分;与完全烧煤相比,用石油焦完全替代煤、用石油焦替代50%的煤,及用等比例的肉骨粉和石油焦完全替代煤作为燃料这三种工况,需分别增加41.5%、14.6%和8.5%的助燃空气(主要是三次风)才能保证分解炉内良好的燃烧状况。
     (2)DD型分解炉采用分级燃烧技术控制NO。生成的过程模拟。在DD型分解炉简化模型的基础上,完善了该类分解炉三次风分级燃烧过程和燃料分级燃烧过程模型,并用其确定了使烟气中NOx、SO2、CO达标排放的分级燃烧比例。研究结果表明,分风比例控制在57%~65.5%范围内可使SO2、NOX和CO达标排放;分料比例控制在81%~90.3%范围内可使NOx浓度降低33%-37.6%,能够实现NOx和CO达标排放。
     (3)研究整个RSP预分解窑系统的大气污染排放及NOx减排。针对某实际运行的RSP预分解窑系统,建立整个窑过程的整合模型,从整体上模拟污染气体的产生与排放。、模型验证后,对该目标生产线提出的四项NOx减排方案进行了对比论证。结果表明,用废旧汽车轮胎和污水污泥作为燃料替代50%煤粉,可使烟气中NOx浓度分别降低24.6%、41.5%,污水污泥替代燃料的使用还能有效降低CO2排放;SNCR过程对窑系统中NOx有明显的还原作用,当尿素添加量为225kg/h时,出口烟气中NOx浓度可降低40.5%。
     本论文研究结果表明将Aspen Plus应用于水泥预分解窑过程计算中具有较大的实用价值和实际意义,可为工业生产和环保工作提供有力支持。
The cement industry is a typical high resource consumption,high energy consumption and heavy pollution industry, whose fast development simultaneously causes severe resource, energy and environmental problems.Therefor, the implementation of cleaner production technologies in cement industries is necessary, which can achieve energy conservation, consumption reduction, pollutants decreasing and synergy.As the highly complex of the cement industry system, it is hard to estimate the new process arid alternatives via field investigation. In view of the above objectives and difficulties, the idea of cement industry process simulation is proposed,which aims to provide theoretical and data support for implementing proper cleaner production technologies in cement industries, by process analysis and modeled. Based on the mechanism analysis of the cement precalcining kiln system, this dissertation proposes a new method to simulate gas formation in the system. The cement precalcining kiln system process model is built using Aspen plus, and is used to study the air pollutants emission and utilization of alternative fuels of the whole system. The main contents of this dissertation include:
     (1)Simulation of air pollutants generation and alternative fuels plans in DD (Dual Combustion and Denitration) calciner. The DD calciner process model is built and verified. Then, for a concrete DD-calciner, the model is used to study the effects of the flow rate of coal and tertiary air on flue gas compositions and outlet temperature of the calciner. Meanwhile, the tertiary air consumption of different fuel plans is studied with this model.The results of case study indacate that the model is able to predict the outlet temperature and contents of flue gas components with a high level of.agreement with the values in the literature; compared with the mode which only uses coal as fuel, the plans only petcoke as fuel,50% coal and 50% petcoke as fuel,50% petcoke and 50% MBM as fuel need extra 41.5%,14.6% and 8.5% of the combustion air in the combustion process respectively, which can keep the good combustion environment.
     (2) Process simulation of the staging combustion technology in DD calciner. Based on the DD calciner process model, the tertiary air staging combustion model and the fuel staging combustion model is built up, and used to determain the staging combustion proportions which can meet specifications for the NOx and SO2 content. The results of case study indacate that the NOx, SO2 and CO can discharge within limit values when the proportion of air staging is controlled within the range of 57% to 65.52%(0.89     (3)Simulation of the air pollutants emission and NOx reduction in the whole RSP precalcining kiln system.An integrated model of the whole kiln system is built directing towards an actually running RSP precalcining kiln system,and used to simulate the air pollutants generation and emission. Then, the model is applied in analizing the four NOx reduction plans.The results of case study indicate that the plan which replaces 50% coal with car tyre or sewage sludge can decrease the NOx concentration by 24.6%,41.5% respectively. And the utilization of sewage sludge can also reduce the CO2 emission; SNCR process has a remarkable reduction effect, the NOx concentration can reduce by 40.5% when urea is injected at a speed of 225 kg/h.
     The results of this dissertation show that it is of great utility value and actual meanings to apply Aspen plus in the cement precalcining kiln system, which can provide strong support for industrial production and environmental projection.
引文
[1]李东旭.从可持续发展战略看水泥二业的发展方向[J].材料科学与工程,2000,18(4):98-102.
    [2]Anand S, Vrat P, Dahiya R P. Application of a system dynamics approach for assessment and mitigation CO2 emissions from the cement industry [J].Journal of Environmental Management,2006,(79):383-398.
    [3]庄贵阳.中国经济低碳发展的途径与潜力分析[J].国际技术经济研究,2005,8(3):8-12.
    [4]王龙,尚福泉,姜兵,等.水泥行业环境影响评价中清洁生产分析方法[J].环境科学与管理,2009,34(6):180-183.
    [5]毛玉如,沈鹏,李艳萍,等.基于物质流分析的低碳经济发展战略研究[J].现代化工,2008,(11):9-13.
    [6]张楠,郭丽娟.我国水泥工业发展状况研究[J].赤峰学院学报,2009,25(2):129-131.
    [7]曹红葵.对水泥企业生产环境负荷之浅析[J].新疆环境保护,2009,31(1):35-38.
    [81陈超,胡聃,文秋霞,等.中国水泥生产的物质消耗和环境排放分析[J].安徽农业科学,2007,35(28):8986-8989.
    [9]Huntzinger D N, Eatmon T D. A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies [J].Journal of Cleaner Production,2009,(17):668-675.
    [10]沈卫国,蔡智.浅谈水泥混凝土工业低二氧化碳排放技术[J].新世纪水泥导报,2008,(4):1-6.
    [11]Shimada K, Tanaka Y. Developing a long-term local society design methodology towards a low-carbon economy:An application to Shiga Prefecture in Japan [J].Energy Policy, 2007,(35):4688-4703.
    [12]施惠生,袁玲.生态水泥的研究与进展[J].建筑材料学报,2003,6(2):166-172.
    [13]毛玉如,方梦祥,马国维.水泥工业的废弃物利用与CO2排放控制探讨[J].再生资源研究,2004,(4):32-37.
    [14]金乐琴,刘瑞.低碳经济与中国经济发展模式转型[J].经济问题探索,2009,(1):84-87.
    [15]GB 4915-2004,水泥工业大气污染物排放标准[S].北京:中国标准出版社,2004.
    [16]汪澜.论水泥工业能源消耗控制战略[J].中国水泥,2006,(10):1-6.
    [17]Mehta P K. Influence of fly ash characteristics on the strength of Portland-fly ash cement[J].Cenemt and Concrete Research,1985,15(4):665-669.
    []8]曾学敏.水泥工业现状及发展趋势[J].中国水泥,2005,(4):11-14.
    [19]孙嘉如,梁三定.国外水泥工业发展概况[J].国外建材,2003,(3):32-34.
    [20]范金禾,李辉,崔源声.中国水泥工业发展状况[J].水泥技术,2008,(5):19-22.
    [21]高长明.1997-2002年我国水泥工业结构变化分析[J].中国建材,2003,(5):34-36.
    [22]Harder J. Development of clinker substitutes in the cement industry[J].ZKG International,2006,59(2):58-64.
    [23]缪沾.我国水泥工业在饱和点附近的运行态势与对策[J].建材发展导向,2006,(4):8-14.
    [24]齐灵水.仿真技术在新型干法水泥窑系统中的应用[D].南京:南京工业大学,2003.
    [25]谢国华.控制水泥回转窑NOx排放量的技术可行性[J].水泥石灰,1995,(5):49-54.
    [26]段国平.计算机模拟仿真技术在水泥分解炉中的应用研究[D].昆明:昆明理工大学,2006.
    [27]吕锋,崔晓辉VRML在水泥生产过程层次仿真模型库研究中的应用[J].系统仿真学报,2001,13(5):637-639.
    [28]MUJUMDAR K S, RANADE V V. Simulation of Rotary Cement Kilns Using a one-dimensional model[J].Chemical Engineering Research and Design,2006,84(A3):165-177.
    [29]Fidaros D K, Baxevanou C A, Dritselis C D. Numerical modelling of flow and transport processes in a calciner for cement production[J].Power Technology,2007,(171):81-95.
    [30]Mujumdar K, Ganesha K V, Kulkarni S B. Rotary Cement Kiln Simulator (RoCKS):Integrated modeling of pre-heater, calciner, kiln and clinker cooler[J].Chemical Engineering Science,2007,(62):2590-2607.
    [31]GonzalezAlriols M, Tejado A, Blanco M. Agricultural palm oil treeres iduesas raw material for cellu loses, lignin and hemicelluloses production by ethylene glycol pulping process [J].Chemical Engineering Journal,2009,(148):106-114.
    [32]Li Z Q,Wei F, Jin Y. Numerical simulation of pulverized coal combustion and NO formation [J].Chemical Engineering Science,2003,(58):5161-5171.
    [33]Pazand K, Shariat Panahi M,Pourabdoli M. Simulating the mechanical behavior of a rotary cement kiln using artificial neural networks[J].Materials and Design,2009, (30):3468-3473.
    [34]Kaantee U, Zevenhoven R, Backman c R, et al.Cement manufacturing using alternative fuels and the advantages of process modeling[J].Fuel Processing Technology,2004, (85):293-301.
    [35]Bishnoi S, Scrivener K L. μic:A new platform for modelling the hydration of cements [J].Cement and Concrete Research,2009,39(4):266-274.
    [36]石敏.水泥生料生产过程的动态交互仿真及其网络数据库研究[D].武汉:武汉理工大学,2002.
    [37]周晓东.基于web的水泥预分解窑系统仿真系统的研究[D].武汉:武汉理工大学,2002.
    [38]梅细燕.水泥窑仿真系统的建模研究及基于web的数据库管理[D].武汉:武汉理工大学,2002.
    [39]谢妍.煤粉制备生产过程仿真系统的研究[D].武汉:武汉理工大学,2002.
    [40]赵蔚琳,李兆峰.FLS分解炉二维流场的数值模拟计算[J].工业炉,2002,24(2):45-47.
    [41]赵蔚琳,侯立红.DD分解炉内湍流流场的数值分析[J].硅酸盐通报,2002,(2):26-28.
    [42]王超群.一种新型的喷腾分解炉[J].水泥技术,2000,(4):10-13.
    [43]胡亚茹,陈延信,徐德龙,等.双系列高固气比预热系统热力学理论计算与分析[J].水泥,2010,(4):8-10.
    [44]徐颖.深冷净化工艺计算机模拟分析[D].大连:大连理工大学,2006.
    [45]杨光辉.化工流程模拟技术及应用[J].山东化工,2008,(8):35-38.
    [46]姜鹏.醇胺法脱碳工艺模拟与装里运行研究[D].大连:大连理工大学,2009.
    [47]杜严俊.盐水处理工艺的模型开发和能量优化[D].大连:大连理工大学,2009.
    [48]Aspen Plus Version 10.0 User Manuals [M].America:AspenTech,2000.
    [49]Aspen Plus 10.0物性方法和模型[M].美国:AspenTech,2000.
    [50]周密,唐黎华,刘敬荣.Aspen plus模拟计算甲醇合成的平衡组成[J].煤化工,2008,(6):30-33.
    [51]熊会思.预热器和分解炉的发展(一)[J].新世纪水泥导报,2002,(5):42-45.
    [52]熊会思.预热器和分解炉的发展(三)[J].新世纪水泥导报,2003,(5):28-32.
    [53]熊会思.预热器和分解炉的发展(二)[J].新世纪水泥导报,2002,(5):28-32.
    [54]Yoshida S.New Generation Pyro Technology[J].World Cement,2002,(12):41-43.
    [55]杨力远.预分解窑燃烧过程计算机模拟[D].武汉:武汉理工大学,2004.
    [56]周响球.燃煤电厂烟气二氧化碳捕获系统的仿真研究[D].重庆:重庆大学,2008.
    [57]Schultmann F, Engels B, Rentz 0. Flowsheeting-based simulation of recycling concepts in the metal industry[J].Journal of Cleaner Production,2004,(12):737-751.
    [58]Zheng L G, Furimsky E. ASPEN simulation of cogeneration plants[J].Energy Conversion and Management,2003,(44):1845-1851.
    [59]张斌,李政,江宁,等.基于Aspen Plus建立喷流床煤气化炉模型[J].化工学报,2003,54(8):1179-1182.
    [60]Lucas B, Seavey K C, Liu Y A. Steady-State and Dynamic Modeling for New Product Design for the Solid-State[J].Ind.Eng. Chem.Res,2007,46(1):190-202.
    [61]Fan L S,Li F X, Ramkumar S.Utilization of chemical looping strategy in coal gasification processes[J].Particuology,2008,(6):131-142.
    [62]Zhang X P, Strmman A H, Solli C, et al.Model-Centered Approach to Early Planning and Design of an Eco-Industrial Park around an Oil Refinery[J].Environmental Science & Technology,2008,42(13):4958-4963.
    [63]Cimini S, Prisciandaro M, Barba D. Simulation of a waste incineration process with flue-gas cleaning and heat recovery sections using Aspen Plus[J].Waste Management, 2005,25(2):171-175.
    [64]Dai Z H, Gong X, Guo X L,et al.Pilot-trial and modeling of a new type of pressurized entrained-flow pulverized coal gasification technology[J].Fuel,2008, 87(10-11):2304-2313.
    [65]Aspen Plus单元操作模型参考手册[M].美国:AspenTech,2000.
    [66]张文群,张振山.应用Gibbs自由能最小法研究Li/SF5气液浸没燃烧反应[J].兵工学报,2005,26(6):812-815.
    [67]金保升,朱颖,王小芳.用吉布斯自由能最小化方法模拟垃圾气化熔融工艺[J].中国电机工程学报,2007,27(26):46-51.
    [68]Fidaros D K,Baxevanou C A,Dritselis C D,et al.Numerical modeling of flow and transport processes in a calciner for cement production[J].Powder Technology,2007, 171(2):81-95.
    [69]李昌勇,彭新战2000t/dDD型分解炉气固运动规律及性能研究[J].武汉工业大学学报,1999,21(6):6-8.
    [70]彭宝利,张浩云.新型DD分解炉[J].国外建材科技,2006,27(2):18-19.
    [71]黄来.水泥分解炉内物理化学过程模拟和优化设计研究[D].上海:华中科技大学,2006.
    [72]Friebel J,W Kopsel R F. The fate of nitrogen during pyrolysis of German low rank coals a parameter study[J].Fuel,1999,78(8):923-932.
    [73]Tsubouchi N, Ohtsuka Y. Nitrogen chemistry in coal pyrolysis:Catalytic roles of metal cations in secondary reactions of volatile nitrogen and char nitrogen [J].Fuel Processing Technology,2008,89(4):379-390.
    [74]Koukkari P, Pajarre R. Introducing mechanistic kinetics to the Lagrangian Gibbs energy calculation[J].Computers and Chemical Engineering,2006,30(6-7):1189-1196.
    [75]Mujumdar K S, Ganesh K V, Kulkarni S B, et al. Rotary Cement Kiln Simulator (RoCKS): Integrated modeling of pre-heater, calciner, kiln and clinker cooler[J].Chemical Engineering Science,2007,62(9):2590-2607.
    [76]曹晓润.低环境负荷型水泥的生态环境评价[D].武汉:武汉理工大学,2005.
    [77]Mokrzycki E, Bochenczyk A U.Alternative fuels for the cement industry [J].Applied Energy,2003,74(1-2):95-100.
    [78]Qiao L S.Problem Discussion of Using Waste Meterials in the Cement Industry [J].Cement, 2008,(11):1-3.
    [79]胡芝娟.分解炉氮氧化物转化机理及控制技术研究[D].武汉:华中科技大学,2006.
    [80]Staiger B, Unterberger S, Berger R, et al. Development of an air staging technology to reduce NOx emissions in grate fired boilers[J].Energy,2005,30(8):1429-1438.
    [81]Okasha F. Staged combustion of rice straw in a fluidized bed[J].Experimental Thermal and Fluid Science,2007,32(1):52-59.
    [82]Ma J Y, Xue Z G, Yang W H. NOx Pollution and emission reduction of cement industry [J].Environmental Engineering,2009,(27):331-333.
    [83]董若凌,周俊虎,杨卫娟,等.煤粉分级燃烧对炉内燃烧过程影响的试验研究[J].浙江大学学报,2005,39(12):1907-1910.
    [84]Tsubouchi N, Ohtsuka Y. Nitrogen chemistry in coal pyrolysis:Catalytic roles of metal cations in secondary reactions of volatile nitrogen and char nitrogen [J].Fuel Processing Technology,2008,(89):379-390.
    [85]冯志华,常丽萍,任军,等.煤热解过程中氮的分配及存在形态的研究进展[J].煤炭转化,2000,23(3):6-12.
    [86]李东风,屠正瑞,王晨光,等.水泥厂NOx减排技术[J].中国水泥,2009,(7):68-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700