用户名: 密码: 验证码:
生物质与煤共气化制取富氢燃气的试验及模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源与环境问题,已成为21世纪制约人类社会进步和发展的关键问题,开发清洁、高效的新能源已成为世界各国研究的重点项目。生物质能源由于储量丰富、利用无污染、价格低廉等优点,成为研究的重中之重。而氢能是非常重要的二次能源,是航空、化工的领域不可缺少的能源及原料。利用生物质能制取氢气,势必成为对社会、经济和技术非常有价值的研究工作。
     本文是在江苏大学提出的“单一流化床两步气化法”工艺系统的基础上,对生物质与煤共气化反应过程进行了一系列的试验和模拟研究。在完成了试验台系统搭建的基础上,着重研究了生物质与煤共热解过程,及生物质与煤共流化床水蒸气气化过程,并对气化过程进行了过程模拟研究。得到如下主要结论:首先,进行了煤与生物质共热解热重试验,结果表明:共热解过程中,煤热解的失重峰有所提前,并且两者表观活化能都低于单独热解时的数值,表明两者有热解中存在一定协同性;其次,在自行设计的试验台上,利用煤与生物质为原料,完成了气化试验,并得到了反应温度,S/B,生物质与煤比例等气化制约因素对制氢的影响,结果表明生物质与煤在流化床中共同流化特性良好;气化过程中,反应温度和水蒸汽用量是提高氢气产量以及潜在产氢量的重要参数,且得到的气化燃气中焦油含量小于1.0 mg/m~3。当反应温度的区间在1050~1000℃、S/B为2.07、生物质与煤的混合比值为4/1时,每千克无灰干基生物质和煤的产氢量为60.3g,而潜在产氢量最大值达116g;最后,针对本工艺系统,利用ASPEN PLUS软件,进行了化学过程模拟,通过与试验结果的对比,证明了模型的准确性,并利用软件中灵敏度分析的功能,对反应温度,S/B,CaO催化剂等制约生物质气化制氢的因素进行了研究,模拟结果与试验结果吻合,表明高温下,增加水蒸气用量可以有效提高燃气中氢气的纯度和产量;CaO催化剂存在的情况下,可以调整气体成分。同时通过灵敏度分析得出,水蒸气与生物质的质量比(S/B)值对非可燃性气体H_2的产量和在产气中的体积百分比浓度有直接的影响,其次为气化反应温度的影响,最后是CaO催化剂的影响作用这个结论。并且在有CaO催化剂的条件下,生物质气化制氢的最适宜温度和S/B值都有所下降,表明CaO催化剂对生物质气化制氢过程有很好的定向催化的作用,能产生更多更纯的氢气。本文的研究工作对今后生物质与煤共气化技术大规模应用和产业化提供了一定的依据和有重要参考价值。
The problem of energy and enviorment,has become the key question to restrict the development of the society.To develop the efficiential and enviormental technology of the new-energy had interested all countrys over the world.For the abundant reserves,in-pollute and inexpensive characters of biomass,it become the most important research in all.Besides,Hydrogen is a much important wealth,which can be used in the chemical and navigate field.It must be able to promote the development of the total society,economy and technology in using biomass product Hydrogen project.
     The article is based on the system of "One fluidied bed two-phase gasification". We do a series study on the biomass and coal' s co-gasification which include both the experimentation study and the simulation study.With the accomplishment of the test-bed project,we spent a lot of time and vigorness on the co-pyrolysisi study,the co-gasification examination and the simulation of itself.And the result is as follows:First,we do the study on the co-pyrolysis reactions of the biomass and coal blends.It turn up that during the course of the co-pyrolysis,the weightlessness peak value is declined to the lower temperature aera.The apparent activative energy of the blends is lower than that in each pyrolysis reaction themselves,which indicate that the coal and biomass have some mutual cooperative effect in the co-pyrolysis reactions.Second,we do the co-gasification test by the test bed which was designed by ourselves and was operated on biomass and coal at various Bed temperature,Biomass to steam ratio(S/B) and Biomass to coal ratio.And it turn out that the biomass and coal can have a good behavior in the fluidied state in the bed; The temperature and biomass to steam ratio is the most important factors in promoting the purity and the production of hydrogen,as well as the tar is under 10mg/m~3.When the temperature is about 1050~1000℃、S/B is to 2.07 and the biomass to steam ratio is to 4,one kilogram biomass can bring hydrogen 60.3g,and the hydrogen productive capability of the biomass is 116g.Finally,the developed two-phase air-steam gasification model was validated using the experimental results obtained from the test-bed by ASPEN PLUS software.A good agreement between the model predictions and experimental data was obtained under all operating conditions studied.Through the model sensitivity,it turn up that the higher temperature,the lower pressure,the bigger S/B value can do a favor to induce the production of the hydrogen.And the CaO can adjust the content of the gas.On a percentage increase basis(1%increase) of each of the operating variables,the Biomass to Steam ratio has the most effect on the hydrogen production followed by the temperature and then the CaO catalyzer and the pressure.Besides,on the condition of the CaO catalyzer,the rightest gasification temperature and S/B is declined.The CaO catalyzer can do a good job in the gasification reactions to bring much more pure hydrogen-rich gas.The study can be able to help the application the co-gasification of the biomass and coal blends in the near future.
引文
[1]程备九等,生物质能学[M],化学工业出版社,2008.1;
    [2]袁振宏、吴创之、马隆龙等,生物质能利用原理与技术[M],化学工业出版社,2003;
    [3]马隆龙、吴创之、孙立,生物质气化技术及其应用[M],化学工业出版社,2003;
    [4]阴秀丽等,生物质气化对减少CO2排放的作用[J],太阳能学报,2001,21(1):40-44;
    [5]贾文斌等.流化床稀相段对焦油裂解的影响[J].煤炭转化,2004,27(2):41-45;
    [6]王磊等.生物质气化焦油在高温木炭床上的裂解试验研究[J].再生能源,2005,123(5):30-34;
    [7]Javier Gil,et al.Biomass Gasification with Air in a Fluidized Bed:Effect of The in-bed Use of Dolomite under Different Operation Conditions[J].Ind.Eng.Chem.Res.,1999,38:4226-4235;
    [8]Herguido J,Corella J,et al.Steam Gasification of Lignocellulosic Residues in a Fluidized Bed at Small Pilot Scale:Effect of the Type of Feedstock[J].Ind.Eng.Chem.Res.,1992,31(5):1274-1282;
    [9]Jesus Delgado et al.Biomass Gasification with Steam in Fluidized Bed:Effectiveness of CaO,MgO and CaO-MgO for Raw Gas Claning[5].Ind.Eng.Chem.Res.,1997,36:1535-1543;
    [10]Gil,J et al Biomass Gasification in Fluidized Bed at Pilot Scale with Steam-oxygen Mixtures.Product Distribution for Very Different Operating Conditions [J].Fuels 1997,11:1109-1118;
    [11]Aznar.M P,et al Commercial Steam Reforming Catalysts to Improre Biomass Gasification with Steam-oxygen Mixtures,Par Ⅱ,Catalytic Tar Removal[J].Ind.Eng.Chem.Res.,1998,37:2668-2680;
    [12]Narvaez,J.et al.Biomass Gasification with Air in an Atmospheric Bubbing Fluidized Bed:Effect of Six Operational Variables on the Quality of the Produced Raw Gas[J].Ind.Eng.Chem.Res.,1996,35:2110-2120;
    [13]Gil,J.Corella,J et al.Biomass Gasification in Atmospheric and Bubbing Fluidized Bed:Effect of the Type of Gasifying on the Product Distribution[J].Biomass and Bioenergy 1999,17:389-403;
    [14]李世光等.煤与生物质的共热解[J].煤炭转化,2002,25(1):7-12;
    [15]李文等.生物质热解、加氢热解及其与煤共热解的热重研究[J].燃料化学学报,1996,24(4):311-317;
    [16]Simith,J.M.Reducing GHG emission by Co-utilization of coal with natural gas or biomass[J],International Journal of Power and Energy Systems,2004,24(3):153-161,USA;
    [17]A.G Collot,Y.Zhou,et al.Co-pyrolysis and Co-gasification of Coal and Biomass in Bench-Scale Fixed Bed and Fluidized Bed Reactors[J],Fuel 1999,78:667~679;
    [18]Sadaka S S,Ghaly A E,Sabbah M A.Two phase bi-omass air-steam gasification model for fluidized bedreactors:Part Ⅰ-model development[J].Biomass andBioenergy,2002,22(6):439-462;
    [19]Corella J,Sanz A.Modeling circulating fluidized bedbiomass gasifiers:a pseudo-rigorous model for sta-tionary state[J].Fuel Processing Technology,2005,86(9):1 021-1 053;
    [20]Ong' iro A,Ugursal V I,Al Taweel A M,et al.Thermodynamic simulation and evaluation of a steamCHP plant using ASPEN PLUS[J].Applied ThermaEngineering,1996,16(3):263-271;
    [21]陈汉平,赵向富,米铁,代正华.基于ASPEN PLUS平台的生物质气化模拟[J].华中科技大学学报,2007,35(9):50一52;
    [22]肖军,沈来宏,高杨.生物质气化制氢的模拟[J].燃烧科学与技术,2006,12(11):540-544;
    [23]张新生,李长春等,燃煤烟气固硫,中国地质大学出版社,1991;
    [24]阴秀丽,吴创之,徐冰燕等人.有利于农业持续发展的农村能源一生物质能[J].太阳能学报,2000,21(1):40-44;
    [25]Jones JM,KubaekiM,KubicaK,RossAB,WilliamsA.Devolatilisation charaeteristics of coal and biomass blends.JAnal APPIPyrol 2005,74(1-2):502-511;
    [26]CollotAG,ZhuoY,DugwellDR,KandiyotiR.Co-Pyrolysis and Cogasifieation of coal and biomass in bench-scalefixe-bedand fluidizedbedreactors.Fuel,1999,78:667-679.
    [27]Garcl' a-Pe' rezM,ChaalaA,YangJ,RoyC.Co-Pyrolysis of sugar cane bagasse with Petroleum residue-Partl:thermogravimetrie analysis.Fuel2001:80:1245-1258;
    [28]E.Kastanaki,D.Vamvuka,P.Grammelis,E.Kadaras,Fuel process·Technology.77-78(2002)-59-66;
    [29]Vuthaluru,H.B.Thermal behavior of coal/biomass blends during co-Pyrolysis[J].Fuel Processing Teehnology,2004,85(2):187-195;
    [30]Y.G.Pan,E.Yelo,Thermal behavior of biomass in co-Pyrolysis.Fuel Processing Teehnology,75(1996)412-418;
    [31]Suelves,R.Moliner,M.J.Lazaro,J.Anal.APPI.Pyrol.55(2000)29-41;
    [32]Suelves,M.J.Lazaro,R.Moliner,J.Anal.APPI.Pyrol.65(2002)197-206;
    [33]LiCZ,BartleKD,KandiyotiR.Charaeterization of tars from variable heatingrate Pyrolysis of maeeral concentrates.Fuel1993:72(1):3-11;
    [34]LiZhang,ShaoPingXu,WeiZhaoetal,Co-Pyrolysis of biomass and coal in a free fall reaetor,fuel,2006,86:353-359;
    [35]H.Haykiri-Acma,S.Yaman,Synergy in devolatilization characteristics of lignite and hazelnut shell during co- Pyrolysis,Fuel,86(2007)373-380;
    [36]M.hmaruzzaman,D.K.Sharma,Non-isothermalk in eticstudieson co-Proeessing of vaeuum residue,Plasties,coal and petrocrop,Journal of analytical and a PPlied Pyrolysis,73(2005) 263-275;
    [37]J.M.Jones,M.Kubacki,K.Kubieab,A.B.Rossa,A.Williams,Devolatilisation Charaeteristies of coal and biomass blends,journal of analytical and appliedpyrolysis,74(2005)502-511;
    [38]AttarA.Chemistry,the rmodynamies and Kineties of reactions of Sulfur in coal-gasreaetions:areview[J].Fuel,1978,57(4):201-212;
    [39]王艇,徐敬,贾青竹.植物类生物质热解特性及动力学研究[J].天津科技大学学报,2007,22(1):8-12;
    [40]宋春财 胡浩权.秸秆及其主要组分的催化热解及动力学研究[J].煤炭转化,2003,26(3):91-97;
    [41]修双宁,易维明,李保明.生物质热裂解动力学的研究进展[J].生物质化学工程,2007,41(2):41-52;
    [42]卢洪波,苏桂秋等.生物质秸秆热解反应及动力学分析[J].东北电力大学学报,2007,27(1):38-41;
    [43]李文,李保庆,孙成功.生物质热解、加氢热解及其与煤共热解的热重研究[J].燃料化学学报,1996,24(4):341-347;
    [44]吴创之.生物质气化发电技术讲座(2)生物质气化工艺的设计与选用[J].可再生能源,2003,108.(2):51-52;
    [45]唐春福,王莹,任永志等.各种生物质气化集中供气系统的技术特点[J].可再生能源,2003,(5):24-27;
    [46]田成民.我国生物质气化技术研究概况[J].化工时刊,2004,18(12):19-21;
    [47]王立群,宋旭等.生物质气化技术的发展与研究.江苏大学学报,2005,12(32):30-34;
    [48]袁振宏.生物质气化及相关技术的技术经济评价.中国生物质能技术开发中心,1999;
    [49]AspenTeehnology,ASPEN PLUS Physieal ProPerty Methods and Models.USA:Aspen Technology,2000;
    [50]ASPEN TECH.ASPEN PLUS用户指南[J].ASPEN TECH INC,1998.11;
    [51]王智化,王勤辉等,新型煤气化燃烧集成制氢系统的热力学研究[J].中国电机工程学报, 2005(6):91-97;
    [52]汪洋,代正华等.运用Gibbs自由能最小化方法模拟气流床煤气化炉[J].煤炭转化,2004,27(4):27-33;
    [53]徐越,吴一宁,危师让.基于ASPENPLUS平台的干煤粉加压气流床气化性能模拟[J].西安交通大学学报,2003,37(7):692-695;
    [54]徐越.燃煤联合循环系统设计集成与干煤粉加压气化过程模拟[J].西安交通大学博士学位论文.2003,9;
    [55]张斌,李政等.基于ASPEN PLUS建立喷流床煤气化炉模型[J].化工学报,2003,54(8):1179-1182;
    [56]陈汉平,赵向富,米 铁,代正华.基于ASPENPLUS平台的生物质气化模拟[J].华中科技大学学报,2007,35(9):50-52;
    [57]沈来宏,肖军,高杨.串行流化床生物质催化制氢模拟研究[J].中国电机工程学报,2006,26(11):7-11;
    [58]汪洋,代正华,等.运用Gibbs自由能最小化方法模拟气流床煤气化炉[J].煤炭转化,2004,27(4):27-33;
    [59]朱廷钰,张守玉,黄戒介,王洋.氧化钙对流化床煤温和气化半焦性质的影响[J].燃料化学学报,2000,28(1):41-43;
    [60]闵凡飞,张明旭,陈清如,陈明强.新鲜生物质催化热解气化制富氢燃料气的试验研究[J].煤炭学报,2006,3l(5):649-653;
    [61]许莹,孙小星,胡宾生.催化剂对混合煤在快速热解过程中的影响.化学工程,2007,35(4):65-71;
    [62]仇建龙.谈谈热水锅炉的煮炉[J].工业锅炉,2001,2:48-49;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700