用户名: 密码: 验证码:
猪粪好氧堆肥工艺及堆肥微生物的筛选、纯化与发酵的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
堆肥是处理畜禽场废弃物的主要手段之一,这种处理方法具有投资小,效益高,可以使大量有机固体废弃物重复资源化利用等优点,但是同时也存在发酵周期长、堆肥产品质量不高等缺陷。为了提高堆肥产品的质量、缩短堆肥周期、提高堆肥效率,本试验主要从堆肥调理剂的选择、堆肥微生物菌种的筛选、筛选菌株的功能及对堆肥中微生物群落的影响等方面开展了研究,试验结果总结如下:
     1.不同调理剂对猪粪好氧堆肥过程的影响
     分别以锯末、米糠和木屑为调理剂,调节堆肥原料的碳氮比为25:1,含水率为60%,通风方式采用人工翻堆的方式进行猪粪好氧堆肥。从各调理剂堆肥的温度、含水率、pH值、有机碳含量、发芽指数、全氮含量及碳氮比等方面进行了比较。3个堆体都经历了快速升温期、持续高温期和缓慢降温期3个时期,均可以实现好氧堆肥的腐熟,并使堆肥产品达到国家粪便无害化卫生标准。不同的调理剂对猪粪好氧堆肥堆体的温度变化影响较大,其中,以锯末为调理剂的堆体升温最快,米糠次之,木屑升温最慢。以米糠为调理剂的堆体的高温期最长,锯末次之,木屑的高温期最短。3个堆体含水率的变化趋势相同,都随着堆肥的进程而不断降低,都从开始的60%左右降低到33%左右。使用3种不同调理剂进行猪粪好氧堆肥的最终产品中氮元素的相对含量差异显著(P<0.05),以锯末和米糠为调理剂的堆肥产品的全氮含量较高,为2.12%和2.10%,以木屑为调理剂的堆肥产品的的全氮含量较低,为1.90%。
     2.堆肥中产葡聚糖内切酶微生物的筛选、分离与纯化
     通过以CMC-Na为唯一碳源的筛选培养基进行初筛得到17株不同的微生物,经滤纸培养基进行复筛后得到一株能够产CMC酶的菌株。经形态学鉴定发现,该菌株为产芽孢的革兰氏阳性菌,并通过细菌16S rDNA的通用引物对该菌株的16SrDNA扩增测序,与NCBI数据库中的序列比对后发现,该菌株的16SrDNA序列与枯草芽孢杆菌的16SrDNA序列相似度达到100%,因此该菌株被鉴定为枯草芽孢杆菌,命名为Subtilis bacillus dcy-1,并保藏在中国典型培养物保藏中心(CCTCC),保藏编号为:CCTCC M208122。分离菌株的最佳液体产酶培养基为:麸皮1.5%,豆粕1.5%,NaCl 0.5%, CaCl2 0.05%, MgSO4 0.05%,酵母提取物0.1%;产酶条件为:发酵温度为30℃,培养基初始pH值为7.0,培养时间为40h时CMC酶活达到最大。菌株所产的CMC酶的最佳作用温度为55℃,最佳pH值为7.5,Na+、Ca2+、Ni2+对CMC酶酶促反应有一定的促进作用,Cu2+和Mn2+对CMC酶酶促反应有显著的抑制作用。CMC酶在低于60℃时热稳定性较好,在pH值为5-8时比较稳定。
     3.分离并鉴定了枯草芽孢杆菌Subtilis Bacillus-dcyl的Egl基因
     通过设计引物获得了完整的CDS序列,GenBank数据库登陆号为,HM036060,通过生物信息学分析软件对基因的结构和性质进行了预测。以枯草芽孢杆菌为出发菌株,构建了枯草芽孢杆菌Egl基因重组原核表达载体pGEX-KG,优化后的最佳条件为IPTG诱导3.5h,其浓度为0.6mmol/L,主要以可溶的形式存在,通过对表达产物活性的测定发现,葡聚糖内切酶活性可达121.23U/ml。
     4.堆肥中微生物总DNA提取方法的改进研究
     针对堆肥中微生物抗性比较强的特点,设计了通过蛋白酶和蜗牛酶2次消化的堆肥样品的DNA提取方法。分别从对微生物细胞的裂解效率、DNA产量、DNA回收效率及PCR可扩增性等方面对3种不同的DNA提取方法进行了研究比较,结果表明,3种方法都能够从堆肥样品中成功的提取出微生物的DNA,但是,双酶裂解法比其他2种方法效率更高,更加经济实用。本试验中所提出和改进DNA提取方法可以有效的应用于堆肥样品中,由于堆肥样品中的杂质和干扰物要比土壤、污水等环境样品中更加复杂一些,所以,这种方法也可以应用于其他环境样品微生物的提取与纯化。
     5.添加外源微生物对堆肥细菌群落的影响
     堆体接种外源微生物后能够明显的提高堆体的温度升高速度和堆体的最高温度,延长了高温期的时间。通过RFLP技术快速、准确地研究了猪粪好氧堆肥过程中不同时期的细菌群落的变化。比较了接种外源微生物的堆体和自然堆肥堆体中细菌种类和数量的差异,结果表明接种外源微生物可以改变堆肥中微生物群落的变化,所接种的微生物能够适应堆肥的环境,并成为优势菌群。通过与NCBI数据库中比较,试验中共发现35条序列与已知微生物序列相似性很低,这些序列有可能是堆肥中尚未发现的新物种,它们在堆肥中的作用有待进行进一步研究。
Compost is a primary treatment for the waste of livestock. This method is efficiency and resourceful to deal with organic solid wste, but it also have some disadvatages, for exampl, long time for fermentation and low qulity. In order to improve the quality of compost products, shorten the composting time and improve the composting efficiency, this study reserch in the choice of compost conditioner, screening for compost microbial strains and the impact of the strains for microbial community in compost mainly.The results are summarized as follows:
     1. Different Conditions on aerobic composting of pig manure
     Respectively, sawdust, rice bran and wood chipper were used as the conditioner for swin composting. The initial carbon and nitrogen ratio was 25:1. the moisture content of the mixture was 60% and the ventilation method was turning pig manure composting. We compared the difference in temperature, moisture, pH, organic carbon, germination.index, total nitrogen and nitrogen ratio. Three piles experienced a rapid warming stage, high temperature stage and slow cooling stage. All cmpost piles meet the national standard for fecal harmless. Different Conditions influenced the temperature of composting pile. With sawdust as bulking agents in the pile heat up the fastest, followed by rice bran. Wood chips was the slowest. With rice bran as the conditioning agent experenced the longest high-temperature stage, followed by sawdust, wood chips is the shortest one. The trend of moisture content of three piles reduced with the composting process. All piles reduced to about 30% from 60%. Use different conditioning agents in the pig manure composting lead to a significantly different (P<0.05) content of nitrogen. Total nitrogen content of compost with sawdust, rice bran and wood chipers were 2.12%,2.10% and 1.90% respectely.
     2. Screening, isolation and purification for endo-glucanase enzymes produced strains in compost
     After growing in screening medium in which CMC-Na was the only carbon source we get 17 different microorganisms. All this microorganisms were screened again by filter paper medium we finally obtained an CMCase produced strain. After observed by the culture, Gram staining, spores staining and compareing 16S rRNA with NCBI database the screening strain was identified as Bacillus subtilis and named Subtilis bacillus dcy-1, and preserved in the China Center for Type CultureCollection (CCTCC), preservation code:CCTCC M 208122. The best liquid medium for enzyme production was:wheat bran 1.5%, soybean meal 1.5%, NaCl 0.5%, CaCl2 0.05%, MgSO4 0.05%, yeast extract 0.1%. The best fermentation conditions were:fermentation temperature is 30℃, initial pH 7.0 and the fermentation time were 40h. The best reaction temperature for enzym activity was 55℃, the best pH value was 7.5, Na-, Ca2+, Ni2+ would improve enzyme activity and Cu2+ and Mn2+ would inhibit enzyme activity. Endo-glucanse was good heat stability in less than 60℃and pH 5-8.
     3. Isolated and identified Egl gene from subtilis bacillus which separated from pig manure composting, complete CDS sequence obtained, GenBank database accession number is, predicted structure and properties of the gene by bioinformatics analysis software were.
     Constructed recombinant prokaryotic expression vector pGEX-KG of the Egl gene of Bacillus subtilis dcy-1 was constucted. The optimum conditions for expression were:the concentration of IPTG was 0.6mmol/L and the induction time was 3.5h. The activitys of the expressed products were 121.23U/ml.
     4. Improvement for DNA Extraction method of microorganism in compost
     Based on the strong resistance of microorganism in compost, designed that samples of compost were digested by protease and helicase. An effective cell lysis method for extraction of bacterial genomic DNA from compost was developed in this study. Enzymatic disruption method, physical-chemical combination method, and commercial kit method were used to extract DNA from compost samples and were compared by analyzing DNA yield and efficient cell lysis. The results showed that all the three methods can be used to extract high-quality DNA from compost, but the enzymatic method had better cell lysis efficiency and DNA yields than others without the use of special equipment and expensive spending. Comparison of different methods for lysing gram-positive bacteria Bacillus subtilis indicated that the enzymatic cell lysis is superior for destroying the gram-positive cell wall. Spin-bind DNA column was used for DNA purification, and the purity of the purified sample was checked by polymerase chain reaction to amplify a region of the 16S rRNA. Results indicated that the part of 16S rRNA was amplified from all the purified DNA samples, and all the amplification products could be digested by the restriction enzyme Hhal.
     5. Adding exogenous microbial communities of bacteria in compost
     The temperature of-compost can significantly increase when inoculated the microorganisms. Reserched the diversity of bacterial communities in compost by RFLP technique. Compared the difference on bacerial species and qualtity between inoculated and without inoculated composte piles. Results showed that the microorganisms communities can be changed when inoculated exogenous bacterial to cmopost. The exogenous bacterial can grow rapidly in compost and improve to be predominated communities.35 sequences were found, have no similarity with synxenic in th genbank data, this new sequeces may be repreasentation of new spices and the role they played in compst would be worth for further research.
引文
1.邓强,杨向科,王慧杰.微生态调节剂堆肥猪粪堆肥过程中微生物群落的影响.河南农业科学.2007(7):75-77.
    2.官家发.高温堆肥发酵工艺处理城市生活垃圾过程中的部份微生物学问题.2000,19(3):21-30.
    3.黄懿梅,苟春林,来航线,梁军峰.两种添加剂对猪粪玉米秸秆堆肥氮素转化和堆肥质量的影响.干旱地区农业研究.2005,23(6):112-118.
    4.黄懿梅,曲东,李国学.调理剂在鸡粪锯末堆肥中的保氮效果.环境科学.2003,24(2):156-160.
    5.李国学,李玉春,李彦富.固体废物堆肥化及堆肥添加剂研究进展农业环境科学学报.2003a,22(2):252-256.
    6.李国学,李玉春,李彦富.固体废物堆肥化及堆肥添加剂研究进展.农业环境科学学报.2003b,22(2):252-256.
    7.李国学,张福锁.固体废物堆肥化与有机复合肥生产.北京:化学工业出版社,2000.
    8. 刘向辉,卢文菊,都昌胡,等.表达屋尘螨Ⅰ类变应原Derp1的基因工程菌的发酵条件探讨.广州医学院学报,2002,30(1):46-47
    9.刘益仁,刘光荣,李祖章,等.微生物发酵菌剂对猪粪堆肥腐熟的影响.江西农业学报.2006,18(5):36-38
    10.刘银梅.畜牧生产与环境污染.中国畜牧兽医文摘.2007,05:64-66.
    11.倪娒娣,陈志银,程绍明.不同填充料对猪粪好氧堆肥效果的影响.农业环境科学学报.2005,24:204-208.
    12.朴仁哲,姜成,金玉姬.微生物菌群对鸡粪堆肥微生物相变化的影响.延边大学农学报.2005,27(3):174-178.
    13.潘顺昌,严秀宜,潘长庆.中华人民共和国国家标准.GB 7959-87.粪便无害化卫生标准.
    14.秦莉,高茹英,李国学,刘潇威,李红,刘岩,王璐.外源复合菌系对堆肥纤维素和金霉素降解效果的研究.农业环境科学学报.2009,28(4):820-823.
    15.屈健.畜牧生产对环境的污染及对策.饲料广角.2005(13):33-34.
    16.沈立新,魏东芝,赵哲峰,等.谷胱甘肽合成酶在大肠杆菌中的高效表达及性质.华东理工大学学报,2000,26(4):342-345
    17.汪开英,代小蓉.畜禽场空气污染对人畜健康的影响.中国畜牧杂质.2008,44(10):32-35.
    18.王丽莉,陈丽君,李国学.堆肥含水量与腐熟度对其粉碎度的影响研究.农业工程学报.2006,22(8):264-266.
    19.王卫平,朱凤香,钱红,吴传珍,薛智勇.接种发酵菌剂和添加不同调理剂对猪粪发酵堆肥氮素变化的影响.浙江农业学报.2005,17(5):276-279.
    20.魏源送,李承强,樊耀波,王敏健.采用不同调理剂的污泥堆肥稳定度研究.中国给水排水.2002,18(2):5-9.
    21.魏源送,李承强,樊耀波,王敏健,贾智萍.不同通风方式对污泥堆肥的影响.环境科学.2001,22(3):54-59.
    22.吴银宝,廖新俤,刘胜安,汪植三,梁敏,吴启堂,黄焕忠,周立祥.猪粪好氧堆肥条件的研究.农业工程学报.2001,17(增刊):153-157.
    23.吴银宝,汪植三,廖新俤,刘胜安,梁敏,吴启堂,黄焕忠,周立祥.猪粪堆肥臭气产生与调控的研究.农业工程学报.2001,17(5):82-87.
    24.许民,杨建国,李宇庆.污泥堆肥影响因素及辅料的探讨.环境保护科学.2004,30(125):37-40.
    25.薛智勇.畜禽废弃物的无害化处理和资源化利用技术进展(上).2002,45-47.
    26.杨朝晖,肖勇,曾光明,等.用于分子生态学研究的堆肥DNA提取方法.环境科学,2006,2(8):1613-1618.
    27.于海霞,孙黎,栾冬梅.不同调理剂对牛粪好氧堆肥的影响.农业工程学报.2006,22(12):235-238.
    28.张军,雷梅,高定,郑国砥,陈同斌,岳波,刘斌,杜伟.堆肥调理剂研究进展.生态环境.2007,16(1):239-247.
    29.章文贤,李敏,涂桂云等.重组拖丝蛋白基因在大肠杆菌中表达条件的优化.福建师范大学学报(自然科学版),2003,19(2):58-60
    30.周少奇,李端.污泥堆肥过程中氮素损失机理及保氮技术.土壤.2003,35(6):481-484.
    31.周文兵,刘大会,朱端卫.不同调理剂对猪粪堆肥过程及其养分状况的影响.华中农业大学学报.2004,23(4):421-425.
    32. Acinas S, Rodriguez-Valera R, Pedros-Alio C. Spatial and temporal variation in marine bacterioplankton diversity as shown by RFLP fingerprinting of PCR amplified 16S rDNA. FEMS Microbiol Ecol.1997,24:27-40.
    33. Bach P D. Rate of composting of dewatered sewage sludge in contiuously mixed isothermal reactor. Journal of fermentation technology.1984,62:285-292.
    34. Bernal M P. Utilizacion de purines de cerdo en la fertilizacion de suelos calizos encondiciones de regadio. MUrcia, Spain:CEBAS-CSIC,1990.
    35. Bernal M P. Application of natural zeolites for the reduction of ammonia emissions during the composting of rganic wastesin a composting simulator. Bioresource Technology.1993,199:335-39.
    36. Bhat M. K., Bhat S. Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv.1997,15:583-620.
    37. Blanc M, Marilley L, Beffa T, Aragno M. Thermophilic bacterial communities in hot composts as revealed by most probable number counts and molecular (16S rDNA) methods. FEMS Microbiol Ecol.199928:141-149
    38. Boehm M J, Madden L V, Hoitink H A J. Effect of organic matter decomposition level on bacterial species diversity and composition in relation to Pythium damping-off severity. Appl Environ Microbiol.1993,59:4171-4179.
    39. Bossio D A, Scow K M, Gunapala N, Graham K J. Determinants of soil microbial communities:effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb Ecol.1998,36:1-12.
    40. Bruce K D, Hiorns W D, Hobman J L, Osborn A M, Strike P, Ritchie D. A. Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction. Appl Environ. Microbiol.1992,58:3413-3416.
    41. Burgmann H, Pesaro M, Widmer F, Zeyer J. A strategy for optimizing quality and quantity of DNA extracted from soil. J Microbiol Methods.2001.45:7-20
    42. Cavaco-Paulo A. Mechanism of cellulase action in textile processes. Carbohydr. Polym.1998,37:273-277.
    43. Chen H., Li X., Ljunydahl, G L. Sequencing of a 1,3-1,4-b-D D-glucanase (lichenase) from the anaerobic fungus Orpinomyces stainPC-2:properties of the enzymes expressed in Escherichia coli andevidence that the gene has a bacterial origin. J Bacteriol.1997,179:6028-6034.
    44. Chen Y, Inbar Y. Ohio:Renaissance Publications,1993:551-600.
    45. Clement B G., Kehl L E., Debord K L., Kitts C L. Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for comparison of complex bacterial communities. JMicrobiol Methods.1998,31:135-142.
    46. Cox P., Wilkinson S. P., Anderson J. M. Effects of fungal inocula on the decomposition of lignin and structural polysaccharides in Pinus sylvestris litter. Biol Fertil Soils.2001,33:246-251.
    47. De Bertoldi M., Vallini G, Pera A., Zucconi F. Comparison of three windrow compost systems. Biocycle.1982,23:45-50.
    48. Degrange V, Bardin R. Detection and counting of nitrobacter populations in soil by PCR. Appl Environ Microbiol.1995,61:2093-2098.
    49. Dunbar J, Ticknor L O, Kuske C R. Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl Environ Microbiol 2000,66:2943-2950.
    50. Edney M. J., Marchylo B. A. Macgregor A. W. Structure of total barley-glucan. J inst Brew.1991,97:39-44.
    51. Eghball B, Power J F, Gilley J E., Doran J W Nutrient, carbon, and mass loss of beef cattle feedlot manure during composting. J Environ Qual.1997,26:189-193.
    52. Etchebehere C, Errazquin M I, Dabert P, Muxi L. Community analysis of a denitrifying reactor treating landfill leachate. FEMS Microbiology Ecology,2002, 40(2):97-106
    53. Fernandez A, Huang S, Seston S, Xing J, Hickey R, Criddle C, Tiedje J. How stable is stable? Function versus community composition. Appl Environ Microbiol,1999,65: 3697-3704
    54. Garrison M V, Richard T. L., Tiquia S. M. Nutrient losses from unlined bedded swine hoop structure and an associated windrow composting site.Sacramento, CA:2001.
    55. Gelsomino A, Keijzer-Wolters A C, Cacco G, van Elsas J D. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J Microbiol Methods.1999,38:1-15.
    56. Ghose Tk. Measurement of cellulase activities. Pure Appl Chem.1987,59:257-268.
    57. Golueke C G. Biological reclamation of solid wastes. Emmaus, Pa:Rodale Press, Inc, 1977.
    58. Haug R T. The Practical hadbook of compost engineering. Boca Raton, Florida: Lewis Publishers. CRC Press, Inc,1993.
    59. Heng N C, Jenkinson H. F., Tannock G. Cloning and expression of an endo-1,3-1,4-b-glucanase gene from Bacillus macerans in Lactobacillus reuteri. Appl Environ Microbiol.1997,63:3336-3340.
    60. Heron J, Cloete T E. Molecular techniques for determining microbial diversity and community structure in natural environments. Crit Rev Microbiol.2000,26:37-57.
    61. Herrera Aude, Charles S Cockell. Exploring microbial diversity in volcanic environments:A review of methods in DNA extraction. Journal of Microbiological Methods.2007,70:1-12.
    62. Hill G T, Mitkowski N A, Aldrich-Wolfe L, Emele L R, Jurkonie D D, Ficke A, Maldonado-Ramireza, Lyncha S T, Nelsona E B. Methods for assessing the composition and diversity of soil microbial communities. Applied Soil Ecology.2000, 15:25-36.
    63. Hue N V, Liu J. Predicting compost stability. Compost Sci Util.1995,3:8-15.
    64. Iglesias-Jimenez E., Perez-Garcia V. Determination of maturity indices for city refuse composts. Agr Ecosyst Environ.1992,38:331-343.
    65. Imbeah M. Composting piggery waste:a review. Bioresour Technol.1998, 63(197-203).
    66. Jacobsen C S, Rasmussen 0 F. Development and application of a new method to extract bacterial DNA from soil based on separation of bacteria from soil with cation-exchange resin. Appl Environ Microbiol.1992,58:2458-2462.
    67. Jiang J., Alderisiok A., Singh A. Development of procedures for direct extraction fo cryptosporidium DNA from water concentrates and fro relief of PCR inhibitors. Appl Envir Micro.2005,71(3):1135-1141.
    68. Krsek M, Wellington E M. Comparison of different methods for the isolation and purification of total community DNA from soil. J Microbiol Methods.1999,39:1-16.
    69. LaMontagne MG, Michael FC Jr, Holden PA, Reddy CA. Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis. J Microbiol Methods.200249:255-264
    70. Liang Y, Leonard J J, Feddes J J R, B Mcgill W. Influence of carbon and buffer amendment on ammonia volatilization in composting. Bioresour Technol.2006,41: 145-152.
    71. Liu M, Wang J, Liu J, Yao J, Yu Z. Expression of Bacillus subtilis JA18 endo-b-1,4-glucanase gene in Escherichia coli and characterization of the recombinant enzyme. Ann Microbiol.2006,56:41-45.
    72. Liu W T, Marsh T L, Cheng H, Forney L J. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol.1997,63:4522-4561.
    73. Louw M E, Reid S J., Watson T G. Characterization, cloning and sequencing of a thermostable endo-(1,3-1,4)-b-glucanase-encoding gene from an alkalophilic Bacillus brevis. Appl Microbiol Biotechnol.1993,38:507-513.
    74. Lukow T, Dunfield P F, Liesack W. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiol Ecol.2000, 32:241-247.
    75. Luna GM, Dell Anno A, Danovaro R. DNA extraction procedure:a critical issue for bacterial assessment in marine sediments. Environ Microbiol.2006,8:308-320
    76. Maarit-Niemi R, Heiskanen I, Wallenius K, Lindstrom K. Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J Microbiol.Methods.2001,45:155-165.
    77. Macalady J L, Fuller M. E., Scow K. M. Effects of metan sodium fumigation on soil microbial activity and community structure. J Environ Qual.1998,27:53-63.
    78. Macnaughton S J, Stephen J R., Venosa A D, Davis G. A., Chang Y. J. White D. Microbial population changes during bioremediation of an experimental oil spill. Appl Environ.1999,65:3566-3574.
    79. Maloney P E, van Bruggen A H C, Hu S. Bacterial community structure in relation to the carbon environments in lettuce and tomato rhizospheres and in bulk soil. Microb Ecol.1997,34:109-117.
    80. Martin Laurent F, Philippot L, Hallet S. DNA extraction from soils:old bias for new microbial diversity analysie methods. Appl Envir Microbio.2001,67(5):2354-2359.
    81. Martins O, Dewes T. Loss of nitrogenous compounds during composting of animal wastes. Bioresour Technol.1992,42:103-111.
    82. Massol-Deya A A, Odelson D A, Hickey R F, Tiedje J. M. Molecular Microbial Ecology Manual. Boston:Kluwer Academic Publishing,1995.
    83. Mawadza Crispen, Rajni Hatti-Kaul, Zvauya Remigio, Mattiasson Bo. Purification and characterization of cellulases produced by two Bacillus strains. Journal of Biotechnology.2000,83:177-187.
    84. Mckinley V L. Bilkinetic analyses of adaptation and successio:microbial activity in cmposting municipal sewage sludg.1984:47,933-941.
    85. Miller D N. Evaluation of gel filtration resins for the removal of PCR-inhibitory substances from soils and sediments. J Microbiol Methods.2001,44:49-58.
    86. Miller D. N., Bryant J. E., Madsen E. L., Ghiorse W. C. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol.1999,65:4724-4751.
    87. Miller Gl. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem.1959,31:426-428.
    88. Miller Gl. Measurement of carboxymethylcellulase activity. Anal Biochem.1960,1: 127-132.
    89. Ming L, Peng Xuya, Zhao Youcai. Microbial inoculum with leachate recirculated cultivation for the enhancement of OFMS W composting. Journal of Hazardous Materials.2008,153:885-891.
    90. Moeseneder M M, Arrieta J M, Muyzer G, Winter C, Herndl G J. Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplanktoncommunities and comparison with denaturing gradient gel electrophoresis. Appl Environ Microbiol. 1999,65:3518-3525.
    91. More M I, Herrick J B, Silva M C, Ghiorse W C. Quantitative cell lysis of indigenous microorganisms and rapid extraction ofmicrobial DNA fromsediment. Appl Environ Microbiol.1994,60:1572-1580.
    92. Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol. 1999,2:317-322.
    93. Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis in microbial ecology. Antonie van Leeuwenhock.1999,73:127-141.
    94. Muyzer G, Waal E. C D, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol.1993,59: 695-700.
    95. Nakasaki K, Fujiwara S, Kubota H. A newly isolated thermophilic bacterium, Bacillus licheniformis HA1 to accelereate the organic matter decomposition in high rate composting. Compost Sci Utilization.1994,2:88-96.
    96. Nalin R, Normand P, Simonet P, Domenach A M. Polymerase chain reaction and hybridization on DNA extracted from soil as a tool for Frankia spp. population distribution studies in soil. Can J Bot.1999,77:1239-1247.
    97. Nelson N. A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem.1944,153:375-380.
    98. Niemi R Maarit, Heiskanen I, Wallenius K, Lindstrom K. Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J Microbiol Methods.2001,45:155-165.
    99. Ogram A., Sayler G. S., Barkay T. The extraction and purification of microbial DNA from sediments. J Microbiol Methods.1987,7:57-66.
    100. Ohtaki A., Akakura N., Nakasaki K. Effects of temperature and inoculum on the degradability of poly-caprolactone during composting. Polym Degrad Stab.1998,62: 279-284.
    101. Osborn A M., Moore E R B, Timmis K N. An evaluation of terminal-restriction fragment length polymorphisms (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol.2000,2:39-50.
    102. Pace N R. New perspective on the natural microbial world:molecular microbial ecology. ASM News.1996,62:463-470.
    103. Paillat J M., Robin P, Hassouna M, Leterme P. Predicting ammonia and carbon dioxide emissions from carbon and nitrogen biodegradability during animal waste composting. Atmos Environ.2005,39:6833-6842.
    104. Paredes C, Roig A, Bernal M P, Sanchez-Monedero M A, Cegarra J. Evolution of organic matter and nitrogen during co-composting of olive mill wastewater with solid organic wastes. Biol Fert Soils.2000,32:222-227.
    105. Parkinson R, Gibbs P, Burchett S, Misselbrook T. Effect of turning regime and seasonal weather conditions on nitrogen and phosphorus losses duringaerobic composting of cattle manure. Bioresour Technol.2004,91:171-178.
    106. Porteous L A, Armstrong J L. Recovery of bulk DNA from soil by a rapid, small-scale extraction method. Curr Microbiol.1991,22:345-348.
    107. Reichardt W, Mascarina G, Padre B, Doll J. Microbial communities of continuously cropped, irrigated rice fields. Appl Environ Microbiol.1997,63:233-238.
    108. Rochelle P A, Fry J C, Parkes R J, Weightman A J. DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. Fems Microbiol Lett.1992,79:59-65.
    109. Roose-Amsaleg CL, Garnier-Sillam E, Harry M. Extraction and purification of microbial DNA from soil and sediment samples. Appl Soil Ecol. 2001,18:47-60
    110. Schimming S, Schwarz W H, Staudenbauer W L. Properties of a thermoactive b-1,3-1,4-glucanase (lichenase) from Clostridium thermocellum expressed in Escherichia coli. Biochem Biophys ResCommun.1991,177:447-452.
    111. Schulze K L. Continuous thermophilic composting. Applied and Environmental Microbiology.1962:49,724-726.
    112. Steffan R J, Goksoyr J, Bej A K, Atlas R M Recovery of DNA from soils and sediments. Appl Environ Microbiol.1988,54:2908-2915.
    113. Tang Xing-Jun, He Guo-Qing, Chen Qi-He. Medium optimization for the production of thermal stable bata-glucanase by Bacillus subtilis ZJF-1A5 using response surface methodology. Bioresource Technology.2004,93:175-181.
    114. Theron J, Cloete T E. Molecular techniques for determining microbial diversity and community structure in natural environments. Crit Rev Microbiol.2000,26:37-57.
    115. Thomas S D. A compost study:a critical evaluation of microbial inoculation in composting fish wastes. Bemidji State University,1995.
    116. Tiedje J M., Asuming-Brempong S, Nusslein K, Marsh T L, Flynn S J. Opening the black box of soil microbial diversity. Appl Soil Ecol.1999,13:109-122.
    117. Torsvik V, Golsoyr J, Daae F. High diversity in DNA of soil bacteria. Appl Environ Microbiol.1990,56:782-787.
    118. Trolldenier G. The use of fluorescence microscopy for countingsoil microorganisms Modern Methods in the Study of MicrobialEcology. Bull Ecol Res Comm.1973, 17:53-59
    119. Tsai Y L, Olson B H. Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol.1991,57:1070-1074.
    120. Tsai Y L, Park M J, Olson B H. Rapid method for direct extraction of mRNA from seeded soils. Appl Environ Microbiol.1991,57:765-768.
    121. Tunlid A, Hoitink H A J, Low C, White D C. Characterization of bacteria that suppress Rhizoctonia damping-off in bark compost media by analysis of fatty acid biomarkers. Appl Environ Microbiol.1989,55:1368-1374.
    122. Tunlid A, White D C. Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil. New York: Soil Biochemistry,1992:229-262.
    123. Tuohy Mg, Walsh Dj, Murray Pg, Claeyssens M, Cuffe Mm. Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochim Biophys Acta.2002,1596:366-380.
    124. Tuomela M, Vikman M, Hatakka A, Itavaara M. Biodegradation of lignin in a compost environment:a review. Bioresource Technology.2000,72:169-183
    125. Van Tilbeurgh H, Cleayssens M. Detection and differentiation of cellulase components using low molecular mass fluorogenic substrates. FEBS Lett.1985,187: 283-288.
    126. Vargas-Garc M Del Carmen, Rez-Estrella F Francisca Sua, Pe M Jose Lo, Moreno Joaqui N. Influence of microbial inoculation and co-composting material on the evolution of humic-like substances during composting of horticultural wastes. Process Biochemistry.2006,41:1438-1443.
    127. Waksman S A. Influence of temperature upon the microbiological population and decomposition processes in cmposts of stable manure. Soil Science.1939,47:83-114.
    128. Wintzingerode F V, Gobel U B, Stackebrandt E. Determination of microbial diversity in environmental samples:pitfalls.ofPCR-based rRNA analysis. FEMS Microbiol Rev.1997,21:213-229.
    129. Wolf gang De, Wilson Db. Mechanistic studies of active site mutants of Thermomonospora fusca endocellulase E2. Biochemistry.1999,38:9746-9751.
    130. Wood Tm, Bhat Km. Methods for measuring cellulase activities. Methods Enzymol. 1988,160:87-117.
    131. Woodward J R, Phillips D R, Fincher G B. Water-soluble (1-3),(1-4)-b-D D-glucans from barley (Hordeum vulgare) endo-sperm. II.Fine structure. Carbohyd Polym.1983, 3:143-156.
    132. Workneh F, Van Bruggen A H C, Drinkwater L E, Shennan C. Variables associated with corky root and Phytophthora root rot of tomatoes in organic and conventional farms. Phytopathology.1993,83:581-589.
    133. Yang ZH, Xiao Y, Zeng GM, Xu ZY, Liu YS Comparison of methods for total community DNA extraction and purification from compost. Appl Microbiol Biotechnol.2007,74:918-925
    134. Zelles L, Rackwitz R, Bai Q Y, Beck T, Beese F. Discrimination of microbial diversity by fatty acid profiles of phospholipids and lipopolysaccharides in differently cultivatedsoils.Plant Soil.1995,170:115-122.
    135. Zhang Y Hp, Lr Lynd. Cellodextrin preparation by mixed-acid hydrolysis and chromatographic separation. Anal Biochem.2003,322:225-232.
    136. Zhang Y Hp, Lr Lynd. Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts of Clostridium thermocellum. Appl Environ Microbiol.2004,70:1563-1569.
    137. Zhang Y Hp, Lynd Lr. Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules.2005,6:1510-1515.
    138. Zhou J, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition. Appl Environ Microbiol 1996,62:316-322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700