用户名: 密码: 验证码:
北方荒漠区降水时空变异性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国北方荒漠区主要位于西北内陆河流域、黄河流域及内蒙古高原的干旱、半干旱地区,分属新疆、青海、甘肃、内蒙古、宁夏、陕西、山西、河北等省和自治区,面积约340万平方公里,约占全国面积的35%。中国北方荒漠区降水稀少,时空分配极不均匀,不合理的土地资源利用导致生态与环境剧烈退化,是我国北方和东北亚地区的主要沙尘源地。生态与环境建设是该区实现社会经济可持续发展中面临的重大问题。研究荒漠区降水的时空变化特征及其变化趋势对荒漠地区退化生态系统植被的保护与恢复,区域社会经济与生态环境协调发展具有重要的指导意义。
     本论文利用我国北方荒漠区35个典型气象站1955年至2005年的月降水资料,对我国北方荒漠区降水分异规律及其丰枯变化趋势进行了深入分析;利用中国科学院阜康荒漠生态站设在新疆三工河流域的降雨量观测网2007年5—8月降雨资料,对西北内陆干旱区山地-绿洲-荒漠系统(MODS)降水的空间变异特征进行了分析。主要结论如下:
     1.在北方荒漠区降水时空变异方面,近50年来,我国北方荒漠区降水在时间和空间上均呈现出较大的变异性。预计未来,春、夏季降水将增多,冬季降水逐渐减少,年降水有增加趋势;降水年增幅较大的地区由内蒙古东部逐渐向西北偏移。存在5年、9年及准14年主周期,突变点分别位于1963、1988、1996和2001年;1988年以来降水以9年及14年周期为主。降水空间分布格局以“相间复杂”型和“东西相反”型(对北方荒漠区降水空间总体变化贡献率分别为35.8%和20.4%)为主,且新疆地区对北方荒漠区降水波动影响最大(对总体变化方差贡献为70.4%)。“相间复杂”型表征北方荒漠区受局部区域天气系统影响较大;“东西相反”型显示降水变化趋势自西向东依次减弱,西部有向暖湿变化中部地区趋于暖干而东部地区趋于干旱的可能。
     2.在北方荒漠区降水时空变化趋势方面,各地单独丰水年的概率要高于单独枯水年,而发生连枯年的概率则高于连丰年;极端干旱区和干旱区的降水有增加趋势的地区概率分别为83%和70 %,而半干旱地区降水有明显减少趋势的概率为58%。地处干旱区的新疆、青海及甘肃等地区降水将会增加,而地处半干旱区的内蒙古东部等地降水将会减少,降水年内分配的差异将变缓;北方荒漠区的西部和东部降水年际波动呈增加趋势,中部地区波动有变缓的趋势。变化范围在15%~78%之间,其中,新疆南部和青海的年际变化最大,大部分地区在变差系数40%以上,内蒙古地区相对平稳为28%左右。
     3.在内陆干旱区MODS的降水时空变异方面,应用EOF及REOF法、地统计学方法分析三工河流域雨量观测网数据。结果表明:依据0-30km、30-60km及60-150km处的三个荷载区段,与三工河流域山地、绿洲及荒漠等3个不同景观的地貌单元南北距离吻合;降水增幅自山地、绿洲、荒漠依次减小;山区降水变异函数符合高斯模型,绿洲区降水变异函数符合球状模型,荒漠区降水变异函数各月模型不同。在研究尺度下由随机因素引起的降水空间异质性仅占总空间异质性的0%-9.57%,以空间自相关引起的空间异质性为主。基于各地各时段基台值、分维数及变程等特征参数变化,判定绿洲区的降水空间变异性最大,山地次之,沙漠区最小;各地貌单元降雨的空间各向异性不显著。就全流域而言,6月份降水空间异质性最为显著,8月空间变化最小,这与变异系数相吻合;降雨在南北方向(0°)和东南-西北方向(135°)变异性最强。
The desert region of northern China is mainly located in the northwest inland river basin, the Yellow River Basin and the Inner Mongolia plateau ,where are the arid and semi-arid areas. Political district belongs to Xinjiang,Qinghai, Gansu, Inner Mongolia, Ningxia, Shaanxi, Shanxi and Hebei. The area is about 3.4 million square kilometers, accounting for 35% of the China. The precipitation is lack and uneven for the temporal and spatial distribution in the desert region of northern China. Unsuitable water and land resources exploitation led to ecological and environmental degradation sharply in this regions, which also is the main dust source of the northern China and the northeast Asian. The ecological and environmental construction are the major problems of the socio-economic sustainable development in this regions. Research on spatial and temporal variability of precipitation characteristics and trend in desert region have an important guiding significance, which can protection and restoration the vegetation of desertification and degraded ecosystem, promote regional socio- economic and ecological environment harmonious development.
     Spatial variability rule of precipitation and its trends of rich and lack are analysed in this paper by the monthly precipitation data of 35 national meteorological observation sites in the desert region of northern China during 1951- 2005. The temporal and spatial variability characteristics of the precipitation are discussed for the mountain-oasis-desert system (MODS) in arid region of northwest inland watershed,based on the observation data from the precipitation observation network located in the San-gong River watershed and established by Fukang National Desert Ecosystem Research Station,Chinese Academy of Sciences. Main results indicate as below:
     1. Spatial and temporal variability of precipitation in the desert region of northern China. In recent 50 years, the precipitation has greater variability both in spatial and temporal. It is estimated that the precipitation will increase in spring and summer season, and will decrease in winter sesson in future. Annual precipitation is increase in general. The areas which have bigger annual increased amplitude will move from east of the Inner Mongolia Plateau to northwest of China.There are 5a, 9a and 14a main-cycle, and the abrupt precipitation changes were observed in 1963、1988、1996 and 2000. Precipitation primarily controlled by 9a and 14a cycle since 1988. Precipitation spatial distribution pattern is primarily " complex type " and "west-east type " (to contribution the overall changes rates were 35.8% and 20.4%). Xinjiang is the best affected region for the precipitation fluctuations of the northern desert region (contribution to 70.4% of all fluctuations). The region characterized by " Complex type " has a greater impact by the local weather systems. " West-east type " shows that precipitation fluctuation trends were weakened from west to east. It is possible that the west region will bacome warmer and weter, the central region will bacome warmer and drier, but the eastern region will get drought.
     2.The trends for spatial and temporal variability of precipitation in the desert region of northern China. The probability of single abundant precipitation year is higher than single short precipitation year and the continuous short precipitation year is higher than continuous abundant precipitation year. In extreme arid regions and arid regions, such as Xinjiang,Qinhai and Gansu, the probability of precipitation increasing are 83% and 70 % respectively.On the contrary, in semi-arid regions,like Inn Mongolia, the probability of precipitation decreasing is 58%, the variability will change slowly for the distribution of intra-annual precipitation . The inter-annual precipitation variability has increasing trend in the western and eastern part of the northern desert region, but the central region change slowly, the scope is 15% to 78%, especially in south of Xinjiang and Qinghai, the inter-annual change is the biggest.In most regions, variation coefficient is more than 40%.The Inner Mongolia region is stable comparatively, about 28%.
     3.The precipitation spatial variation of MODS in inland river watershed. Based on the empirical orthogonal function (EOF) ,rotated empirical orthogonal function (REOF) and geostatistics methods, the precipitation observation network data of the San-gong River Watershed are analysed. The results showed that: based on the 0-30 km ,30-60km and 60-150 km of the three loads section, the watershed can be divided into three landscape units: mountain, oasis and desert. Precipitation increasing trend become smaller and smaller from mountain, oasis to desert. The mountain precipitation semivariogram accord gaussian model, the oasis precipitation semivariogram accord spherical model, the desert precipitation semivariogram model is different in each month .In research scale, owing to the random factors arising precipitation spatial heterogeneity occupy 0% -9.57% of all, so the spatial heterogeneity of spatial was mainly caused by autocorrelation. Based on all parts and periods of characteristic parameter, such as sill, fractal dimension and separation distance, it is judged that the biggest spatial variation of precipitation is in oasis,followed by mountain, desert area is minimum.The precipitation spatial aeolotropy is not remarkable in each landscape unit. For the whole watershed, precipitation spatial heterogeneity are the most significant in June, and the smallest in August, which coincides with the coefficient of variation.The precipitation variability in the north-south direction (0°) and the southeast-northwest (135°) are strongest.
引文
[1] 吴正.中国的沙漠[M]. 香港:商务印书馆. 1995
    [2] 钱正英,沈国舫,潘家铮.西北地区水资源配置生态环境建设和可持续发展战略研究:综合卷[M].北京:科学出版社.2004:465-466.
    [3] 施雅风.中国西北气候由暖干向暖湿转型问题评估[M].北京:气象出版社.2003,4 -23.
    [4] 中国科学院《中国自然地理》编辑委员会.中国自然地理总论[M].北京:科学出版社.1990,370-394.
    [5] 丁晶,刘权授..随机水文学[M].北京:中国水利水电出版社..1997.
    [6] 陈仁升,康尔泗,杨建平,蓝永超,张济世. 甘肃河西地区近 50 年气象和水文序列的变化趋势[J]. 兰州大学学报( 自然科学版),2002,38(2):163-170
    [7] 赵珊珊,张强,陈峪等.渭河、汉水流域秋季降水的特征变化[J].气候变化研究进展,2006,2(4):181-183.
    [8] 谢金南,周嘉陵.西北地区中、东部降水趋势的初步研究[J].高原气象,2001,20(4):362-367.
    [9] 任朝霞,杨达源.近 50a 西北干旱区气候变化趋势研究[J].第四纪研究,2006,26(2):299-300.
    [10] 王新平,张景光,李新荣,李金贵.沙坡头地区多年降水分布特征、趋势及其变率[J].中国沙漠,2001,21(4):261-264.
    [11] 姜逢清,朱诚,胡汝骥.1960-1997 年新疆北部降水序列的趋势探测[J].地理科学,2002,22(6):669-672
    [12] 王英,曹明奎,陶波等.全球气候变化背景下中国降水量空间格局的变化特征[J].地理研究,2006,25(6):1031-1041.
    [13] M. DE LUI′S, J. RAVENTO′ S, J.C. GONZA LEZ-HIDALGO, J.R. SA NCHEZ ,J. CORTINA. spatial analysis of rainfall trends in the region of Valencia (East Spain)[J]. International Journal of Climatology, 2000,20: 1451–1469.
    [14] Ivana A. Tosic,M.Sc. Spatial and temporal variability of winter and summer precipitation over Serbia and Montenegro [J].Theoretical and Applied Climatology,2004,77: 47-56.
    [15] 王涛,杨保,A.Braeuning,夏敦胜.近 0.5ka 来中国北方干旱半干旱地区降水变化分析[J].科学通报,2004,49(9):883-887.
    [16] 朱蕾.乌鲁木齐市金 50 年降水的奇异谱分析[J].湖北气象,2004,3:15-18
    [17] 王澄海,崔洋.西北地区近 50 年降水周期的稳定性分析[J].地球科学进展,2006,21(6):576-584.
    [18] 孙力.中国东北地区夏季降水异常的气候分析[J].气象学报,2000,58(1):72-80.
    [19] 邓自旺,林振山,周晓兰.西安是近 50 年来气候变化多时间尺度分析[J].高原气象,1997,16(1):81-93.
    [20] 纪忠萍,谷德军.广州近百年来气候变化的多尺度分析[J].热带气象学报,1999,15:48-55.
    [21] 杨辉,宋亚山.华北地区水资源多时间尺度分析[J].高原气象,1999,18(4):496-507.
    [22] 郑显,张闻天.基于小波变换的水文序列的近似周期检测法[J].水文,1999,6:22-25.
    [23] 严华生,杨素雨,万云霞等.近百年高低层大气环流的演变特征及其与中国降水变化的关系[J].云南大学学报(自然科学版),2005,27(7):397-403.
    [24] 涂小萍,钱燕珍.宁波市年降水量时空变化特征[J].气象科技,2006,34(3):271-274.
    [25] 孙卫国,程炳岩.河南省近 50 年来旱涝变化的多时间尺度分析[J].南京气象学院学报,2000,23(1):251-255.
    [26] 赵庆云,张武,王式功等.西北地区东部干旱半干旱极端降水时间的变化[J].中国沙漠,2005,25(6):904-909.
    [27] 王文圣,丁晶,向红莲.水文序列周期成份和突变特征识别的小波分析法[J].工程勘察,2003,1:31-35.
    [28] 王文圣,赵太想,丁晶.基于连续小波变换的水文序列变化特征研究[J].四川大学学报(工程科学版),2004,36(4):6-9.
    [29] 薛小杰,蒋晓辉,黄强等.小波分析在水文序列趋势分析中的应用[J].应用科学通报,2002 20(4):427-428.
    [30] 李贤彬,丁晶,李后强.水文时间序列的子波分析法.水科学进展[J],1999,10(2):144-149.
    [31] 夏军.水文非线性系统理论与方法[M].武汉:武汉大学出版社,2002.
    [32] 张晓明,魏锋,陆燕.祁连山近 45 年降水异常的气候特征[J].干旱气象,2006,24(3):35-41.
    [33] 马京津,高晓清,曲迎乐.华北地区春季和夏季降水特征及与气候相关的分析[J].气候与环境研究,2006,11(3):321-329.
    [34] 杨志峰 ,李春晖.黄河流域上游降水时空结构特征[J].地理科学进展,2004,23(2):27-33.
    [35] Nikolay P. Nezlin,Eric D.Stein. Spatial and temporal patterns of remotely-sensed and field-measured rainfall in southern California[J].Remote Sensing of Envrionment,2005,96: 228-245.
    [36] C. RODRIGUEZ-PUEBLA, A.H. ENCINAS, S. NIETO, J. GARMENDIA. Spatial and temporal patterns of annual precipitation variability over the iberian peninsula[J]. International journal of climatology, 1998, 18: 299–316.
    [37] LILIANA CARAMELO, M. DOLORES MANSO ORGAZ. A study of precipitation variability in the Duero Basin (Iberian Peninsula)[J].International journal of climatology, 2006, 10:1002-1016
    [38] 李丽娟,王 娟,李海滨.无定河流域降雨量空间变异性研究[J].地理研究,2002,21(4):434-440.
    [39] 叶泽刚,汪娜娟,周文波.降水特性空间变异性初步研究[J].水利学报,1994,12:7-13.
    [40] Maud Balme, Theo Vischel, Thierry Lebel, Christophe Peugeot Sylvie Galle. Assessing the water balance in the Sahel: Impact of small scale rainfall variability on runoff Part 1: Rainfall variability analysis [J]. Journal of Hydrology, 2006, 331, 336-348.
    [41] Eduardo Severino, Teresa Alpuim. Spatiotemporal models in the estimation of area precipitation [J]. Environmetrics, 2005, 16: 773–802.
    [42] 张继国,刘新仁.降水时空分布不均匀性的信息嫡分析—(Ⅰ)基本概念与数据分析[J].水科学进展.2000,11 (2 ):133-137.
    [43] 张继国,刘新仁.降水时空分布不均匀性的信息墒分析—(Ⅱ)模型评价与应用[J].水科学进展.2000,11(2):138"143.
    [44] 任国玉,吴虹,陈正洪.我国降水变化趋势的空间特征[J].应用气象学报,2000,11(3):322-330.
    [45] SILVIA ANTUNES, OLIVEIRA PIRES,ALFREDO ROCHA.detecting spatio-temporal precipitation variability inportugal using multichannel singular spectral analys[J].International journal of climatology, 2006, 10:1358-1373
    [46] S.M.S. Shah, P.E. O’Connellbp, J.R.M. Hosking. Modelling the effects of spatial variability in rainfall on catchment response 2. Experiments with distributed and lumped models [J]. Journal of Hydrology, 1996, 175:89- 111.
    [47] Keeley R. Costigan), James E. Bossert, David L.Langley.Atmosphericrhydrologic models for the Rio Grande Basin: simulations of precipitation variability[J].Global and Planetary Change,2000,25: 83–110.
    [48] Roberto Deidda, Maria Grazia Badas, Enrico Piga.Space–time multifractality of remotely sensed rainfall fields[J].Journal of Hydrology,2006,322: 2–13.
    [49] J. P. Iorio, P. B. Duffy, B. Govindasamy, S. L. Thompson, M. Khairoutdinov, D. Randall. Effects of model resolution and subgrid-scale physics on the simulation of precipitation in the continental United States[J]. Climate Dynamics, 2004, 23: 243–258.
    [50] V.I. Koren, B.D. Finnerty, J.C. Schaake, M.B. Smith, D.-J. Seo, Q.-Y. Duan. Scale dependencies of hydrologic models to spatial variability of Precipitation [J]. Journal of Hydrology, 1999, 217:285–302.
    [51] 钟晔,金昌杰,裴铁璠.水文尺度转换探讨[J].应用生态学报,2005,16(8):1537-1540.
    [52] 刘建梅,裴铁璠. 水文尺度转换研究进展[J].应用生态学报,2003,14(12):2305-2310
    [53] 周祖昊,王浩,贾仰文,等.缺资料地区日降雨时间上向下尺度化方法探讨—以黄河流域为例[J].资源科学,2005,27(1):92-96.
    [54] 林忠辉,莫兴国,李密轩,李海滨. 中国陆地区域气象要素的空间插值[J].地理学 2002,57(1):47- 56.
    [55] 方书敏,钱正堂,李远平. 甘肃省降水的空间内插方法比较[J]. 干旱区资源与环境,2005,19(3) : 47-50.
    [56] 李新,程国栋,卢玲.空间内插方法比较[J].地球科学进展,2000,15(3):260-265.
    [57] 姜红梅,任立良,袁飞. 降水空间不均匀性对径流过程模拟的影响[J].水文,2004,24(2):1-6.
    [58] Blochl G,Sivapalan M. Scale issues in hydrological modeling:A review[J]. Hydrol Process,1995,9: 251-290
    [59] Dooge JCI.Scale problems in hydrology[c]. In:Reflections on Hydrology. Washington:American Geophysical Union . 1997
    [60] BraunP Molnar TKleeberg HB.1997.The problem of scaling in grid-related hydrological process modeling [J].Hydrol Process,11:1219-1230.
    [61] Skopp. J , S.D. Kachman , G.W. Hergert. Comparison of procedures for estimating sample numbers [J]. Commun. Soil Sci . Plant Anal , 1995 , 26:2559-2568.
    [62] P-Kumar, E-Foufoula-Georgiou.A multi-component decomposition of spatial rainfall fields 1. Segregution of Large and Small Scale features using Wavelet transforms[J].Water Resources Research .1993,29(8):2515-2532.
    [63] V.Venckp, E-Foufoula-Georgiou.Energy decomposition of rainfall in the time-frequeency-scale domain using wavelet packets[J].Journal of Hydrology,1996,187:3-27.
    [64] 徐淑英.中国干旱气候划分及其特征[J].地理科学,1991,11(1):1-9.
    [65] 杨莲梅.新疆极端降水的气候变化[J].地理学报,2003,58(4):577-583.
    [66] 施雅风,沈永平,李栋梁 等.中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究,2003,23(2):152-164.
    [67] 张永民,王云霞,席桂萍.科尔沁沙地及其周围地区降水与气温变化的多时间尺度分析[J].内蒙古农业大学学报,2006,27(2):30-33.
    [68] 刘树林,王涛.浑善达克沙地地区的气候变化特征[J].中国沙漠,2005,25(4):557-562.
    [69] 张仁铎.空间变异理论及应用[M].北京:科学出版社,2005.
    [70] Wouter Buytaert, Rolando Celleri, Patrick Willems, Bert De Bie`vre, Guido Wyseure. Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes [J]. Journal of Hydrology.2006 (329):413– 421.
    [71] Grzegorz J. Ciach, Witold F. Krajewski. Analysis and modeling of spatial correlation structure in small-scale rainfall in Central Oklahoma [J]. Advances in Water Resources,2006 (29):1450–1463.
    [72] Andrew C. Comrie, Bill Broyles. Variability and spatial modeling of fine-scale precipitation data for the Sonoran Desert of south-west Arizona [J]. Journal of Arid Environments, 2002 (50):573–592.
    [73] 侯景儒,尹镇南,等.实用地质统计学[M].北京:地质出版,1998.
    [74] 陈亚新,史海滨,魏占民,等.土壤水盐信息空间变异的预测理论与条件模拟[M] .北京:科学出版社,2005.
    [75] 孙洪泉.地质统计学及其应用[M].北京:中国矿业大学出版社,1990.
    [76] 陶澍.应用数理统计方法[M].北京:中国环境科学出版,1994.
    [77] 王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999.
    [78] Issaks, E.H, R.M.Srivastava. An introduction to applied geostatistics.Oxford University Press, New York, USA, 1989.
    [79] 李霞,任宜勇,汤浩,等.中天山及其北麓的降水变化及其原因分析[J]. 冰川冻土,2005,27(3):381-388.
    [80] 徐宗学,张 楠. 黄河流域近50年降水变化趋势分析[J]. 地理研究,2006,25(1):27-34.
    [81] 叶柏生,杨大庆.我国过去50年来降水变化趋势及其对水资源的影响[J].冰川冻土,2004,26(5):587-594.
    [82] 任健美,尤莉,高建峰,等.鄂尔多斯高原近 40a 气候变化研究[J].中国沙漠,2005,25(6):874-879.
    [83] 李帅,陈莉,任玉玉.1951/1952-2004/2005 年中国冬季降水变化研究[J]. 热带气象学报,2008,24(1):94-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700