用户名: 密码: 验证码:
基于相干光传输系统的连续相位调制方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信号接收是对通信系统中的传输信号进行解调和恢复。在传统的光纤通信系统中,光信号的接收是由光电二极管直接将光信号强度转换成电信号,此种接收方法称为直接检测方法。但是,由于直接检测方法无法知晓光信号的相位信息,它只能检测二进制开关调制(OOK)信号,这样的调制信号频谱效率较低,难以实现更高速率的通信需求,因此需要一种能够检测光信号相位信息的接收方法。于是相干接收方法应运而生,它是通过信号光和本地光进行混频检测出光信号的相位。这种方法能够检测出信号光完整的幅度和相位信息,使得信号处理方法能够应用于光纤传输系统中。
     光纤传输系统中的信号处理过程称为信号恢复过程,根据传输系统中的信号损伤,信号恢复过程如下:首先针对混频器的参数非理想状态进行正交化,然后依据信道的特征对信号进行静态均衡和动态均衡,最后是对信号进行时钟同步以及载频估计和相位恢复。再对恢复后的信号进行码元的判决,就得到了发送端的原始码元。基于相干光传输系统的调制手段主要是四进制相位调制(QPSK)以及高阶正交幅度调制(QAM),此类调制方法提出的思路主要是针对大容量通信的需求,但是大容量的通信系统会带来传输距离受限的缺点。从前面的信号恢复过程和调制方法可以看出,提升系统传输距离有两个关键点:(1)对信号损伤机理的分析,使信号能在长距离传输下还能进行恢复;(2)新型调制格式的选取,使得调制方法能更好地抑制信道损伤。本文正是从这两个关键点出发,提出了混频器的信号损伤的原理、信道均衡代价与信道特征的关系和连续相位调制方式与相干接收的通信系统的结合方法。
     混频器的信号损伤机理的原理主要建立在信号星座图的基础上,将有关偏振光的一些数学理论应用在信号星座图上,推导出星座图上的图形的几何参数与混频器参数之间的关系,得出混频器损伤信号的机理。信道均衡代价与信道特征的分析,主要针对不同长度下光纤信道的色散(CD)和偏振模(PMD)下的损伤进行有限冲击响应滤波器(FIR)阶数的经验分析,给出了信道损伤与FIR阶数之间的关系。
     连续相位调制(CPM)方式在光纤系统中的研究,分别有二进制连续相位调制和四进制连续相位调制的研究。其中,二进制连续相位调制分为最小频移键控调制(MSK)以及任意调制指数的连续相位调制方法;四进制连续相位调制方法为在深空调制手段中的经过整形的偏移四进制相位调伟(?)(SOQPSK)。由于信号的连续性特征,光信号的功率谱密度与QPSK相比,具有频谱效率高的特征,能潜在提高传输系统的抑制信道损伤的能力。
     本文针对目前在光纤相干接收系统中信号损伤与调制方式的理论进行了分析,解决了信号损伤与恢复的关系问题,同时设计了连续相位调制方式与相干接收系统的结合方法。仿真结果表明,连续相位调制信号的传输距离要比现有的QPSK信号在六波长的信道中长20公里。
Signal receiving is the demodulation and recovery of a transmitted signal in the communication system. In the traditional optical communication system, the receiving mode of the optical signal is the direct detection which translating the optical signal into the electrical signal by a photodiode. The direct detection mode can not find the phase of the signal, it can only detect the on-off keying (OOK) signal whose spectrum efficiency is very low, and it can not satisfy the demand of higher communication systems. The coherent detection mode can discover the both amplitude and phase of the optical signal. It discovers the optical signal phase by the hybrid of the signal light and local light. It makes the signal processing technology applied to the optical transmission system.
     The signal process in optical transmission system is called the signal recovery, which has the following steps:orthogonalization to the non-ideal hybrid, channel equalization to the impairments, synchronous of the symbol, frequency and phase recovery of the signal. Symbol estimation and decoding is carried out at last to get the original symbol at the transmitter. The main modulation formats in the coherent optical system are quadrature phase shift keying (QPSK) and quadrature amplitude modulation (QAM), which can develop the capacity of the system but the transmission distance, will be limited. From the steps, the two key parts are the analysis of the signal impairment mechanism and the selection of a modulated signal. This dissertation focuses on these two points and processes a theory of the signal impairment in the hybrid, a relationship between the channel impairments and equalization and a method of continuous phase modulation (CPM) applied to the optical transmission system.
     The signal impairment mechanism in the hybrid is based on the constellation and the theory of the polarized light. The relationship between geometric parameters on the constellation and the hybrid parameters is the signal impairment process in the hybrid. The relation between the equalization complexity and channel characteristic is according to the empirical analysis on the finite impulse response (FIR) taps needed to the different channel length.
     The research on the CPM signal includes the binary CPM signal and quaternary CPM signal. The binary CPM signal contains the minimum shift keying (MSK) signal and CPM signal with arbitrary modulation index. The quaternary CPM signal is the shaped offset quadrature phase shift keying (SOQPSK) signal which is applied in outer space communication system. The spectrum efficiency of the CPM signal is better than the traditional quadrature phase shift keying (QPSK) signal, it can potentially improve the ability of the inhibition to the channel impairments in the transmission system.
     The dissertation intends to analysis the signal impairments and modulation in the optical system. We solve the relationship issues of the impairment and equalization and design an optical coherent CPM system. Simulations show that the limitation distance of the CPM signal is20kilometers longer than that of the traditional QPSK signal.
引文
[1]樊昌信,曹丽娜.通信原理(第四版).国防工业出版社,2006
    [2]Joseph C.Palais.光纤通信(第五版).王江平,刘杰,闻传花等译.电子工业出版社,2005
    [3]X. Zheng, F. Liu, P. Jeppesen. Optimisation of optical receiver for 10 Gbit/s optical duobinary transmission system. In Proc:Optical Fiber Communication Conference. 2001, WDD64-1-WDD64-3
    [4]K. Szczerba, J. Karout, P. Westbergh, et al. Experimental comparison of modulation formats in IM/DD links. Optics Express.2011.19(10).9881-9889
    [5]T. Foggi, E. Forestieri, G. Colavolpe, et al. Maximum-Likelihood Sequence Detection With Closed-Form Metrics in OOK Optical Systems Impaired by GVD and PMD. Journal of Lightwave Technology.2006.24(8).3073-3087
    [6]Y. Shao, N. Chi, C. Hou, et al. A Novel Return-to-Zero FSK Format for 40-Gb/s Transmission System Applications. Journal of Lightwave Technology.2010.28(12), 1770-1782
    [7]I. P. Erza, Alan P. T. Lau, Daniel J.F.Barros, et al. Coherent detection in optical fiber systems. Optics Express.2008.16(2),753-791
    [8]M. Nazarathy, E. Simony. Multichip differential phase encoded optical transmission, IEEE Photonics Technology Letters.2005,17(5),1133-1135
    [9]D. Divsalar, M. Simon. Multiple-symbol differential detection of MPSK, IEEE Transactions on Communications.1990,38(3),300-308
    [10]T. Okoshi, K. Kikuchi. Coherent Optical Fiber Communications. Boston, Kluwer Academic Publishers,1988
    [11]I.P. Kaminow, T.Li, A.E.Willner. Optical Fiber Telecommunications V B:Systems and Networks. Academic Press,2008
    [12]陈锦发.应用于40Gb/s光传输系统新兴调制方式,光通信技术,2008,32(10),39-41
    [13]J. Kahn, K. P. Ho. Spectral efficiency limits and modulation/detection techniques for DWDM systems, IEEE Journal of Selected Topics in Quantum Electronics,2004, 10(2),259-272
    [14]P. Schvan, J. Bach, C.Fait, et al. A 24GS/s 6b ADC in 90nm CMOS, in Proc:Digest Technical Papers. Solid-State Circuits Conference,2008,544-634
    [15]S. J. Savory. Digital Coherent Optical Receivers:Algorithms and Subsystems, IEEE Journal of Selected Topics in Quantum Electronics,2010,16(5),1164-1179
    [16]M. F. Huang, J. Yu, G. K. Chang. Polarization Insensitive Wavelength Conversion for 4×112Gbit/s Polarization Multiplexing RZ-QPSK Signals. Optics Express. 2008,16(25),21161-21169
    [17]J. Wang, Jeng Y. Yang, Irfan M. Fazal, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics.2012,6(7), 488-496
    [18]M. Seimetz, C. M. Weinert. Options, feasibility, and availability of 2×4 90 degree hybrids for coherent optical systems. Journal of Lightwave of Technology,2005, 24(3),1317-1322
    [19]I. Fatadin, S. J. Savory, D. Ives. Compensation of quadrature imbalance in an optical QPSK coherent receiver. IEEE Photonics Technology Letters,2008,20(20), 1733-1735
    [20]S. H. Chang, H. S. Chung, K. Kim. Impact of quadrature imbalance in optical coherent QPSK receiver. IEEE Photonics Technology Letters,2009,21(11),709-711
    [21]I. Mayer. On Lowdin's method of symmetric orthogonalization. International Journal of Quantum Chemistry,2002,90(1),63-65
    [22]D. Mogilevtsev, J. C. Knight, P. St. J. Russell. Dispersion compensation using single-material fibers. IEEE Photonics Technology Letters,1999,11(6),674-676
    [23]J. Zhao, M. E. McCarthy, A. D. Ellis. Electronic dispersion compensation using full optical-field reconstruction in lOGbit/s OOK based systems. Optics Express,2008, 16(20),15353-15365
    [24]M. G. Taylor. Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments. IEEE Photonics Technology Letters,2004,16(2),674-676
    [25]M. Kuschnerov, F. Hauske, K. Piyawanno, et al. DSP for coherent single-carrier receivers. Journal of Lightwave Technology,2009,27(16),3614-3622
    [26]D. Crivelli, H. Carter, M. Hueda. Adaptive digital equalization in the presence of chromatic dispersion, PMD, and phase noise in coherent fiber optic systems. In Proc: IEEE Global Telecommunication Conference (GLOBECOM).2004,4,2545-2551
    [27]戴忱,张萌,吴宁等.一种用于QAM解调信号的LMS自适应均衡器.电子器件,2005,28(1),196-199
    [28]G. Goldfarb, G. Li. Chromatic dispersion compensation using digital IIR filtering with coherent detection. IEEE Photonics Technology Letters,2007,19(13),969-971
    [29]E. Ip, J. Kahn. Digital equalization of chromatic dispersion and polarization dispersion. Journal of Lightwave Technology,2007,25(8),2033-2043
    [30]B. Spinnler. Complexity of algorithms for digital coherent receivers. In Proc: European Conference of Optical Communication.2009, paper 7.3.6
    [31]R. Raheli and G. Picchi, "Synchronous and fractionally-spaced blind equalization in dually-polarized digital radio links," in Proc:IEEE International Conference of Communication, (ICC).1991,1,156-161
    [32]薛梦驰,陈述,俞根娥.单模光纤偏振模色散(PMD)的理论.光通信技术,1999,23(2),119-125
    [33]F. Hauske, M. Kuschnerov, B. Spinnler, et al. Optical performance monitoring in digital coherent receivers. Journal of Lightwave Technology,2009,27(16), 3623-3631
    [34]S. Woodward, L. Nelson, M. Feuer, et al. Characterization of real-time PMD and chromatic dispersion monitoring in a high-PMD 46-Gb/s transmission system. IEEE Photonics Technology Letters,2008,20(24),2048-2050
    [35]J. Geyer, F. Hauske, C. Fludger, et al. Channel parameter estimation for polarization diverse coherent receivers. IEEE Photonics Technology Letters,2008,20(10), 776-778
    [36]S. Haykin. Adaptive Filter Theory. Englewoof Cliffs, NJ:Prentice-Hall,2001
    [37]D. Godard. Self-recovering equalization and carrier tracking in two-dimensional data Communication systems. IEEE Transactions on Communications.1980,28(11), 1867-1875
    [38]H. Zhang, Z. Tao, L. Liu, et al. Polarization demultiplexing based on independent component analysis in optical coherent receivers. In Proc:European Conference of Optical Communication.2008, paper Mo.3.D.5
    [39]潘立军,刘泽民.改进的CMA+DD-LMS盲均衡算法.现代有线传输,2004,25(05),58-60
    [40]P. Johannisson, H. Wymeersch, M.Sjodin, et al. Convergence Comparison of the CMA and ICA for Blind Polarization Demultiplexing. Journal of Optical Communications and Networking.2011,3(6),493-501
    [41]G P. Agrawal. Nonlinear Fiber Optics, Third Edition & Applications of Nonlinear Fiber Optics. Academic Press,2001
    [42]杜建新DWDM系统非简并四波混频串扰的分析.物理学报,2009,58(2), 1046-1052
    [43]S. Oda, T. Tanimura, T. Hoshida, et al.112Gb/s DP-QPSK Transmission Using a Novel Nonlinear Compensator in Digital Coherent Receiver. In:Optical Fiber Communication Conference.2009, paper.OThR6
    [44]G. Goldfarb, G. Li. Efficient backward-propagation using wavelet based filtering for fiber backward-propagation. Optics Express,2009,17(11),8815-8821
    [45]T. Tanimura, S. Oda, T. Tanaka, et al. A simple digital skew compensator for coherent receiver. In Proc:European Conference of Optical Communication.2009, Paper 7.3.2
    [46]P. Prandoni, M. Vetterli. From Lagrange to Shannon. and back:Another look at sampling [DSP Education]. IEEE Signal Processing Magazine,2009,26(5),138-144
    [47]F. M. Gardner. Interpolation in digital moderms. Part I:Fundamentals. IEEE Transactions on Communications.1993,41(3),501-507
    [48]L. Erup, F. M. Gardner, R. A. Harris. Interpolation in digital moderms. Part II: Implementation and performance. IEEE Transactions on Communications.1993, 41(6),998-1008
    [49]S. H. Chang, H. S. Chung, K. Kim. Digital non-data-aided symbol synchronization in optical coherent intradyne reception. Optics Express.2008,16(19),15097-15103
    [50]S. Hoffmann, S. Bhandare, T. Pfau, et al. Frequency and phase estimation for coherent QPSK transmission with unlocked DFB lasers. IEEE Photonics Technology Letters.2008,20(18),1569-1571
    [51]M. Morelli, U. Mengali. Feedforward frequency estimation for PSK:A tutorial review. European Transactions on Telecommunications.1998,9(2),103-116
    [52]A. J. Viterbi, A. M. Viterbi. Nonlinear estimation of PSK-modulated carrier phase with Application to burst digital transmission. IEEE Transactions on Information Theory.1983,29(4),543-551
    [53]K. Iwatsuki, J. Kani. Applications and Technical Issues of Wavelength-Division Multiplexing Passive Optical Networks With Colorless Optical Network Units. Journal of Communications and Networking.2009,1(4), C17-C24
    [54]Z. Dong, J. Yu, H-C. Chien, et al. Ultra-dense WDM-PON delivering carrier-centralized Nyquist-WDM uplink with digital coherent detection. Optics Express.2011,19(12),11100-11105
    [55]P. J. Winzer, A. H. Gnauck.112-Gb/s polarization-multiplexed 16-QAM on a 25-GHz WDM grid. In Proc:European Conference of Optical Communication.2008, paper Th.3.E.5
    [56]P. Winzer, A. Gnauck, C. Doerr, et al. Spectrally efficient log-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM. Journal of Lightwave Technology.2010,28(4),547-556
    [57]J. Treichler, M. Larimore, J. Harp. Practical blind demodulaors for high-order QAM signals. Proceedings of the IEEE.1998,86(10),1907-1926
    [58]高丽娟,赵洪利,钱磊.改进CMA盲均衡算法的研究与分析.装备指挥技术学院学报,2006,17(6),89-93
    [59]I. Fatadin, D. Ives, S. J. Savory. Blind equalization and carrier phase recovery in a 16-QAM optical coherent system. Journal of Lightwave Technology.2009,27(15), 3042-3049
    [60]J. Armstrong. OFDM for Optical Communications. Journal of Lightwave Technology.2009,27(3),189-204
    [61]Chen Chen, Qunbi Zhuge, David V. Plant. Zero-guard-interval coherent optical OFDM with overlapped frequency-domain CD and PMD equalization. Optics Express.2011,19(8),7451-7467
    [62]Y. Hao, Y. Li, R. Wang, et al. Fiber nonlinearity mitigation by PAPR reduction in coherent optical OFDM systems via biased clipping OFDM. Chinese Optics Letters. 2012,10(1),010701-1-010701-4
    [63]T. F. Detwiler, A. J. Stark, Y-T. Hsueh. Offset QPSK Receiver Implementation in 112 Gb/s Coherent Optical Networks. In Proc:European Conference of Optical Communication.2010, paper3.24
    [64]M. Ohm, J. Speidel. Optical minimum-shift keying with direct detection (MSK/DD). In:Asia-Pacific Optical and Wireless Communication Conference.2003, paper 5281-23
    [65]J. Mo, Y. J. Wen, Y. Wang, et al. Externally Modulated Optical Minimum Shift Keying Format. Journal of Lightwave Technology.2007,25(10),3151-3160
    [66]L. Tao, Y. Shao, J. Zhang, et al. A modulation scheme for 100Gb/s modified minimum-shift keying format based on imbalanced bias in IQ components. In Proc: Optical Fiber Communication Conference.2011, paper JThA43
    [67]B. Huang, N. Chi, Y. Shao, et al. Analysis of smooth phase modulation formats compared with conventional QPSK and BPSK using coherent detection. Chinese Optics Letters.2010,8(9),856-858
    [68]D. I. S. Agency. Department of Defense interface standard, interoperability standard for single-access 5-kHz and 25-kHz UHF satellite communications channels. Military Communications Conference Proceedings.1999,2,1333-1337
    [69]L. Li, M. K. Simon. Performance of Coded OQPSK and MIL-STD SOQPSK with Iterative Decoding. IEEE Transactions on Communications.2004,52(11), 1890-1900
    [70]刘学文,林永照,吴成柯.成形正交相移键控及其最佳接收机的设计.电讯技术,2007,47(5),46-50
    [71]M. Seimetz, C-M. Weinert. Options, Feasibility, and Availability of 2×4 90° Hybrids for Coherent Optical Systems. Journal of Lightwave Technology.2006,24(3), 1317-1322
    [72]廖延彪.偏振光学.科学出版社,2003
    [73]F. Yaman, G.Li. Nonlinear Impairment Compensation for Polarization-Division Multiplexed WDM Transmission Using Digital Backward Propagation. IEEE Photonics Journal.2009,1(2),143-152
    [74]E. Mateo, L. Zhu, G. Li. Impact of XPM and FWM on the digital implementation of impairment compensation for WDM transmission using digital backward propagation. Optics Express.2008,16(20),16124-16137
    [75]杜建新.色散管理波分复用系统中的简并四波混频噪声.光学学报.2009,29(9),2361-2367
    [76]E. Ip, J.M.Kahn. Digital Equalization of Chromatic Dispersion and Polarization Mode Dispersion. Journal of Lightwave Technology.2007,25(8),2033-2043
    [77]John G Proakis, Dimitris G.Manolakis.数字信号处理(第四版).方艳梅,刘永清译.电子工业出版社,2007
    [78]R. Kudo, T. Kobayashi, K. Ishihara, et al. Coherent Optical Single Carrier Transmission Using Overlap Frequency Domain Equalization for Long-Haul Optical Systems. Journal of Lightwave Technology.2009,27(16),3721-3728
    [79]K. Kikuchi. Polarization-demultiplexing algorithm in the digital coherent receiver. In Proc:Digest of the IEEE/LEOS Summer Topical Meetings.2008,101-102
    [80]S. J. Savory. Digital filters for coherent optical receivers. Optics Express.2008, 16(2),804-817
    [81]A. Gnauck, P. Winzer. Optical phase-shift-keyed transmission. Journal of Light-wave Technology.2005,23(1),115-130
    [82]Y. Shao, S. Wen, L. Chen, et al. A staggered differential phase-shift keying modulation format for 100 Gbit/s applications. Optics Express.2008,16(7),12937-12942
    [83]L. Binh.数字光通信.朱勇,项鹏,王永强等译.电子工业出版社,2011
    [84]B. C. Sarker, S. P. Majumder. Performance limitations of an optical heterodyne CPFSK transmission system due to self-phase modulation. Optics & Laser Technology.2002,34(4),307-312
    [85]T. Sakamoto, T. Kawanshi, T. Miyazaki, et al.10-Gb/s External Modulation in Optical CPFSK Format. IEEE Photonics Technology Letters.2006,18(8),968-970
    [86]T. F. Detwiler, S. M. Searcy, A. J. Stark, et al. Avoiding Fiber Nonlinearities by Choice of Modulation Format. In:Coherent Optical Communication:Components, Subsystems and Systems.2011,79600I-79600I-7
    [87]何晶,刘丽敏,陈林等.基于马赫-曾德尔调制器的先进调制格式的产生.中国激光.2008,35(8),1185-1190
    [88]F. Derr. Coherent Optical QPSK intradyne system:concept and digital receiver realization. Journal of Lightwave Technology.1992,10(9),1290-1296
    [89]G-W. Lu, T. Sakamoto, A. Chiba, et al. Optical minimum-shift-keying transmitter based on a monolithically integrated quad Mach-Zehnder in-phase and quadrature modulator. Optics Letters.2009,34(14),2144-2146
    [90]T. Sakamoto, T. Kawanishi, M. Izutsu. Optical minimum-shift keying with external modulation scheme. Optics Express.2005,13(20),7741-7747
    [91]A. Hachmeister, M. Nolle, L. Molle, et al. Performance comparison of MSK and QPSK optical long haul DWDM transmission with coherent detection. Optics Express.2012,20(4),3877-3882
    [92]齐鸣,张新亮,黄德修.可调马赫-曾德尔干涉仪型差分相移键控解调器.2006,33(12),1643-1647
    [93]J. G. Proakis. Digital Communications,(4th edition). New York:McGrawHill,2000
    [94]I. E. Williams, M. Saquib. Linear Frequency Domain Equalization of SOQPSK-TG for Wideband Areonautical Telemetry Channels. IEEE Transactions on Areospace and Electronics Systems.2013,49(1),640-647
    [95]P. Chandran, E. Perrins. Symbol Timing Recovery for CPM with Correlated Data Symbols. IEEE Transactions on Communications.2009,57(5),1265-1270

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700