用户名: 密码: 验证码:
察尔汗盐湖低品位固体钾矿驱动溶解液化开采试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钾盐是农用钾肥的生产原料,我国是一个农业大国,但钾肥的对外依存度却高达70%以上。钾肥的短缺已成为制约我国农业发展的瓶颈因素之一。
     已有资料显示(王石军,1995),察尔汗矿区部分固体钾盐因1989年特大洪水已被溶解转化为液体矿,即天然的低品位固体钾盐发生液化,进入了卤水中,证明固体钾矿可以转化为液体钾矿。
     论文选择察尔汗盐湖的西部别勒滩区段固相钾盐为主要研究对象,分别在2007年6月-9月和2011年11月-2012年3月,开展了两次野外现场驱动溶矿试验。野外试验面积约1km2,历时3-4个月。
     论文介绍了察尔汗盐湖的地质条件和野外试验概况,然后分析了试验过程中的监测数据,研究了溶矿过程中水动力场和水化学场的变化。本文也对比了两次试验的异同。研究表明,试验区中监测孔水位的变化受补水渠变化的控制,越靠近补水渠,受其影响越明显;补水渠三维流的影响距离小于50m,离开补水渠50m的距离,地层中晶间卤水流动即已成为水平。在驱动溶矿过程中,一定深度范围内垂向上各离子浓度相差不大。离开补水渠相同距离,横向上的离子浓度也相差不大。在驱动溶解开采条件下,同一监测孔中10m~15m以上的离子浓度基本相同。溶矿过程符合李文鹏(李文鹏,1991)和郝爱兵(郝爱兵,1997)在博士论文中划分的阶段,但同时也有一定的差异。在驱动开采条件下,水力坡度得到了提高,从而盐溶流也变得更明显,溶塌有缝隙的地层。增程驱动模式能够有效提高晶间卤水水位,截断优势流。溶剂中石盐、钾石盐、光卤石的活度积较低,处于不饱和状态,溶剂进入地层中后,溶解了地层中的矿物,三种矿物的活度积升高。开展溶矿试验前后地层中固体KCl含量对比研究,发现3个对比钻孔液化后地层中钾含量均明显降低,平均品位降低0.47%,溶矿率21.9%,野外试验证实,使用涩聂湖湖水作为溶剂进行溶矿效果良好。
Sylvite is the raw material of agricultural potash. China is a large agriculturalcountry, but the dependence on foreign potash was as high as70%or more. Thepotash shortage has become a bottleneck that restricting the development of China'sagricultural factor.
     Some research(Wang Shijun,1995) suggest that solid potassium in Qarhan saltlake have been dissolved into liquid brine due to the devastating floods of1989.Natural low-grade solid potash liquefied into the brine proved that it is possible toconvert solid potassium to liquid potassium. The same time, the previous series oftheoretical studies(Li Wenpeng,1991) and laboratory experiments studies(Sun Dapeng,1995; Hao Aibing,1997; Hao Aibing,2003) confirmed solid potassium ore is soluble
     The author choosed Bieletan Area as the main study area and carried out2experiments in june,2007to september,2007and November,2011to March,2012respectively. The experiment area is about1km2, and the experiment last for3to4months.
     This paper introduces geological conditions in Qarhan Salt Lake and overview oftwo field tests. The paper analysed the monitoring data in the experiment and studiedthe change of hydrodynamic field and hydro-chemical field in the process ofdissolving and driving. This paper also compares the similarities and differences ofthe two experiments. Study shows that,50meters away from complement drains,intergranular brine flow has become horizontal.Studies shows that, within a certaindepth, the ion concentrations are same in different depth in the driving and dissolvingprocess. The same disstance to the drain, the same ion concentrations. The dissolvingand driving process in the field experiment conform to Li Wenpeng's (Li Wenpeng,1991) and Hao Aibing's (Hao Aibing,1997) stage in their doctoral thesis, but somedifferences also exists. Halite, sylvite, carnallite activity product in solvent is low,afterthe solvent goes into the formation, the formation of dissolved minerals, the activityof three minerals elevated. The hydraulic gradient improved in the driving and dissolving process, so the karst streams become more apparent. Liquefied stratapotassium levels were significantly lower average grade of0.47percent lower,dissolved minerals rate of21.9%The extended-range driving and dissolving modecan effectively improve the intergranular brine water level. The field tests confirmedthat the Seniehu lake is very effictive as solvent to dissolve solid mineral.
引文
Bronsted, J. N.,1922, Studies on solubility. IV. The principle of the specificinteraction of ions, J. Ameri. Chem. Soci.,44(5),877-898
    Felmy, A. R. and J. H.Weare,1986. The prediction of borate mineral equilibria innatural water:Application to Searles Lake,California [J]. Geochim. Cosmochim.Acta,50:2771-2783
    Felmy, A. R., and J. H. Weare,1990, Calculation of multicomponent ionicdiffusion from zero to high concentration: I. The system Na-K-Mg-Ca-Cl-SO4-H2O at25℃, Geochim. Cosmochim. Acta,55,113-132
    Felmy, A. R., and J. H. Weare,1990, Calculation of multicomponent ionicdiffusion from zero to high concentration: II. Inclusion of associated ion species,Geochim. Cosmochim. Acta,55,133-144
    Greenberg, J. P. and N. Moller,1989, The prediction of mineral solubilities innatural water: A chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2Osystem to high concentration from0to250℃, Geochim. Cosmochim. Acta,53,2503-2518
    Gueddari, M., C. Monnin, D. Perret, B. Bertrand and Y. Tardy,1983,Geochemistry of brines of the Chott E1Jerid in Southern Tunesia—Application ofPitzer’s equations, Chem. Geology,39,165-178
    Harvie,C. E.,N. Moller and J. H. Weare,1984. The prediction of mineralsolubilities in natural water: the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO-CO3-CO2-H2Osystem to high ionic strengths at25℃[J]. Geochim. Cosmochim. Acta,48:723-751.
    Harvie,C. E. and J. H. Weare,1980. The prediction of mineral solubilities innatural water: the Na-K-Mg-Ca-Cl-SO4-H2O system from zero to high concentrationat25℃[J]. Geochim. Cosmochim. Acta,44:981-997.
    Harvie, C. E., and J. H. Weare,1980, The prediction of mineral solubilities innatural water: the Na-K-Mg-Ca-Cl-SO4-H2O system from zero to highconcentration at25℃, Geochim. Cosmochim. Acta,44,981-997
    Harvie, C. E., N. Moller and J. H. Weare,;;Harvie,1984, The prediction ofmineral solubilities in natural water: the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at25℃, Geochim. Cosmochim.Acta,48,723-751
    Jennings, A.A., D.J. Kirkner, and T.L. Thers,1982.Multicomponent equilibriumchemistry in groundwater quliaty models, Water Resour. Res.,18(4):1089-1096
    Khoo, K. H., C. Chan, and T. K. Lim,1977a, Thermodynamics of electrolytesolutions. The system HCl+MgCl2mixture, from5℃to45℃, J. Solution Chem.,9,457-465
    Khoo, K. H., C. Chan, and T. K. Lim,1977b, Activity coefficients in binaryelectrolyte mixtures HCl-Mg-Cl2-H2O at209.15K, J. Solution Chem.,6,855-864
    Li Wenpeng,2008,Numerical Modelling of Dissolving and Driving Exploitationof Potash Salt in the Qarhan Playa—A Coupled Model of Reactive Sloute Transportand Chemical Equilibrium in a Multi-component Underground Brine System[J],82(5):1070-1082
    Moller, N.,1989, The prediction of mineral solubilities in natural water: Achemical equilibrium model for the Na-Ca-Cl-SO4-H2O system, to hightemperature and concentration, Geochim. Cosmochim. Acta,52,821-837
    Pabalan, R. T. and K. S. Pitzer,1987, Thermodynamics of concentratedelectrolyte mixtures and the prediction of mineral solubilities to high temperatures formixtures in the system Na-K-Mg-Cl-SO4-OH-H2O, Geochim. Cosmochim.Acta,51,2429-2443
    Pitzer, K,S.,1973, Thermodynamics of electrolytes. I. Theoretical basis andgeneral equations, J. Physi. Chem.,77(2),268-277
    Pitzer, K. S.,1975, Thermodynamics of electrolytes. V. Effects of higher-orderelectrostatic terms, J. Solution Chem.,249-265
    Pitzer, K. S., and G. Mayorga,1973, Thermodynamics of electrolytes. II. Activityand osmotic coefficients for strong electrolytes with one or both ions univalent, J.Physi. Chem.,77(19),2300-2308
    Pitzer, K. S., and G. Mayorga,1973, Thermodynamics of electrolytes. III.Activity and osmotic coefficients for2-2electrolytes, J. Solution Chem.,3(7),539-546
    Pitzer, K. S., and J, Kim,1974, Thermodynamics of electrolytes. IV. Activity andosmotic coefficients for mixed electrolytes, J. Ameri. Chem. Soci.,96(18),5701-5707
    Pitzer, K. S., J. C. Peiper and R. H. Busey,1984, thermodynamic properties ofaqueous sodium chloride solutions, J. Phys. Chem. Ref. Data,13,1-102
    Regers, P. S. Z. and K. S. Pitzer,1981, High-temperature thermodynamicproperties of aqueous sodium sulfate solutions, J. Phys. Chem.,85,2886-2895
    Spencer, R. J., N. Moller and J. H. Weare,1989, The prediction of mineralsolubilities in natural water: A chemical equilibrium model for the Na-K-Ca-Mg-Cl-SO4-H2O system at temperature below25℃, Geochim. Cosmochim. Acta,54,575-590
    Westall, J. C., J. L. Zachary, and F. M. M. Morel,1976, MINEQL—A computerprogram for the calculations of chemical equilibrium composition of aqueoussystems, Tech. Note18
    White, D. R., and R. G. Bates,1980, Osmotic coefficients and activitycoefficients of aqueous mixture of sodium chloride and sodium carbonate at25℃,Aust. J. Chem.,33,1903-1908
    Witfield, M.,1974, An improved specific interaction model for seawater at25℃and1atmosphere total pressure, Mar. Chem.,3,197-213
    Yeh, G. T., and V. S. Tripathi,1989, A critical evaluation of recent development inhydrogeochemical transport models of reactive multichemical components, WaterResour. Res.,25(1),93-108
    地矿部环境地质研究所,1993,察尔汗盐湖开发试验补充研究报告[R]
    郝爱兵,李文鹏,2003,Pitzer理论在变温高浓卤水体系地球化学平衡研究中的应用[J],盐湖研究,11(3):24-30
    郝爱兵,溶解驱动开采察尔汗盐湖固体钾矿的室内试验研究[D],1997,北京,中国地质大学(北京)博士论文
    黄子卿,1980,电解质溶液-Debye-Huckel理论的新进展[J],化学通报,No.5
    李文鹏,刘振英,1994.察尔汗盐湖溶解驱动开采钾盐的数值模型研究——多组分地下卤水系统反应溶质输运和平衡化学耦合模型研究[A],第六届国际盐湖会议论文集[C],地质出版社
    李文鹏,1991,察尔汗盐湖溶矿驱动开采模型及其软件开发[D],中国地质科学院
    李文鹏,刘振英,1995,察尔汗盐湖地区环形槽排卤抽卤试验的数值模拟[J],河北地质学院学报,18(6):551-557
    李文鹏等,1995,中国西北典型干旱区地下水流系统[M],地震出版社
    青海地质矿产局第一地质水文地质大队,1967a,察尔汗盐湖晶间卤水水化学报告[R]
    青海地质矿产局第一地质水文地质大队,察尔汗盐湖岩溶初步研究报告[R],1967b
    青海地质矿产局第一地质水文地质大队,1968,察尔汗盐湖钾镁盐矿床储量勘探报告[R]
    青海地质矿产局第一地质水文地质大队,1969,察尔汗盐湖钾镁晶间卤水及达布逊湖表卤水的水盐均衡研究报告[R]
    青海地质矿产局第一地质水文地质大队,1986,中华人民共和国区域水文地质普查报告(120万),盐湖幅J-46-(29)和达布逊幅J-46-(30)
    青海盐湖勘查开发研究院,1990,青海省察尔汗盐湖淡卤水回灌溶解驱动试验报告[R]
    沈振枢等,1993,柴达木盆地第四纪含盐地层划分及沉积环境[M],地质出版社
    孙大鹏,吕亚萍,1995,察尔汗盐湖首采区卤水溶解光卤石实验的初步研究[J],盐湖研究,3(4):40-43
    王石军,2005,察尔汗盐湖钾镁盐矿床可采储量特征及其开采探讨[J],化工矿物与加工,1:30-32
    王文祥,李文鹏,2010,察尔汗盐湖低品位固体钾矿液化开采的现场试验研究探讨[J],矿床地质,29(4):697-703
    伍光和,1985,柴达木盆地,兰州大学学报专集,兰州大学学报编辑室编辑出版
    薛禹群,2003,地下水动力学[M],北京:地质出版社
    杨谦,吴必豪,王绳祖,蔡克勤,钱作华.察尔汗盐湖钾盐矿床地质[M].北京:地质出版社,
    于升松,2000.察尔汗盐湖首采区钾卤水水动态及其预测[M],北京:科学出版社,.
    袁见齐,蔡克勤,1991,肖荣阁.云南勐野井钾盐矿床石盐中包裹体特征及其成因的探讨[J].地球科学-中国地质大学学报,16(2):137-142.
    袁见齐,杨谦,孙大鹏,霍承禹,蔡克勤,王文达,刘训,1995.察尔汗盐湖钾盐矿床的形成条件[M].北京:地质出版社,52-64.
    郑绵平等,1989,青藏高原盐湖[M],北京科学技术出版社
    中国地质科学院矿产资源研究所,2010,青海别勒滩低品位固体钾盐液化开发的关键技术[R]
    中国科学院青海盐湖研究所,1990,察尔汗盐湖首采区采卤过程中水动态水化学变化规律,“七五”国家重点科技攻关项目专题研究报告[M]
    周训,方斌,陈明佑,张华,赵亮,沈晔,2006,青海省察尔汗盐湖别勒滩区段晶间卤水数值模拟[J],干旱区研究,23(2):258-263

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700