用户名: 密码: 验证码:
四轮全向移动足球机器人运动控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机器人作为人类最伟大的发明之一,长久以来一直受到国内外的研究人员的关注,而足球机器人的研究无疑是智能机器人研究中最具有挑战的研究课题之一。它涵盖了自动控制技术、计算机技术、电子技术、智能控制理论、传感器技术等诸多学科的知识,基如此使得对足球机器人的研究已经成为了人工智能和机器人学的研究热点。每年举办一次的RoboCup中型组足球机人比赛是典型的足球机器人的比赛平台。中型组机器人比赛既是高科技应用于娱乐的一种体现,也是培养是人工智能、自动化领域科技人才的重要窗口,同时也是促进足球机器人领域科技进步的有效途径,其研究意义深远而重大。
     随着近年来足球机器人比赛的热烈开展,吸引了越来越多的国内外大学投入更多人力物力到比赛中,各参赛队伍的水平也在逐年提高。然而比赛过程中足球机器人普遍存在中断不受控制、启动及制动较慢、无法到达预定位置、启动转矩较小、运行速度较小、动作的精度不高等问题。足球机器人要想在比赛中完成既定任务,必须要有一个控制精度高、稳定性好的运动控制系统。足球机器人的运动控制是指控制足球机器人按照预先规划好的运动轨迹运动,运动控制系统的对机器人的运动性能有最直接的影响。
     本文通过搜集国内外机器人运动控制系统相关研究及发展趋势的资料,对其进行充分的分析和综合。在此基础上,结合本人所在机器人实验室中四轮全向移动足球机器人的运动控制系统的设计,对机器人运动控制进行了较深入的研究,并对其运动控制系统进行研发。本文主要的研究内容如下:
     (1)机器人运动控制系统的体系结构与硬件设计
     分析了四轮全向移动足球机器人运动控制系统在硬件设计上的要求,采用了基于DsPIC控制器的足球机器人的运动控制系统体系结构。详细阐述了四轮全向移动足球机器人的运动控制系统相关硬件部分各功能模块的工作原理。硬件部分各模块主要包括:直流电机电机控制模块、四轮轮速分配控制模块、直流电动机的驱动模块、电动机编码盘接口模块、串行口通信模块、电源模块、电子指南针、陀螺仪、加速度传感器和带球机构。
     (2)机器人单自由度运动控制的研究
     由于机器人底层各轮子的直流电机控制系统在机器人运行过程中具非线性和时变形,传统的控制方法无法满足其控制要求,本文采用BP神经网络PID控制器对机器人单个自由度进行运动控制,在线利用神经网络的自学习实时的调整PID控制的三个参数,从而达到控制要求。
     (3)机器人四轮运动控制的研究
     建立机器人的运动学模型,并基于该模型采用模糊控制的方法对机器人的整体速度实时的进行修正,让机器人的总体速度误差最终转变为单个轮子的的误差。并通过实验比较采用误差补偿控制器与没有采用误差补偿控制的系统最终输出的结果,显示了此方法的可行性和实用性。
     最后进行本文课题研究进行了总结,说明了研究的最终成果,并对课题研究过程中需要改进之处提出了展望。
As one of the greatest inventions in human beings,robot always get researchers's attention at home and abroad, and research soccer robot is undoubtedly one of the most challenging of intelligent robot research subject. It covers the automatic control,computer, electronic intelligent control theory, the sensor technology and so on,so that the research of soccer robot has become to be focus in the artificial intelligence and robotics research. The Middle-size league of RoboCup that hold once a year is typical platform of robot soccer game.The game not only reflects high-tech apply in entertainment,but also as a window that foster talents in Artificial Intelligence and automation.Meanwhile,it is a effective way to improve the progress of science, the research is significance far-reaching and significant.
     In recent years, with the game in a hotness, attracting more and more domestic and international university who put more manpower material resources into the game, and the level of every team also increases year by year. But in the process of game,soccer robot often happens some condition like:interrupt by control, start and brake slower, can't arrive at the scheduled position, start torque lesser, speed lesser, the precision of the action and so on.If soccer robot wants to complete task in the game, it must have a control system that with a high control accuracy and good stability. Robot soccer movement control is mean that control soccer robot to move in advance in accordance with the planned trajectory, motion control system directly impact on performance.
     By collecting relevant information on the research of motion control system and development tendency at home and abroad,this paper analyse and synthesize those material fully. On this basis, combining with the research of motion control system for four Omni-directional mobile soccer robot where I did in my laboratory, do in-depth research and development in the motion control of the robot. In this paper the main research contents are as follows:
     (1)The design of structure and hardware for the motion control system
     Analyzes the hardware design requirements of the omnidirectional mobile round robot control system, the football the movement control system use DsPIC controller as its structure. Expounds related hardware parts function module's principle of work in the motion control system of four Omni-directional mobile soccer robot. Hardware module mainly includes:dc motor control module, four-wheel speed distribution module, dc electrical motor driving module, interface of motor coding dish module, serial port communication module, power modules, electronic compass, the gyroscope, acceleration sensor and dribbling institutions.
     (2) Research of Robot Single Freedom Movement Control
     Because the operation process of dc motor control system with nonlinear and deformation, traditional control method can not meet its control requirements, so this paper use BP neural network PID controller to control robot single freedom movement,PID controller can adjust three parameters by using neural network self-learning online, so as to achieve the control requirements.
     (3) Research of Robot Four-wheel Motion Control
     Establish the kinematics model of robot, and change the overall speed based on fuzzy control, let general speed error change into error of single wheel eventually. And final output results of control system which has error compensation controller or not will be compared through the experimental,so method is feasible and practical.
     The last is summarized, and list research results, also show the place where need improvement during the research.
引文
[1]蔡自兴.机器人学[M].北京:清华大学出版社,2000.
    [2]Papadopoulos E. Planning and Model-Based Control for Mobile Manipulators [R]. New Jersey:IEEE Proc.Robots and System,2000.
    [3]Jacques Ferber. Multi-Agent Systems[M]. New York:The second Edition. Published in the United States of American by Addison Wesley Longman Inc,1999.
    [4]Bernardo Huberrnan, H.Clearwater. A Multi-agent System for Controlling Building Environment[J]. Proceedings of the First International Conference on Multi-agent Systems.1995:171-176.
    [5]宋健.智能控制——超越世纪的目标[R].北京:中国工程科学,1999.
    [6]迈克普瑞德科著,宗光华译.机器人控制器与程序设计[M].北京:科学出版社,2004.
    [7]A.K. Mackworth. On Seeing Robots. University of British Columbia. Technical Report. TR-93-05.1993.
    [8]A.K. Mackworth. On Seeing Robots. Computer Vision:Systems, Theory, and Applications. World Scientific Press, Singapore,1993:1-13.
    [9]RoboCup official home page. http://www.robocup.org.
    [10]H. Kitano, M. Asada, Y. Kuniyoshi. RoboCup:The Robot World Cup Initiative [R]. Proceedings of the International Conference on Autonomous Agents,1997: 340-347.
    [11]FIRA official home page, http://www.fira.net/,2006,7.
    [12]Middle Size League, http://www. robocup2009. org/214-0-general,2009,6.
    [13]Minoru Asada, Hiroaki kiano etal. RoboCup:Today and tomorrow What we have learned.[J]. Artificial lntelliegnce,1999(110):193-214.
    [14]GERHARD W. Multiagent System:A Modern Approach to Distributed Artificial Intelligence[M]. Boston:MIT Press,1999.
    [15]HIROKIK, MINORU A, YASUOK, et al.RoboCUP:a challenge problem for AI and robotics [A]. Hirokik.RoboCup-97:Robot Soccer World Cup[C]. Berlin: Springer,1998.
    [16]Robocup Middle Size League, http://www.er.ams.eng.osaka-u.ac.jp/robocup-mid/index.cgi,2007,4.
    [17]张翮,熊蓉,褚健等.一种全方位移动机器人的运动分析与控制实现[J].浙江大学学报::工学版,2004,38(12):1650-1653.
    [18]何泽宇,付庄,曹其新等.具有输入饱和特性的中型足球机器人运动控制研究[J].计算机工程与应用,2003(18):105-107.
    [19]国防科技大学NuBot机器人足球队,http://www.nubot.com.cn,2006,10.
    [20]Lima, P; Balch, T; Fujita, M; Rojas, R.; Veloso, M.; Yanco, H.A. RoboCup 2001 [J]. Robotics & Automation Magazine,2002, Page(s):20-30.
    [21]Yasunori Takemura, Amir A.F.Nassiraeil,Tetsuya Kaneko,Ivan Godler. Hibikino-Musashi Team Description Paper[C].2007.
    [22]T.Ichinose, Y.Takemura, K.Azeura, I.Godler. Robocup中型组全向移动机器人 控制[J]. Development of omni-directional mobile robot fo r Hibikino-Musashi middle size league team,2009,12(76):75-82.
    [23]A.A.F.Nassiraei. "Concept of Intelligent Mechanical Design for Autonomous Mobile Robots" [D]. Kyushu Institute of Tech., Ph.D thesis,2007.
    [24]陈刚,程荫杭.基于TMS320F2812的移动机器人运动控制系统[J].电气时代,2006,(7):52-54.
    [25]戎海龙,自主式足球机器人运动控制系统设计与完善[D].东北大学硕士论文,2006.
    [26]刘金琨著.先进PID控制MATLAB仿真(第二版)[M].北京:电子工业出版社,2004.
    [27]沈永福,吴少军,邓方林.智能PID控制综述[J]工业仪表与自动化装置,2002,6(11):11-13.
    [28]牟学刚,朱劲,蒋平.三轮全向足球机器人结构设计与系统模型研究[J].机械与电子,2006,(5):38-41.
    [29]王学慧,柳林.足球机器人小车总体设计思想及其单片机选型[J].机器人技术与应用,2001(5):10-14.
    [30]让余奇,蔡汉强,录军勇,等.基于双单片机通信的无刷直流电动机控制系统[J].电子技术应用,2002,28(3):10-12.
    [31]刘和平,郑群英,江渝,等dsPIC通用数字信号控制器原理及应用——基于dsPIC30F系列[M].北京:北京航空航天大学出版社,2007.
    [32]张培仁,张志坚,郑旭东,等.基于16/32位DSP机器人控制系统设计与实现[M].北京:清华大学出版社,2006.
    [33]陈伯时.电力拖动自动控制系统——运动控制系统(第3版)[M].北京:机械工业出版社,2005.
    [34]王晓明,王玲.电动机的DSP控制——TI公司的DSP应用[M].北京:北京航空航天大学出版社,2004.
    [35]王永骥,涂健.神经元网络控制[M].北京:机械工业出版社,1998.
    [36]刘迪,赵建华.一种基于BP神经网络模型的自适应PID控制算法[J].自动化技术与应用,2008,7(8):8-10.
    [37]李广军,张晶,曾安平.基于BP神经网络的PID控制器研究[J].计算机仿真,2009,26(9):128-130.
    [38]王哲,屈百达.BP神经网络在永磁同步电机中的应用[J].计算机仿真,2009,26(8):155-157.
    [39]王晓明.电动机的单片机控制[M].北京:北京航空航天大学出版社,2002
    [40]许力.智能控制与智能系统[M].北京:机械工业出版社,2007,2
    [41]LUCA C, ALESSANDRO D L, STEFANO I, Trajectory tracking control of a four-wheel differentially driven mobile robot [C]. International Conference on Robotics and Automation.Detroit, MI, USA:IEEE,1999:2632-2638.
    [42]熊蓉,张翮,褚健,何臻峰,吴永海.四轮全方位移动机器人的建模和最优控制[J].控制理论与应用,2006,23(1):93-98.
    [43]何效飞,杨宜民.基于模糊自适应控制的全向移动机器人的运动控制研究[J].计算机与现代化,2012,9.
    [44]陈启军,王月娟,陈辉堂.基于PD控制的机器人轨迹跟踪性能研究与比较[J].控制与决策,2003,18(1):53-57.
    [45]刘卫国.MATLAB程序设计与应用(第二版)[M].北京:高等教育出版社,2006.7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700