用户名: 密码: 验证码:
基于DSP-PIC的数字化双丝MIG焊控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
造船焊接技术是现代船舶制造的关键工艺技术,焊接效率直接影响到造船周期和船舶建造成本。目前,造船工业中大量使用的FCB法焊接,焊接条件范围窄,焊接设备复杂,生产成本比较高,而且也存在质量隐患。因此研究开发一种新型的高效焊接方法来替代FCB法,对造船厂钢板焊接质量的提高和生产成本的降低有一定的实际意义。本文在理论分析的基础上,提出了一套基于DSP-PIC的双丝MIG焊控制系统,对于提高焊接效率和焊接质量,从而替代FCB法焊接具有重大的意义。
     首先从电弧形态、熔滴过渡以及熔池特点三个方面分析了单丝和双丝MIG焊机理,确定了双丝MIG焊系统总体方案采用主从式协调控制方式。对于每台弧焊电源,信号的处理依靠DSP芯片TMS320F2812完成,工艺参数的设置管理由PIC16F877A单片机实现,DSP与PIC之间采用异步串口通信,主从DSP控制系统之间采用CAN总线通信,CAN总线通信以其结构简单、可靠性强、实时性和灵活性好的特点保证主从系统协调正常工作。
     结合整个双丝MIG弧焊电源的功能和作用,设计了控制系统硬件电路部分,包括:以DSP为核心的PWM信号发生电路、IGBT驱动电路、信号采样与反馈电路、送丝电路、故障检测与保护电路等;采用PIC单片机控制键盘输入、液晶与数码管显示,通过个性化控制面板对了对焊接工艺参数进行设置和管理。
     然后针对DSP和PIC控制的硬件系统,分别在CCS3.3和MPLAB7.50集成开发环境下编制了相应的软件程序,以实现DSP-PIC各项控制功能,编制的软件程序包括:系统初始化程序、焊接主程序、A/D转换程序、中断服务程序、键盘扫描程序、液晶显示和数码管显示程序等。
     最后对硬件软件系统进行了调试试验,试验验证了设计的方案可行。DSP产生了理想的PWM输出波形以驱动功率开关器件IGBT,通过液晶显示和多级菜单式操作实现了DSP-PIC式数字化MIG焊参数设置和管理,实现了双DSP之间的协调通信,控制两套DSP系统产生同步、异步和随机的波形,从而保证工作在同步、异步和随机三种模式下。通过对焊接试验场所干扰源的分析,文章中也进行了相应的硬件和软件抗干扰设计。
Welding technology was the key technology in modern shipbuilding, and the welding efficiency directly affected the cost of shipbuilding and shipbuilding cycle. Currently, the FCB welding was widely used in the shipbuilding industry. But it had many shortcomings of narrow soldering conditions, complex welding equipment, high production costs, and quality problems. Therefore, it had some practical significance to research and develop a new efficient welding method to replace the FCB method which would improve the welding quality of steel plate and reduce the production costs. In this paper, based on the theoretical analysis, a set of DSP-PIC based on the double wire MIG welding control system was proposed, for improving the welding efficiency and welding quality, and this had a great significance to replace the FCB welding method.
     Firstly, single-wire and double-wire pulsed MIG welding theory were analyzed from the arc shape, the droplet transfer, and the pool characteristic, and the overall program of the double-wire pulsed MIG welding system had been identified, which was coordinated by master-slave controlling mode. For each of the arc welding power sources, TMS320F2812 DSP chip was responsible for signal processing,and PIC16F877A microcontroller was responsible for establishment and management of the process parameters. Asynchronous serial communication had been used between DSP and PIC,and CAN bus communication protocol was used between the master and the slave DSP system. For the simple structure, good reliability, timeliness and good flexibility, CAN bus ensure the master-slave system work coordinately.
     Based on the function of the whole double-wire MIG welding power, controlling circuit system had been designed containing the DSP as the core, PWM signal generating circuit, IGBT driving circuit, the signal sampling circuit and feedback circuit, wire driving circuit, fault detecting and protecting circuits and some other hardware. PIC microcontroller had been used for parameter input and output, controlling the keyboard and LCD and digital tube display, and through personalized control panel showed the management of welding parameters.
     Then according to DSP and PIC system, software programs had been developed respectively in CCS3.3 and MPLAB7.50 environments to achieve the controlling functions of DSP-PIC. Compiled programs included system initializing program, the main welding program, A/D conversion program, interrupt service routine, keyboard scanning program, LCD and digital displaying programs.
     Finally, simulated experiments for hardware and software of the system had validated the feasibility of the design. DSP had generated the ideal PWM output waveform for driving the power switching devices IGBT. Through the liquid crystal display and multistage menu type operation it realized DSP-PIC digital MIG welding parameter setting and management. It had realized coordination communication between the the double DSPs, and controlled two sets of DSP systems producing synchronous and asynchronous and random waveform, thereby ensuring the system could work in the three modes. Considering the interference sources in welding sites, the corresponding hardware and software anti-interference had been designed.
引文
[1]方臣富,李晓泉,陶永宏.船舶焊接设备的应用现状及发展[J].电焊机,2006,35(6):43-46
    [2]石玗,李妍,黄健康,等.高效MIG/MAG焊的研究与发展[J].电焊机,2008,38(12):6-10
    [3]岑越,王欢,浦娟.FCB法三丝单面埋弧自动焊焊接冶金反应分析[J].金属铸锻焊技术,2010,39(1):136-138
    [4] J. Nadzam. Tandem GMAW Offers Quality Weld Deposits, High Travel Speeds[J]. Welding Journal, 2003, (11): 28-31
    [5] K. Michie, S. Blackman, T.E.B. Ogunbiyi. Twin-Wire GMAW Process Characteristics and Applications[J]. Welding Journal, 1999, (5): 31-34
    [6]胡特生.电弧焊[M].北京:机械工业出版社,1994:95-96
    [7]吴开源,黄石生,李星林,等.基于DSP的GMAW-P焊数字化控制系统[J].焊接学报,2007,28(11):41-44
    [8]曹梅青,邹增大,张顺善,等.双丝电弧焊研究现状及进展[J].山东科技大学学报(自然科学版),2008,27(2):88-92
    [9]魏占静.先进的TANDEM高速高效MIG/MAG双丝焊技术[J].机械工人(热加工),2002,(5):22-37
    [10]王元良,周友龙,胡久富.高效节能的细双丝自动焊接工艺及设备的研究[J].电焊机,2002,32(3):9-12,29
    [11]黄石生,李远波,蒋晓明,等.协同控制的软开关逆变式双丝脉冲MIG弧焊电源[P].ZL 200610036105.8,2008-07-09
    [12]黄石生,蒋晓明,薛家祥,等.双丝高速软开关脉冲MAG焊装备[J].焊接学报,2007,28(3):5-8
    [13]孙勃,李桓,高莹.多丝MIG/MAG脉冲焊接控制方法[J].电焊机,2009,39(7):77-80
    [14] M. Amin. Synergic Pulse MIG Welding[J]. Metal Construction, 1981, (6): 349-353
    [15] W.G Essers, M.R.M. Gompel. Arc Control with Pulsed GMA Welding[J]. Welding Journal, 2004, (6): 26-32
    [16] H. Holm, H.C.E. Kjeldsen, J.K.Kristensen. A reference Architecture for the Design of an Industrial Temperature Feedback Welding Control System[J]. Journal of Materials Processing Technology, 2003, 139(3): 499-504
    [17] D.S. Naidu, S. Ozcelik, K.L. Moore. Gas Metal Arc Welding: Automatic Control[J]. Modeling, Sensing and Control of Gas Metal Arc Welding, 2003, (7): 147-218
    [18]黄石生.弧焊电源及其数字化控制[M].北京:机械工业出版社,2008:228-251
    [19] S.C. Tong, C.Y. Li, Y.M. Li. Fuzzy Adaptive Observer Backstepping Control for MIMO Nonlinear Systems[J]. Fuzzy Sets and Systems, 2009, 160(19): 2755-2775
    [20] Y. Xue, I.S. Kim, J.S. Son, et al. Fuzzy Regression Method for Prediction and Control the Bead Width in the Robotic Arc-Welding Process[J]. Journal of Materials Processing Technology, 2005, 164: 1134-1139
    [21]艾盛,王坚.PMIG焊接电弧电压的模糊控制[J].电焊机,1993,23(5):1-5
    [22]赵举东,杨虹.脉冲MIG/MAG焊接熔滴过渡的自适应模糊控制[J].电力与自动化,1997,26(1):14-18
    [23]孙栋,赵举东,赵家瑞.智能控制MIG焊熔滴过渡[J].电焊机,1996,26(2):11-14
    [24] C. Hua. Two-level Switching Pattern Deadbeat DSP Controlled PWM Inverter. IEEE[J]. Trans Power Electr. 1995, 10(5): 310-317
    [25]熊蕊,朱秋花,王国锋.SPWM逆变电源输出电压波形重复控制技术的研究[J].电力电子技术,2001(2):45-47
    [26] C.Q. Huang, X.F. Peng, J.P. Wang. Robust Nonlinear PID Controllers for Anti-windup Design of Robot Manipulators with an Uncertain Jacobian Matrix[J]. Acta Automatica Sinica, 2008, 34(9): 1113-1121
    [27]王永骥,涂健.神经元网络控制[M].北京:机械工业出版社,1998:71-73
    [28] U. Dilthey. On-line Quality in Gas Shielded Metal Arc Welding Using Artificial Nrural Networks[J]. Welding and Cutting. 1997, 49(2): 22-24
    [29]赵举东,杨虹,肖锦辉.机器人用弧焊逆变弧焊的神经元网络控制研究[J].电子技术应用,1997,23(7):13-16
    [30]陈建章.无差拍逆变器的研究与实现[D].南京航空航天大学博士学位论文,1997:5-10
    [31] T. Kawamura, Y. Loyama. Comparison of Five Approaches for Real Time Digital Feedback Control of PWM Inverter[J]. IEEE Ind. Appl. Society Conf. 1990, (2): 1005-1011
    [32]刘嘉,卢振洋,殷树言,等.电焊机的数字化[J].焊接学报,2002,23(1):88-92
    [33]刘嘉,殷树言,丁京柱.数字化焊机及其特点[J].电焊机,2001,31(6):8-10
    [34]殷树言,刘嘉,闫思博.在展会启发下对数字化焊机的发展提出几点思考[J].金属加工,2009,(2):16-22
    [35]陈翔宇,江和.单片机与DSP结合的dsPIC芯片[J].新器件新技术,2003,(7):46-48
    [36]唐刚.数字化焊机控制系统的研究[D].哈尔滨工业大学硕士学位论文,2006:10-48
    [37]朱志明,陈杰,赵港,等.充分发挥数字化控制的优势,全面提升焊接逆变电源的工艺性能和软开关适应性[J].电焊机,2009,39(1):90-96
    [38]李芳振.DSP控制的软开关数字化逆变焊接电源的研究[D].哈尔滨工业大学硕士学位论文,2007:8-50
    [39]殷树言,刘嘉,陈树君.2005年埃森焊接展览会观感[J].焊接技术,2006增刊:4-6
    [40] Y. Wang, H.L. Tsai. Impingement of Filler Droplets and Weld Pool Dynamics during Gas Metal Arc Welding Process[J]. International Journal of Heat and Mass Transfer, 2001, 44(11): 2067-2080
    [41] S. Zielińska, F. Valensi, N. Pellerin, et al. Microstructural Analysis of the Anode in Gas Metal Arc Welding (GMAW)[J]. Journal of Materials Processing Technology, 2009, 209(7): 3581-3591
    [42]冯雷,殷树言.高速焊接时焊缝咬边的形成机理[J].焊接学报,1999,20(1):17-21
    [43]孙丽明.TMS320F2812原理及其C语言程序开发[M].北京:清华大学出版社,2008:2-6
    [44] Microchip.PIC16F87X Data sheet,1999:10-15
    [45]李学海.PIC单片机实用教程—基础篇[M].北京:北京航空航天大学出版社,2008:13-45
    [46]李学海.PIC单片机实用教程—提高篇[M].北京:北京航空航天大学出版社,2005:42-339
    [47] TMS320F28X PWM Full Compare in Asymmetric Mode. Texas Instruments Inc., 2003
    [48] TMS320F28x DSP Event Manager (EV) Reference Guide. Texas Instruments Inc., 2003
    [49] Power Drive Protection Interrupt on the TMS320F28X. Texas Instruments Inc., 2003
    [50] TMS320F28x DSP System Control and Interrupts Reference Guide. Texas Instruments Inc., 2003
    [51]黄石生,李远波,吴祥淼,等.大功率弧焊逆变器的电磁兼容性设计研究[J].电焊机,2003,33(5):11-13
    [52]张平.逆变电源的系统稳定性及高频干扰抑制问题[J].电力电子技术,1996,30(3):14-15
    [53]毛三可,毛欣可.逆变弧焊电源电磁干扰防护的探讨[J].电焊机,1996,26(4):11-13
    [54]孙建军,吴为民,许东卫.中高频微机测控电源中的干扰抑制措施[J].现代电子技术,2001,25(10):15-16,19
    [55]刘集杰,路登平,刘建屏,等.国内弧焊电源设备电磁兼容性研究进展[J].电焊机,2003,33(9):1-4
    [56] TMS320C28x Assembly Language Tools User’s Guide. Texas Instruments Inc., 2001
    [57]尹勇,欧光军,关荣锋,等.DSP集成开发环境CCS开发指南[M].北京:北京航空航天大学出版社,2003:8-26
    [58] A Software Modularity Strategy for Digital Control System. Texas Instruments Inc. 2000
    [59]刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2003:13-25
    [60]刘丁.自动控制理论[M].北京:机械工业出版社,2006:17-20
    [61]于洪洲,程建.51系列单片机软件抗干扰设计[J].集成电路系统,2007,25(2):16-17
    [62]刘宇,胥俊.数字控制逆变焊机抗干扰技术设计研究[J].中国水运,2007,5(11):184-185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700