用户名: 密码: 验证码:
电缆网运行方式及故障控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的快速发展,配电网建设不断增加,城市内线路走廊用地越来越少,征地所需费用也越来越昂贵,所以电缆敷设成为线路建设的主要方式。同时为了满足城市环境美化及供电可靠性的需要,城市配电线路也由原来的架空线路部分或者全部改为地下电力电缆线路。随着电力电缆在城区配网中所占比例越来越大,导致配电网容性电流不断增大,在单相接地故障发生时使故障电流增大,给设计部门及实际运行单位都带来了一定的困难。因为单相接地保护方式存在多种形式,而且对单相接地保护方式的选择一直存在较大争议,所以本文主要研究单相接地故障保护方式选择依据及其故障保护方式的综合评价方法,为设计和运行部门提供理论依据和参考。
     通过对电缆网存在的不同类型故障进行分析,得到不同类型故障产生的原因,并对电缆绝缘破坏到电缆发生燃烧的过程进行理论研究。在上述研究的基础上建立了永久性接地故障模型和弧光接地模型;使用受控制开关导通与关断单相接地电弧,及可变电阻模拟电弧电阻,基于电弧故障消失或转化的判据建立了电缆击穿至燃烧阶段的故障模型。模型的建立为单相接地故障计算分析提供了理论基础,且首次推导出电缆基于热因素的电弧烧毁模型,为保护方式响应时间对单相接地故障控制效果分析的计算打下基础。
     在电缆网故障模型建立的基础上,对影响单相接地故障分析的不同因素进行随机组合计算。经过分析上述计算结果得到了电缆网电容电流、接地电阻、接地点位置及接地保护方式对系统运行的影响程度。经过对比不同工况下系统的电压与电流,得到单相接地故障暂态过程中性点经小电阻接地保护方式最优,稳态过程基于分流装置保护方式最优的结论。
     在大量单相接地故障计算结果的基础上,建立了基于IAHP的单相接地故障综合评价方法。主要对不同电缆网单相接地故障保护方式进行分析,得出判别单相接地故障保护方式的判据;在建立综合评价层次结构的基础上,建立了层次决策表,利用两两比较法得到判断矩阵,经过对判断矩阵的一致性校验,求得总目标的综合权重,最后通过排序得到关于不同保护方式的综合评价权重。在此首次将IAHP应用于单相接地故障保护方式的评价方法,而且该方法可有效避免人为因素导致的误差,达到了准确评价故障保护方式的目的,从而为具体电缆网故障保护方式选择提供依据。
     为了验证不同保护方式对单相接地故障的控制效果及熄灭电弧的特性,搭建了基于380V供电系统的模拟实验台。系统中的元件参数均为采用10kV设备等值简化得到,试验证明实验平台可有效模拟10kV配电系统。采用PIC控制系统实现了对接地故障开始时刻及保护方式响应时间的准确控制。在模拟实验台上的试验证明了仿真计算结果及综合评价结果的正确性,验证了保护方式对单相接地故障控制效果及熄灭电弧的作用。
     在实际变电站进行了基于分流装置故障保护方式的接地试验,结果证明该接地保护方式在单相接地故障时有消弧和抑制过电压的作用,验证了基于IAHP综合评价结果的正确性。
With the economy developing rapidly, distribution network construction increases and land for line-corridors in the city is getting less and less, land costs are increasingly rising, so laying of cables become the main ways for line construction. Meanwhile, in order to meet the needs of the urban landscaping and power distribution reliability, urban distribution lines have been converted from the original overhead lines into underground power cable lines completely or partly. With the proportion of power cable in urban areas distribution network increasing quickly, capacitive current of distribution network is increasing gradually, so that fault current increases when single-phase ground fault occurs, and some difficulties have been brought to the actual operation units and the design departments to some extent. Because there are various kinds of single-phase protection ways, and a big controversy arises on the choices about single-phase protection way, in the paper, the methods of synthesis evaluation on the single-phase protection ways and the approaches to protecting it from fault were formulated, which was expected to provide a theoretical basis and reference to the actual operation units and the design departments.
     The causes resulting in different faults were obtained through analysis of different types fault models in cable networks, and the processes of cable insulation damage to burn was studied. Based on the study above, a permanent ground fault model and the arc grounding model were formulated; using a controlled switch turn-on and turn-off single-phase ground arc, and using variable resistor simulated arc resistance, the arc faults were established during the cable breakdown to burning based on the criterion of the fault disappearance or transformation. The model establishment provided a theoretic basis for calculation and analysis on single-phase ground fault, and the first cable arc burnout model based on thermal factors was derived, which was a basis for the calculation of the single-phase ground default control effect against protection methods response time.
     Based on the establishment of the cable network fault models, the factors affecting single-phase ground fault analysis were calculated in random combinatorial way. After analyzing the results of the cable network capacitive current, grounding resistance, ground point location and grounding protection methods on the degree of influence system operation have been obtained. After comparing the system voltage and current under different conditions, it’s found that the neutral grounding via low resistance mode protected systems best during transient process of single-phase ground fault, while during steady process based on shunt devices protected systems best.
     A large number of single-phase ground fault calculation results were used to establish a single-phase ground comprehensive evaluation based on IAHP. Through the analysis on different cable networks single-phase ground fault ways, the criterion of distinguish single-phase ground fault protection ways were obtained; based on establishing hierarchy structure of comprehensive evaluation, hierarchical decision-making table was set up, and judge matrix was obtained by using pairwise comparison, and consistency of matrix should be checked, and the comprehensive weight of overall goal was obtained, at last, the comprehensive evaluation weight of each protection way was obtained by collating. IAHP was applied to single-phase ground fault protection methods as an evaluation way for the first time in this paper, which can effectively avoid the errors caused by human factors and achieve fault protection approach purpose accurately and provide reference for the selection of protection means to specific cable network.
     In order to verify different protection methods on the control effects of single-phase ground fault and the characteristics of arc extinguish, simulation experiment platform was structured based on 380V power system. System component parameters were obtained through simplifying to be equivalents based on 10kV equipment, and the experiment proved that the experimental platform could effectively simulate 10kV distribution system. PIC control system was used to control the earth-fault beginning and protection mode response time accurately. The simulation experiments on the platform proved that the simulation results and the comprehensive evaluation results were correct, and verified the protection methods for single-phase ground fault controlling effects and extinguishing arc role.
     Grounding tests based on streaming device fault protection methods carried out in a substation, the results of which proved that the grounding protection methods played the role of arc-suppression and suppression over-voltage when single-phase ground fault occurred and verified the results of comprehensive evaluation based on IAHP correctness.
引文
[1]要焕年,曹梅月.电缆网络的中性点接地方式问题.电网技术,2003,27(2):84-89.
    [2]董振亚.城市配电网中性点接地方式的发展和改进.中国电力,1998,31(8):38-41.
    [3]林志超.中压电网系统中性点接地方式的选择与应用.高电压技术,2004,30(4):60-62.
    [4]要焕年,曹梅月.电力系统谐振接地.北京:中国电力出版社,2002.
    [5]刘明岩.配电网中性点接地方式的选择.电网技术,2004,28(16):86-89.
    [6] Andrei R G, Halley B R. Voltage transformer ferroresonance from an energy transfer standpoint[J]. IEEE transactions on Power Deliver, 1989, 4(3):1773-1778.
    [7]周浩,余宇红,张利庭,张元龙,楼其民.10kV配电网铁磁谐振消谐措施的仿真比较研究.电网技术,2005,29(25):24-34.
    [8]陈绍英,葛栋,常挥,刘刚,韩芳,鲁铁成.配电网超低频振荡的仿真计算研究.高电压技术,2004,30(5):18-20.
    [9]高亚栋,杜斌,赵峰,施围.中性点经小电阻接地配电网中弧光接地过电压的研究.高压电器,2004,40(5):345-348.
    [10] Araujo A E A, Soudack A C, Marti, J R. Ferroresonance in power systems: chaotic behaviour[J]. IEE Proceedings-Generation Transmission and Distribution, 1993, 140(3):237-240.
    [11] Andrei R G, Halley B R. Voltage transformer ferroresonance from an energy transfer standpoint[J]. IEEE transactions on Power Deliver, 1989, 4(3):1773-1778.
    [12]陈维江,蔡国雄,蔡雅萍,谭跃亭,张少军,周永志,王健民.10kV配电网中性点经消弧线圈并联电阻接地方式.电网技术,2004,28(24):56-60.
    [13]江渝.快速可连续调节消弧线圈谐振接地系统的研究:(博士论文).重庆:重庆大学,2005.
    [14]韩静,徐丽杰.中性点经消弧线圈瞬时并联小电阻接地研究.高电压技术,2005,31(1):38-40.
    [15]陆国庆,姜新宇,梅中健,周良才,芮冬阳,师冬霞,陈锐.配电网中性点接地的新途径.电网技术,2004,28(2):32-35.
    [16]蔡旭,刘勇,胡春强,左红艳.新型偏磁式谐振接地与保护.中国电机工程学报,2004,24(6):44-49.
    [17]蔡旭,李伟民.自动跟踪电网电容电流动态补偿系统研究.电力系统自动化,1995,19(8):57-61.
    [18]尹忠东,程行斌,刘虹.可控电抗器在电网电容电流自动补偿中的应用.高电压技术,1996,22(3):85-87.
    [19]刘虹,尹忠东,陈柏超等.新型可控自动消弧成套装置的应用研究.电力系统自动化,1998,22(2):9-12.
    [20]陆国庆,姜新宇,欧阳旭东,周良才.高短路阻抗变压器式自动快速消弧系统—配电网中性点新型接地方式的实现.电网技术,2000,24(7):25-28.
    [21]朱少林,谢聿琳,叶力行.调谐方式对消弧线圈并联运行的影响.电力系统及其自动化学报,2006,18(1):82-85.
    [22]陈忠仁,吴维宁,张勤,陈家宏.自动调谐式消弧线圈的并联运行方式.电力自动化设备,2005,25(7):93-95.
    [23]陈庆.基于人为接地分流的小电流接地系统中性点接地方式研究.电力自动化设备,2005,25(12):19-22.
    [24]刘艳芬,张嘉星,王庆雄.光接地过电压的限制措施.包钢科技,2006,32(4):87-89.
    [25]杨旭.一种消弧及过电压保护装置的分析.广东电力,2005,18(6):35-38.
    [26] Ross R. Dealing with Interface Problems in Polymer Cable Terminations. IEEE Electrical Insulation Magazine, 1999, 15(4): 5-9.
    [27]史济康,曹家,袁检等.XLPE电力电缆中间接头复合介质沿面放电研究.高电压技术, 2001,27(4):52-58.
    [28] DL558-1994电业生产事故调查规程.中国电力出版社,1994.
    [29]贾延峰.电力系统运行中电缆故障诊断方法及仿真计算:(硕士论文).沈阳:沈阳工业大学,2007.
    [30]丛柏生.交联聚乙烯(XLPE)电缆护层故障的查找及处理.供用电,1996,(1):30-32.
    [31]徐丙垠,李胜祥,陈宗军.电力电缆故障探测技术.北京:机械工业出版社,1999.
    [32]成永红.电力设备绝缘在线检测与诊断.北京:中国电力出版社,2001.
    [33]罗俊华,邱摅厂等.10kV及以上电力电缆运行故障统计分析.高电压技术,2003,29(6):14-16.
    [34] H W Dommel.EMTP Theory Book.Second edition.Vancouver, British Columbia: Microtran Power System Analysis Corporation, 1992.
    [35]缪以扬.配电网中性点接地方式的研究与决策: (硕士论文).广州:广东工业大学工学,2007.
    [36]夏天.小电阻接地系统继电保护的研究和整定计算: (硕士论文).北京:清华大学,2005.
    [37]王春江.电线电缆手册(第一册).北京:机械工业出版社,2001.
    [38] W.Petersen. Arcing Grounds(Intermittent Ground Faults) E. T. Z.,1917, 38:553-564.
    [39] J.F.Peters, J. Slepian. Voltages induced by Arcing Grounds. AIEE Trans, 1923,42:478-482.
    [40]王秉钧.太原供电局城北变电站事故分析报告.1997.
    [41]王仁甫.电弧现象模型的发展.高压电器,1991,2(4):39~46.
    [42] M.B.Djurid, V.V.Terzija. A New Approach to the Arcing Faults Detection for Fast Autoreclosure in Transmission Systems. IEEE Transactions on Power Delivery, 1995, 10(4): 1793-1798.
    [43] A.T. Johns, R.K. Aggarwal, Y.H. Song. Improved techniques for modelling fault arcs on faulted EHV transmission systems, IEE Proc.-Cener. Transm. Distrib.,1994, 141(2): 148-154.
    [44]陈先禄,田凤兰,许文强,刘渝根,袁涛.非线性电阻限制10kV电网弧光接地过电压分析,重庆大学学报(自然科学版),2006,29(7):38-40.
    [45]靳晓东,李谦,王晓瑜,招誉颐.配电网弧光接地过电压的仿真及分析,高电压技术,1994,20(3):71-75.
    [46]束洪春,肖白.配电网单相电弧接地故障选线暂态分析法,电力系统自动化,2002,26(21):58-61.
    [47] Young-Seok Kim,Kil-Mok Shong,and Sun-Gu Kim.An Analysis and Verification on Deterioration Patterns of Faulted Cables for Resolution of Product Liability Conflicts. 2007 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, SDEMPED, p 456-461, 2007,2007 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, SDEMPED.
    [48] Ohnishi, Hiroyasu,Urano, Humihiro,Hasegawa, Seiki,Morita, Tadashi,Nakajima, Masatoshi. Measurement of arc resistance and dielectric breakdown voltage at intermittent grounding of 6.6kV distribution CVT cable. IEEE Transactions on Power Delivery, 1988, 3(1): 363-367.
    [49]邱关源.电路.北京:高等教育出版社,2003.
    [50]杨世铭,陶文铨.传热学.北京:高等教育出版社,2003,8.
    [51] Hermann. W. Dommel. EMTP theory book. Protland, Oregon, USA: Bonneville Power Administration, 1986.
    [52]徐政.免费使用的电磁暂态分析程序—ATP-EMTP程序介绍.电网技术,1999,23(7):64-65.
    [53]中国电力科学研究院. Windows版电力电子与电磁暂态仿真软件包EMTP/EMTPE使用说明书.北京:2004.
    [54] DH/T 620-1977《交流电气装置的过电压保护和绝缘配合》.
    [55] E.Clarke. Circuit Ananlysis of A-C Power Systems, New York: John Wiley & Sons, 1943.
    [56] R. Willheim, M. waters. Neutral Grounding in High-voltage Transmission. Elsevler Publishing company. New York. Amsterdam. Princeton. 1956.
    [57] X.A.李哈乔夫(吴维诚,熊晓农译).消弧设备的选择、装设和运行.北京:电力工业出版社,1956.
    [58]周荣光.电力系统故障分析.北京:清华大学出版社,1988.
    [59]刘万顺.电力系统故障分析.北京:水利电力出版社,1989.
    [60]肖俊,王成山,周敏.基于区间层次分析法的城市电网规划综合评判决策.中国电机工程学报,2004,24(4):50-57.
    [61]肖峻.城市电网规划计算机辅助决策新技术的研究与实现:(博士论文).天津:天津大学,2003.
    [62]李晓辉,张来,李小宇,陈柱.基于层次分析法的现状电网评估方法研究.电力系统保护与控制,2008,36(14):57-61.
    [63] M.Sheehan, Sh.Williams. Optimal allocation of resources to distribution investments using the analytic hierarchy process to balance the impacts of investments on safety, customer interruption costs, levelized annual revenue requirement, contribution to margin and other considerations[J]. Power Engineering Society Summer Meeting, IEEE,2000,vol.3:1311-1316.
    [64] Zhu Jizhong, Momoh James A.Optimal VAr pricing and VAr placement using analytic hierarchical process,Electric Power Systems Research.1998,48(1):11-17.
    [65]吴育华,诸为,李新全,高荣.区间层次分析法—IAHP.天津大学学报,1995,28(5):700-705.
    [66]李晓辉,张来,李小宇,陈柱.基于层次分析法的现状电网评估方法研究.电力系统保护与控制,2008,36(14):57-61.
    [67]徐泽水.AHP中两类标度的关系研究.系统工程理论与实践.1999,19(7):97-101.
    [68] Satty T L.The Analytic Hierarchy Process. NewYork:McGraw-Hill, NewYork,1980.
    [69]舒康,梁镇韩.AHP中的指数标度法.系统工程理论与实践,1990,10(1):6-8.
    [70]汪洁,马达.层次分析标度评价与新标度方法.系统工程理论与实践,1993,13(9):4-26.
    [71]杜栋.AHP判断矩阵一致性问题的数学变换解决方法.中国系统工程学会决策科学专业委员会第五届学术年会,北京,1996.
    [72] Alam S.S., Ghosh S.Ranking by AHP:a rough approach, Proceedings of the Fifth International Conference on Information Fusion, 2002,vol.1:185-190.
    [73] Sugihara K.,Maeda Y.,Tanaka H.Interval Evaluation by AHP with Rough Set Concept Proceedings on The Seventh International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing,1999.
    [74]余龙.闭区间数确定目标间相对权重探讨.武汉理工大学学报(交通科学与工程版).2001,25(1):97-100.
    [75] Sugihara K.,Ishii H.,Tanaka H.Fuzzy AHP with incomplete information,IFSA World Congress and 20th NAFIPS International Conference, Joint 9th,2001,vol.5:2730–2733.
    [76] Chian-Son Yu,Chien-Kuo Li,A group decision making fuzzy AHP model and its application to a plant location selection problem, IFSA World Congress and 20th NAFIPS International Conference, Joint 9th,2001,vol.1:76–80.
    [77]魏毅强,刘进生,王绪柱.不确定型AHP中判断矩阵的一致性概念及权重.系统工程理沦与实践,1994.14(4):16-22.
    [78]杨保安,张科静.多目标决策分析理论、方法与应用研究.上海:东华大学出版社,2008.
    [79]姜艳萍,樊治平.基于判断矩阵的决策理论与方法.北京:科学出版社,2008.
    [80]叶跃祥.区间数多属性决策的一些问题研究:(博士论文).合肥:中国科学技术大学,2007.
    [81]徐泽水,达庆利.区间数的排序方法研究.系统工程. 2001,19(6):94-96.
    [82]徐泽水.模糊互补判断矩阵排序的一种算法.系统工程学报. 2001,16(4):312-315.
    [83]郭永基.电力系统可靠性分析.北京:清华大学出版社,2003.
    [84]周玲,王兴念,丁晓群,颜自坚,等.基因禁忌组合算法在配电网网架优化规划中的应用.电网技术,1999,23(9):35-38.
    [85]刘健,杨文宇,于建明,燕飞.基于改进最小生成树算法并考虑负荷不确定性的配电网架最优规划.电网技术,2005,29(6):61-65.
    [86]张永伍,余殆鑫,严雪飞,罗凤章.基于区间算法和范例学习的配电网网架规划.电力系统自动化,2005,29(17):40-44.
    [87]王志刚,杨丽徙,陈根永.基于蚁群算法的配电网网架优化规划方法.电力系统及其自动化学报,2002,14(6):73-76.
    [88] Billinton R, Billionton J E. Distribution system reliability indices, IEEE Transactions on Power Delivery, 1989, 4(1): 561-568.
    [89] Brian P. Lang, anil Pahwa, Power Distribution System Reliability Planning Using a Fuzzy Knowledge-based Approach, IEEE Transactions on Power Delivery, 2000,15(1):279-284.
    [90] Xie Kaigui,Zhou Jiaqi,Billinton R.Reliability evaluation algorithm for complex medium voltage electrical distribution networks based on the shortest path.IEE Proc-Gener.Transm.Distrib.,2003,150(6):686-690.
    [91] Becker C,Jr Braun W,Kenneth Carrick,et al.Proposed chapter 9 for predicting voltage sags(dips)in revision to IEEE Std.493,the gold book.IEEE Transactions on Industry Applications,1994,30(3):805-812.
    [92]黄武忠,钟丹虹等.模糊综合评判在电网远期规划中的应用.供用电.2001,18(5):7-9.
    [93]魏毅强,刘进生,王绪柱.不确定型AHP中判断矩阵的一致性概念及权重.系统工程理沦与实践.1994,14(4):16-22.
    [94]赵建峰.电缆网不同接地方式的实验研究:(硕士论文).沈阳:沈阳工业大学,2009.
    [95]苑舜,王承玉,海涛,陈勇.配电网自动化开关设备.北京:中国电力出版社,2007.
    [96]苑舜,韩水.配电网无功优化及无功补偿装置.北京:中国电力出版社,2003.
    [97]齐郑.小电流接地系统单相接地故障选线及定位技术的研究:(博士论文).北京:华北电力大学,2005.
    [98]华北电力学院主编,电力系统故障分析.北京:北京电力工业出版社,1980.
    [99]沈宗扬,李润先.10(6)kV煤矿供电系统单相接地电缆不自熄电流下限的试验研究.煤矿机电,1990,6:19-25.
    [100]颜湘莲,陈维江,贺子鸣,张少军,李庆余.10kV配电网单相接地故障电弧自熄特性的试验研究.电网技术,2008,32(8):25-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700