用户名: 密码: 验证码:
高寒草甸植物群落α多样性和β多样性形成的机制:是生态位还是中性理论?
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物群落物种多样性形成与维持的机制即群落构建机制是当代生态学研究的核心论题。生态位理论主要用群落组分种的生态位分化即不同的物种占据不同的生态位来阐释这个问题。但由于所有植物在利用水、CO_2、光能、氮、磷、钾等资源时具有基本相同的方式,因而生态位理论并不能完全解释群落构建的机制。
     基于此,Hubbell提出了中性理论,其主要观点是:群落组分种都是生态等价的,各物种随机的生灭过程及迁移过程决定了局域群落的物种多样性;集合群落(metacommunity)水平上的种多样性是各物种个体扩散速率及物种形成(speciation)速率的函数。中性理论包含了生态位理论忽视的很多方面并在一定程度上解决了生态位理论在解释物种多样性时遇到的困难。但是由于假设所有物种的个体在生态学上都是等价的,并忽略生境异质性对群落构建的影响,也使中性理论遭到很多质疑。由此,近年来国际理论生态学界展开了关于群落构建机制阐释的生态位理论观点和中性理论观点之间的论争。本文针对此国际生态学前沿的论争,以甘南高寒草甸植被为研究对象,分别在局域(local)群落和集合群落两个水平上研究植物群落的构建机制。
     在局域群落中,以高寒草甸植物群落的重要组分种:鹅观草(Roegneria kamoj)、球花蓼(Polygonum sphaerostachyum)、洽草(Koeleria cristata)、嵩草(Kobresia myosuroides)、箭叶橐吾(Ligularia sagitata)和乳白香青(Anaphalis lacteal)为对象,通过施肥处理后光合能力以及群落结构的变化探讨α多样性的形成机制;在集合群落(metacommunity)水平上,通过对比两座相距180 m山坡上4个不同坡向样方间群落相似性与距离和环境梯度的相互关系,探讨β多样性的形成机制。本文实验研究的结果如下:
     1.鹅观草具有相对较高的光合水分利用率及较低的光合氮利用率,而球花蓼具有较高的光合氮利用率及较低的光合水分利用率。鹅观草的净光合速率与土壤氮含量呈正相关关系,其对于土壤水分含量变化的反应不明显,而对于土壤氮含量变化的反应明显。球花蓼的净光合速率与土壤水分含量呈正相关关系,其对于土壤水分含量变化的反应明显而对于土壤氮含量变化的反应不明显。鹅观草和球花蓼在资源利用方面的这些权衡(trade-off)有利于它们共存于波动的环境中。
     2.洽草、嵩草、球花蓼、箭叶橐吾和乳白香青的光合作用对于土壤氮磷比提高的反应不同:氮磷比的增加明显提高了嵩草,洽草和箭叶橐吾的净光合速率;中等程度的氮磷比一定程度上提高了乳白香青的净光合速率,但是高氮磷比条件下反而使得其净光合速率相对中等程度的氮磷比有所降低。对于所有氮磷比条件下的球花蓼来说,其净光合速率均与对照相比没有明显变化。在两年间的样方数据比较下,我们发现高氮磷比的洽草、嵩草较多的出现在高氮磷比土壤条件下的群落中,而低氮磷比的球花蓼较多的出现在低氮磷比的土壤中。不同物种对营养增添(nutrient enrichment)引起的土壤资源供应比率改变的响应差异性最终导致群落结构发生变化。
     3.通过对比相邻两座山坡上四个不同坡向的植物群落组成,我们发现在每个山坡上,各个相距8 m的样方间,沿着土壤水分梯度,群落相似性由南至北依次降低;而在相距180 m的不同山坡上位于相同位置的样方间的群落相似性却高于同一山坡不同位置样方间的群落相似性,对此,用扩散限制难以解释。不同山坡间、同一山坡内各样方间的群落相似性均与土壤水分含量表现出较高的线性关系。在实验所处的空间范围内(8-180 m),分离环境变化与距离变化的耦合关系后,环境梯度的作用随之显现。
     由上述,本文得出以下研究结论:
     1.对不同资源利用能力之间的权衡是生态位分化的基础,这在物种共存、群落构建过程中起着重要的作用。群落α多样性的形成机制仅用中性理论的随机生灭过程和迁移过程难以得到完满的解释。
     2.群落组分种对土壤营养增添(nutrient enrichment)的差异性响应是影响群落结构变化主导因子,因而从另一角度否证了中性理论关于群落组分种等价性的假定。
     3.扩散限制并不能完全解释β多样性的形成,在本研究所涉地域内,环境梯度才是引起群落结构变化的主要原因。
The biodiversity formation and maintenance mechanism of plant community isone of the most important key issues in the contemporary ecological research. Nichetheory had solved this problem to a certain degree. In a simple word, stablecoexistence between competing species requires them to occupy different niches.However, because all plants acquire water, CO_2, light, nitrogen, phosphorus, potassiumand a common set of minor mineral nutrients in a limited number of ways, nichecannot explain the mechanism of community construction.
     Neutral theory developed by Hubbell supposes that: species are ecologicallyequivalent, biodiversity in community relies on the randomness of births, deaths,migration, and immigration; at metacommunity level, regional biodiversity is thefunction of dispersal rate and speciation rate. Neutral theory includes many detailswhich are neglected by niche theory and resolves many problems which are difficult toexplain by niche theory. However, its assumption of species equivalence and theneglect of environmental effects have also raised considerable disagreement. Eachtheory has limitations that have been widely discussed. In accordance with thesediscusses in international ecological research, in this study, we analysed thecommunity construction mechanism at local community and metacommunity levelrespectively in an alpine meadow in Gannan.
     We measured the photosynthesis of Roegneria kamoj, Polygonumsphaerostachyum, Koeleria cristata, Kobresia myosuroides, Ligularia sagitata and Anaphalis lacteal under different soil status and investigated the variations ofcommunity composition after fertilizer to find out the mechanism ofαdiversityformation at local community level. At metacommunity level, we compared the effectsof distance and environmental gradient on the community similarity indexes of fourdifferent locations in two hills to seek the mechanism of D diversity formation. Theresults as follows:
     1. R. kamoji had relatively higher PWUE, but lower PNUE, making it a waterconservation species. In contrast, P. sphaerostachyum had very low PWUE, and higherPNUE, making it a nitrogen conservation species. The net photosynthetic rate of R.kamoji positive related to soil N content, and responded to the variations in soil watercontent insensitively but responded to the changes in soil N content sensitively; Thenet photosynthetic rate of P. sphaerostachyum positive related to soil water content,and responded to the variations in soil water content sensitively but responded to thechanges in soil N content insensitively. The trade-off of R. kamoji and P.sphaerostachyum between resource utilization promoted their coexisted in thecommunity under fluctuant environment.
     2. The photosynthesis of K. cristata, K. myosuroides, P. sphaerostachyum, L.sagitata and A. lacteal respond to the increase of soil N : P ratios differently: Naddition increased the photosynthetic assimilation rates of K. myosuroides, K. cristataand L. sagitata significantly; For A. lacteal, the photosynthetic assimilation rates onlyincreased at relatively lower nitrogen levels but significantly declined at highernitrogen levels; All additional N treated P. sphaerostachyum samples remainedconstant photosynthetic assimilation rates, which suggested that the additional Ntreatments had no significant effects on the photosynthesis of P. sphaerostachyum.Compared with their average cover in control plots, P. sphaerostachyum was reduced.A. lacteal was increased with 20 g Nm~(-2) addition and reduced with 140 g Nm~(-2)addition. L. sagitata, K. myosuroides and K. cristata was increased. The results showed that species with the N : P ratios more close to soil supply ratios were predicted todominate in local communities. Species with inherently low N : P ratios (P.sphaerostachyum) is predicted to dominate in N-limited vegetation, and species withinherently high N : P ratios (K. myosuroides and K. cristata) are predicted to dominatein N-rich vegetation. Species are different in responding to nutrient enrichment, whichresults in the change of community structure finally.
     3. By comparing community composition of four positions in two neighbor hills,we found that community similarity indexes between plots decreased significantlyfrom South to North hillside in each hill; whereas no significant difference was foundbetween plots within the same topographic positions in two hills which were difficultto explain by dispersal limitation. Because there had a high community similarity inthe plots with same soil water content, it was possible to express the communitysimilarity as the liner function of the soil water content. As the distance between plotsin one hill was significantly shorter than it between hills, a consistent decrease incommunity similarity with distance which neutral theory predicts was not observed inthis experiment. The influence of environmental gradient should be assessed anddispersal limitation effects are not clear yet even at the scale of 8-180 m.
     From this study we have drawn the following conclusions:
     1. The trade-off between resource utilization is the foundation of nichedifferentiation, which is important in promoting species coexist and constructingcommunity. It is incomplete that explainsαdiversity only by randomness of births,deaths, migration, and immigration.
     2. The interspecific differences in responding to environmental disturbance arethe main factors lead to the change of community composition, which contraries to theassumption of neutral theory about species are ecological equivalent.
     3. Dispersal limitation cannot explain the formation ofβdiversity completely.Environment gradient, in the region involving in this study, is the main factor which results in the shift in community structure.
引文
Ackerly DD, Dudley SA, Sultan SE, Schmitt J, Coleman JS, Under C, Sandquist DR, Geber MA,Evans AS, Dawson TE, Lechowicz MJ. 2000. The evolution of plant traits: recent advances and future directions. BioScience, 50: 979-995.
    Aerts R, Chapin FS. 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advance in Ecology Research, 30: 1-67.
    Aiba SI, Kohyama T. 1997. Crown architecture and life-history traits of 14 tree species in a warm-temperate rain forest: significance of spatial heterogeneity. Journal of Ecology, 85:611-624.
    Andersen T. 1997. Pelagic Nutrient Cycles: Herbivores as Sources and Sinks. Springer-Verlag,Berlin.
    Armstrong RA. 1989. Competition, seed predation, and species coexistence. Journal of Theoretical Biology, 141: 191-195.
    Austin MP, Groves RH, Fresco LMF, Kaye PE. 1985. Relative growth of six thistle species along a nutrient gradient with multispecies competition. Journal of Ecology, 73: 667-684.
    Batten G, Wardlaw IF. 1987. Senescence and grain development in wheat plants grown with contrasting phosphorus regimes. Australia Journal of Plant Physiology, 14: 253-265.
    Bazzaz FA. 1996. Plants in changing environments linking physiological, population, and community ecology. Cambridge University Press, Cambridge.
    Bell G, Lechowicz MJ, Appenzeller A, Chandler M, DeBlois E, Jackson L, Mackenzie B, Preziosi R, Schallenberg M, Tinker N. 1993. The spatial structure of the physical environment. Oecologia,96: 114-121.
    Bell G, Lechowicz MJ, Waterway MJ. 2001. The precision of adaptation in forest plants. In:Silvertown J, Antonovics J eds. Integrating Ecology and Evolution in a Spatial Context. 14th Special Symposium of the British Ecological Society. Oxford. pp 117-138.
    Bell G. 2001. Neutral macroecology. Science, 293: 2413-2418.
    Briones O, Montana C, Ezcurra E. 1996. Competition between three Chihuahuan desert species:evidence from plant size-distance relations and root distribution. Journal of Vegetation Science, 7:453-460.
    Brose U, Ostling A, Harrison K, Martinez ND. 2003. Unified spatial scaling of species and their trophic interactions. Nature, 428: 167-171.
    Casper BB, Jackson RB. 1997. Plant competition underground. Annual Review of Ecology Evolution and Systematics, 28: 545-570.
    Caswell H. 1982. Life history theory and the equilibrium status of populations. American Naturalist,120:317-339.
    Cattin MF, Bersier LF, Banasek-Richter C, Baltensperger R, Gabriel JP. 2003. Phylogenetic constraints and adaptation explain food web-structure. Nature, 427: 835-839.
    Cebrian J. 1999. Patterns in the fate of production in plant communities. American Naturalist,154:449-468.
    Chapin FS. 1980. The mineral nutrition of wild plants. Annual Review of Ecology Evolution and Systematics, 11: 233-260.
    Chase JM, Leibold MA. 2003. Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago.
    Chase JM. 2005. Towards a really unified theory for metacommunities. Functional Ecology, 19:182-186.
    Chave J, Leigh EG. 2002. A spatially explicit neutral model of β diversity in tropical forests.Theorem Population Biology, 62: 153-168.
    Chave J, Muller-Landau HC, Levin SA. 2002. Comparing classical community models: theoretical consequences for patterns of diversity. American Naturalist, 159: 1-23.
    Chave J. 2004. Neutral theory and community ecology. Ecology Letters, 7: 241-253.
    Chesson P, Huntly N. 1997. The roles of harsh and fluctuatingvconditions in the dynamics of ecological community. The American Naturalist, 150: 519-553.
    Chesson PL, Warner RR. 1981. Environmental variability promotes coexistence in lottery competitive systems. American Naturalist, 117: 923-943.
    Chesson PL. 1986. Environmental variation and the coexistence of species. In Community ecology.Edited by J. Diamond, T. Case. Harper and Row, New York. pp 240-256.
    Chesson PL. 1994. Multispecies competition in variable environments. Theorem Population Biology, 45: 221-216.
    Chrzanowski TH, Kyle M, Elser JJ, Sterner RW. 1997. Element ratios and growth dynamics of bacteria in an oligotrophic Canadian shield lake. Aquatic Microbial Ecology, 11: 119-125.
    Chu C, Wang Y, Du G, Maestre F, Luo Y, Wang G. 2007. On the balance between niche and neutral processes as drivers of community structure along a successional gradient: insights from alpine and sub-alpine meadow communities. Annals of Botany, 100: 807-812.
    Clements FE. 1916. Nature and structure of the climax. Journal of Ecology, 24: 252-284.
    Clements FE. 1916. Plant Succession: An Analysis of the Development of Vegetation. Carnegic Institution of Washington. Washington.
    Cody ML. 1975. Towards a theory of continental species diversities. In: Cody ML, Diamond JM eds. Ecology and Evolution of Communities. Belknap, Cambridge, pp 214-257.
    Colinvaux P. 1986. Ecology. Wiley, New York.
    Colwell RK, Futuyma DJ. 1971. On the measurement of niche breadth and overlap. Ecology, 52:567-576.
    Condit R, Pitman N, Leigh EG, Chave J, Terborgh J, Foster RB, Nunez VP, Aguilar S, Valencia R,Villa G, Muller-Landau HC, Losos E, Hubbell SP. 2002. Beta-diversity in tropical forest trees.Science, 295: 666-669.
    Connell JH. 1983. On the prevalence and relative importance of interspecific competition: evidence from field experiments. American Naturalist, 122: 661-696.
    Coomes DA, Grubb PJ. 2000. Impacts of root competition in forests and woodlands: a theoretical framework and review o experiments. Ecological Monographs, 70: 171-207.
    Cornell HV, Lawton JH. 1992. Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. Journal of Animal Ecology, 61: 1-12.
    
    Crawley MJ. 1986. Plant ecology. Blackwell Scientific Publications, Boston.
    Dalling JR, Harms JME. 2007. Soil nutrients influence spatial distributions of tropical tree species.PNAS, 104(3): 864-869.
    Davies SJ, Palmiotto PA, Ashton PS, Lee HS, Lafrankie JV. 1998. Comparative ecology of 11 sympatric species of Macaranga in Borneo: tree distribution in relation to horizontal and vertical resource heterogeneity. Journal of Ecology, 86: 662-673.
    Dayton PK. 1971. Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecological Monographs, 41:351-389.
    DeMott WR. 1998. Utilization of cyanobacterium and phosphorus-deficient green algae as a complementary resource by daphnids. Ecology, 79: 2463-2481.
    Dice LR. 1952. Natural Communities. University of Michigan Press, Ann Arbor.
    DiTommaso A, Aarssen LW. 1991. Effect of nutrient level on competition intensity in the field for three coexisting grass species. Journal of Vegetation Science, 2: 513-522.
    Downing JA, McCauley E. 1992. The nitrogen : phosphorus relationship in lakes. Limnology and Oceanography, 37: 936-945.
    Downing JA. 1997. Marine nitrogen : phosphorus stoichiometry and the global N:P cycle.Biogeochemistry, 37: 237-252.
    Duivenvoorden JF, Svenning JC, Wright SJ. 2002. Beta diversity in tropical forests. Science, 295:636-637.
    Eissenstat DM, Caldwell MM. 1988. Competitive ability is linked to rates of water extraction. A field study of two arid land tussock grasses. Oecologia, 75: 1-7.
    Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH. 1996. Organism size, life history, and N : P stoichiometry. BioScience, 46: 674-684.
    Elser JJ, Hassett TP. 1994. A stoichiometric analysis of the zooplankton-phytoplankton interaction in marine and freshwater ecosystems. Nature, 370: 211-213.
    Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE,Odell GM, Weider LJ. 2000. Biological stichometry from genes to ecosystems. Ecology Letters,3: 540-550.
    Elser JJ, Urabe J. 1999. The stoichiometry of consumer-driven nutrient cycling: theory, observations, and consequences. Ecology, 80: 735-751.
    Elton CS. 1927. Animal Ecology. Sedgwick and Jackson, London.
    Enriquez S, Duarte CM, Sand-Jensen K. 1993. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C : N: P content. Oecologia, 94: 457—471.
    Etienne RS, Olff H. 2004. A novel genealogical approach to neutral biodiversity theory. Ecology Letters, 7: 170-175.
    Fargione J, Brown CS, Tilman D. 2003. Community assembly and invasion: An experimental test of neutral versus niche processes. PNAS, 100 (15): 8916-8920.
    Field C, Merino J, Mooney HA. 1983. Compromises between water-use efficiency and nitrogen-use efficiency in five species of Californian evergreens. Oecologia, 60: 384-389.
    Fowler NL. 1986. The role of competition in plant communities in arid and semiarid regions.Annual Review of Ecology and Systematics, 17: 89-110.
    Garten Jr CT. 1976. Correlations between concentrations of elements in plants. Nature, 261:686-688.
    
    Gaston KJ, Chown ST. 2005. Neutrality and the niche. Functional Ecology, 19: 1-6.
    Gause GF. 1934. The struggle for existence. Williams and Wilkins, Baltimore.
    Gewin V. 2006. Beyond neutrality—ecology finds its niche. PLoS Biology, 4: 1306-1310.
    Gilbert B, Lechowicz MJ. 2004. Neutrality, niches, and dispersal in a temperate forest understory.PNAS, 101(20): 7651-7656.
    
    Giller PS. 1984. Community Structure and the Niche. Chapman and Hall, London.
    Gillespie R. 2004. Community assembly through adaptive radiation in Hawaiian spiders. Science,303:356-359.
    Gleason HA. 1926. The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club, 53: 7-26.
    
    Grinnell J. 1917. The niche relationships of the California thrasher. Auk, 21: 364-382.
    Grubb PJ. 1977. The maintenance of species- richness in plant communities: the importance of the regeneration niche. Biological Reviews, 52: 107 -145.
    Grundon NJ. 1970. Mineral nutrition of some Queensland heath plants. Journal of Ecology, 60:171-181.
    G(?)sewell S, Koerselman W, Verhoeven JTA. 2003. N : P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecological Applications, 13: 372-384.
    Giisewell S, Koerselman W. 2002. Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, Evolution and Systematics, 5: 37-61.
    Giisewell S. 2004. N : P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164: 243-266.
    Han WX, Fang JY, Guo DL, Zhang Y. 2005. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168: 377-385.
    Harte J. 2003. Tail of death and resurrection. Nature, 424: 1006-1007.
    Heil GW, Bruggink M. 1987. Competition for nutrients between Calluna vulgaris (L.) Hull and Molinia coerulea (L.) Moench. Oecologia, 73: 105-108.
    Hejcman M, Klaudisova M, (?)tursa J, Pavlu V, Schellberg J, Hejcmanov(?) P, Hakl J, Rauch O, Vacek S. 2007. Revisiting a 37 years abandoned fertilizer experiment on Nardus grassland in the Czech Republic. Agriculture, Ecosystems and Environment, 108: 231-236.
    Hirose T, Bazzaz FA. 1998. Trade-off between light- and nitrogen-use efficiency in canopy photosynthesis. Annals of Botany, 82: 195-202.
    Hubbell SP, Foster RB. 1983. Diversity of canopy trees in a neotropical forest and implications for conservation. In: Sutton SL, Whitmore TC, Chadwick AC eds. Tropical Rain Forest: Ecology and Management. Blackwell Scientific Publications, Oxford, pp 25-41.
    Hubbell SP, Foster RB. 1986. Biology, chance and history and the structure of tropical rain forest tree communities. In: Diamond JM, Case TJ eds. Community Ecology. Harper and Row, New York,pp314-329.
    Hubbell SP. 1979. Tree dispersion, abundance, and diversity in a tropical dry forest. Science, 203:1299-1309.
    Hubbell SP. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.
    Hubbell SP. 2003. Modes of speciation and the life spans of species under neutrality: a response to the comment of Robert E. Ricklefs. Oikos, 100: 193-199.
    Hubbell SP. 2005a. Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology, 19: 166-172.
    Hubbell SP. 2005b. The neutral theory of biodiversity and biogeography and Stephen Jay Gould.Paleobiology, 31: 122-132.
    Hubbell SP. 2006. Neutral theory and the evolution of ecological equivalence. Ecology, 87:1387-1398.
    Huberty AF, Denno R. 2001. Elemental composition (N and P) of host plants differentially affects the performance of two herbivorous insects. An Entomological Odyssey of ESA, The ESA 2001 Annual Meeting, San Diego.
    Hutchinson GE. 1957. Concluding remarks: population studies, animal ecology and demography. Cold Spring Harbor Symposium of Quantitative Biology, 22: 415-427.
    Hutchinson GE. 1961. The paradox of the plankton. American Naturalist, 95: 137-145.
    Inouye RS, Tilman D. 1988. Convergence and divergence of old-field plant communities along experimental nitrogen gradient. Ecology, 69(4): 995-1004.
    Kenkel NC, Mcllraith AL, Burchill CA, Jones G. 1991. Competition and the response of 3 plant species to a salinity gradient. Canadian Journal of Botany, 69: 2497-2502.
    Kielland K. 1994. Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology, 75: 2373-2383.
    Kobe RK, Pacala SW, Silander Jr JA, Canham CD. 1995. Juvenile tree survivorship as a component of shade tolerance. Ecological Applications, 5: 517-532.
    Kobe RK. 1999. Light gradient partitioning among tropical tree species through differential seedling mortality and growth. Ecology, 80: 187-201.
    Koerselman W, Meuleman AFM. 1996. The vegetation N : P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33: 1441-1450.
    Kohyama T, Suzuki E, Partomihadjo T, Yamada T, Kubo T. 2003. Tree species differentiation in growth, recruitment and allometry in relation to maximum height in a Bornean mixed dipterocarp forest. Journal of Ecology, 91: 797-806.
    Lack D. 1947. Darwin's Finches. Cambridge University Press, Cambridge.
    Leibold MA, McPeek MA. 2006. Coexistence of the niche and neutral perspectives in community ecology. Ecology, 87: 1399-1410.
    Leibold MA. 1995. The niche concept revisited: mechanistic models and community context. Ecology, 76 (5): 1371-1382.
    
    Lindeman RL. 1942. The trophic-dynamic aspect of ecology. Ecology, 23: 399-418.
    Litvak MK, Hansell RLC. 1990. A community perspective on the multidimensional niche sympatric rodents. Ecology, 57: 728-739.
    
    Lotka AJ. 1925. Elements of Physical Biology. Williams and Wilkins, Baltimore.
    Lovelock CE, Feller IC. 2003. Photosynthetic performance and resource utilization of two mangrove species coexisting in a hypersaline scrub forest. Oecologia, 134: 455-462.
    MacArthur RH, Wilson EO. 1967. The theory of island biogeography. Princeton University Press,Princeton.
    
    MacArthur RH. 1972. Geographical ecology. Harper and Row, New York, pp 269.
    Magurran AE, Henderson PA. 2003. Explaining the excess of rare species in natural species abundance distributions. Nature, 422: 714-716.
    Mahdi A, Law R, Willis AJ. 1989. Large niche overlap s among coexisting plant species in a limestone grassland community. Journal of Ecology, 77: 386-400.
    Mamolos AP, Elisseou GK, Veresoglou DS. 1995. Depth of root activity of coexisting grassland species in relation to N-addition and P-addition, measured using nonradioactive tracers. Journal of Ecology, 83:643-652.
    Mamolos AP, Veresoglou DS. 2000. Patterns of root activity and responses of species to nutrients in vegetation of fertile alluvial soil. Plant Ecology, 148: 245-253.
    Markow TA, Raphael B, Dobberfuhl D, Breitmeyer CM, Elser JJ, Pfeiler E. 1999. Elemental stoichiometry of Drosophila and their hosts. Functional Ecology, 13: 78-84.
    May RM, 1972. Will a large complex system be stable? Nature, 238: 413-414.
    McGill BJ. 2003. A test of the unified neutral theory of biodiversity. Nature, 422: 881-885.
    McIntosh RP. 1985. The background of ecology : concept and theory. Cambridge University Press,Cambridge.
    McKane AJ, Alonso D, Sole RV. 2004. Analytic solution of Hubbell's model of local community dynamics. Theoretical Population Biology, 65: 67-73.
    McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G. 2002. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature, 415: 68-71.
    Mueller-Dombois D, Ellenberg H. 1974. Aims and Methods of Vegetation Ecology. John Wiley and Sons, New York.
    Nee S. 2005. The neutral theory of biodiversity: do the numbers and up? Functional Ecology, 19:173-176.
    Nielsen SL, Enriquez S, Durate CM, Sand-Jensen K. 1996. Scaling maximum growth rates across photosynthetic organisms. Functional Ecology, 10:167-175.
    Nobel PS. 1997. Root distribution and seasonal production in the northwestern Sonoran Desert for a C-3 subshrub, a C-4 bunchgrass, and a CAM leaf succulent. American Journal of Botany, 84:949-955.
    
    Odum EP. 1953. Fundamentals of Ecology (first edition). WB Saunders, Philadelphia.
    Olde Venterink H, Wassen M, Verkroost AWM, de Ruiter PC. 2003. Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology, 84: 2191-2199.
    Pacala SW, Canham CD, Saponara J, Silander Jr JA, Kobe RK, Ribbens E. 1996. Forest models defined by field-measurements-estimation, error analysis and dynamics. Ecological Monographs,66: 1-43.
    Pacala SW, Canham CD, Silander Jr JA. 1993. Forest models defined by field-measurements. 1.The design of a northeastern forest simulator. Canadian journal of forest research, 23:1980-1988.
    
    Paine RT. 1966. Food web complexity and species diversity. American Naturalist, 100: 65-75.
    Pandolfi JM. 2002. Coral community dynamics at multiple scales. Coral Reefs, 21: 13-23.
    Pearson TRH, BurslemU DFRP, Goeriz RE, Dalling JW. 2003a. Regeneration niche partitioning in neotropical pioneers: effects of gap size, seasonal drought and herbivory on growth and survival.Oecologia, 137: 456-465.
    Pearson TRH, BurslemU DFRP, Goeriz RE, Dalling JW. 2003b. Interactions of gap size and herbivory on establishment, growth and survival of three species of neotropical pioneer trees.Journal of Ecology, 91: 785-796.
    
    Pianka ER. 1983. Evolutionary ecology. Harper and Row, New York.
    Poulin R. 2004. Parasites and the neutral theory of biodiversity. Ecography, 27: 119-123.
    Purves DW, Pacala SW. 2005. Biotic Interactions in the Tropics. Cambridge University Press,Cambridge,pp 107-138.
    
    Putman RJ, Wratten SD. 1984. Principles of Ecology. University of California Press, Berkeley.
    Rees M, Condit R, Crawley M, Pacala S, Tilman D. 2001. Longterm studies of vegetation dynamics. Science, 293: 650-655.
    Reich PB, Walters MB, Ellsworth DS. 1997. From tropics to tundra: global convergence in plant functioning. PNAS, 94: 13730-13734.
    Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB. 2003. The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences, 164: 143-164.
    
    Reiners WA. 1986. Complementary models for ecosystems. American Naturalist, 127: 59-73.
    Rhee GY. 1978. Effects of N : P atomic ratios and nitrate limitation on algae growth, cell composition, and nitrate uptake. Limnology and Oceanography, 23: 10-25.
    Roughgardan J, Iwasa Y, Baxter C. 1985. Demographic theory for an open marine population with space-limited recruiment. Ecology, 66 (1): 54-67.
    Ruttenberg KC, Goni MA. 1997. Phosphorus distribution, C.N: P ratios, and δ_(13)Coc in arctic,temperate, and tropical coastal sediments: tools for characterizing bulk sedimentary organic matter. Marine Geology, 139: 123-145.
    Semelov(?) V, Hejcman M, Pavl(?) V, Vacek S, Podr(?)zsk(?) V. 2008. The Grass Garden in the Giant Mts.(Czech Republic): Residual effect of long-term fertilization after 62 years. Agriculture Ecosystem and Environment, 123: 337-342.
    Shea K, Chesson P. 2002. Community ecology theory as a framework for biological invasions.Trends in Ecology and Evolution, 17(4): 170-176.
    Sherman RE, Fahey TJ, Howarth RW. 1998. Soil-plant interactions in a neotropical mangrove forest: iron, phosphorus and sulfer dynamics. Oecologia, 115: 553-563.
    Silvertown J, Dodd ME, Gowing DJG, Mountford JO. 1999. Hydro logically-defined niches reveal a basis for species-richness in plant communities. Nature, 400: 61-63.
    
    Silvertown J, Law R. 1987. Do plants need niches? Trends in Ecology and Evolution, 2: 24-26.
    Silvertown J. 2004a. The ghost of competition past in the phylogeny of island endemic plants.Journal of Ecology, 92: 168-173.
    Silvertown J. 2004b. Plant coexistence and the niche. Trends in Ecology and Evolution, 19:605-611.
    Smith VH. 1993. Implications of resource-ratio theory for microbial ecology. Advances in Microbial Ecology, 13: 1-37.
    
    Smocovitis VB. 1996. Unifying Biology. Princeton University Press, Princeton.
    Sousa ME. 1979. Disturbance in marine intertidal boulder fields the non-equilibrium maintenance of species diversity. Ecology, 60: 1225 - 1239.
    Spiegelberger T, Hegg O, Matthies D, Hedlund K, Schaffner U. 2006. Long-term effects of short-term perturbation in a subalpine grassland. Ecology, 87: 1939-1944.
    Stelzer RS, Lamberti GA. 2002. Ecological stoichiometry in running waters: periphyton chemical composition and snail growth. Ecology, 83: 1039-1051.
    Sterner RW, Clasen J, Lampert, Weisse A. 1998. Carbon: phosphorus stoichiometry and food chain production. Ecology Letters, 1: 146-150.
    Sterner RW, Elser JJ, Fee EJ, Guildford SJ, Chrzanowski TH. 1997. The light: nutrient ratio in lakes: the balance of energy and materials affects ecosystem structure and process. American Naturalist, 150: 663-684.
    Sterner RW, Elser JJ. 2003. Ecological Stoichiometry: The biology of elements from molecules to the biosphere. Princeton University Press, Princeton.
    Sterner RW, Hessen DO. 1994. Algal nutrient limitation and the nutrition of aquatic herbivores.Annu. Annual Review of Ecology and Systematics, 25: 1-29.
    Sterner RW. 1990. The ratio of nitrogen to phosphorus resupplied by herbivores: zooplankton and the algal competitive arena. American Naturalist, 136: 209-229.
    Sutherland JP, Karlson RH. 1977. Development and stability of the fouling community at Beaufort,North Carolina. Ecological Monographs, 47: 425-446.
    Tang KW, Dam HG. 1999. Limitation of zooplankton production: beyond stoichiometry. Oikos, 84:537-542.
    
    Tansley. 1935. The use and abuse of vegetational concepts and terms. Ecology, 16: 284-307.
    Terborgh J, Foster RB, Nunez VP. 1996. Tropical tree communities: a test of the nonequilibrium hypothesis. Ecology, 77: 561-567.
    Tezuka Y. 1990. Bacterial regeneration of ammonium and phosphate as affected by the carbon: nitrogen: phosphorus ratio of organic substrates. Microbial Ecology, 19: 227-238.
    Theodose TA, Roths J. 1999. Variation in nutrient availability and plant species diversity across forb and graminoid zones of a Northern New England high salt marsh. Plant Ecology, 143:219-228.
    Tilman D, Lehman CL, Thomson KT. 1997. Plant diversity and ecosystem productivity: theoretical considerations. PNAS, 94: 1857-1861.
    Tilman D, Olff H. 1991. An experimental study of the effects of pH and nitrogen on grassland vegetation. Acta Oecologica, 12(3): 427-441.
    Tilman D. 1982. Resource Competition and Community Structure. Princeton University Press,Princeton.
    Tilman D. 1984. Plant dominance along an experimental nutrient gradient. Ecology, 65(5):1445-1453.
    Tilman D. 1988. Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton.
    Tilman D. 1990. Constraints and tradeoffs: toward a predictive theory of competition and succession. Oikos, 58: 2-15.
    
    Tilman D. 1994. Competition and biodiversity in spatially structured habitats. Ecology, 75: 2-16.
    Tilman D. 1997. Mechanisms of plant competition. In: Crawley MJ eds. Plant ecology, 2nd edn.Blackwell Science, Oxford, pp 239-261.
    
    Tilman D. 2000. Causes, consequences and ethics of biodiversity. Nature, 405: 208-211.
    Tilman D. 2004. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. PNAS, 101: 10854—10861.
    Tilman D. 2007. Resource competition and plant traits: a response to Craine et al. 2005. Journal of Ecology, 95: 231-234.
    Tokeshi M, Schmid PE. 2002. Niche division and abundance: an evolutionary perspective.Population Ecology, 44: 189-200.
    Tokeshi M. 1999. Species Coexistence: Ecological and Evolutionary Perspectives. Blackwell Scientific, Oxford.
    Tomassen HBM, Smolders AJP, Limpens J, Lamers LPM, Roelofs JGM. 2004. Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition? Journal of Applied Ecology, 41: 139-150.
    Tuomisto H, Ruokolainen K, Yli-Halla M. 2003. Dispersal, environment, and floristic variation of western amazonian forests. Science, 299: 241-244.
    Tylianakis JM, Rand TA, Kahmen A, Klein A, Buchmann N, Perner J, Tscharntke T. 2008.
    
    Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Piology, 6(5): 947-956.
    Underwood AJ, Denley EJ. 1984. Paradigms, explanations and generalizations in model for the structure of intertidal communities on rocky shores. In: Strong D, Simberloff D, Abele LG, et al.,eds. Ecological communities: conceptual issues and the evidence. Princeton University Press,Princeton, pp 151- 180.
    Urabe J, Elser JJ, Kyle M, Yoshida T, Sekino T, Kawabata Z. 2002. Herbivorous animals can mitigate unfavourable ratios of energy and material supplies by enhancing nutrient recycling.Ecology Letters, 5: 177-85.
    Urabe J, Nakanishi M, Kawabata K. 1995. Contribution of metazoan plankton to the cycling of nitrogen and phosphorus in Lake Biwa. Limnology and Oceanography, 40: 232-241.
    Urabe J, Sterner RW. 1996. Regulation of herbivore growth by the balance of light and nutrients.PNAS, 93: 8465-8469.
    Vallade M, Houchmandzadeh B 2003. Analytical solution of a neutral model of biodiversity.Physical Review E, 68: 61902-61905.
    Van der Hoek D, van Mierlo AJEM, van Groenendael JM. 2004. Nutrient limitation and nutrient-driven shifts in plant species composition in a species-rich fen meadow. Journal of Vegetable Science, 15: 389-396.
    Van Duren IC, Pegtel DM. 2000. Nutrient limitations in wet, drained and rewetted fen meadows:evaluation of methods and results. Plant and Soil, 220: 35-47.
    Vitousek PM, Howarth RW. 1991. Nitrogen limitation on land and in the sea: how can it occur?Biogeochemistry, 13: 87-115.
    
    Vogel S. 1998. Academically correct biological science. American Scientist, 86: 504-506.
    Volkov I, Banavar JR, Hubbell SP, Maritan A. 2003. Neutral theory and relative species abundance in ecology.Nature,424: 1035-1037.
    Wetzel PR, van der Valk AG. 1998. Effects of nutrients and soil moisture on competition between Carex stricta, Phalaris arundinacea, and Typha latifolia. Plant Ecology, 138: 179-190.
    White TCR. 1993. The Inadequate Environment: Nitrogen and the Abundance of Animals.Springer-Verlag, New York.
    Whitfield J. 2002. Neutrality versus the niche. Nature, 417:480-481.
    Whittaker RH, Levin SA, Root RB. 1973. Niche, habitat and ecotope. American Naturalist, 107(955): 321-338.
    Whittaker RH. 1972. Evolution of measurement of species diversity. Taxon, 21:213-251.
    Whitteker RH. 1975. Communities and Ecosystems, 2nd ed. Macmillan, New York.
    Wilson SD, Tilman D. 2002. Quadratic variation in old-field species richness along gradients of disturbance and nitrogen. Ecology, 83(2): 492-504.
    Woodwell GM, Whittaker RH, Houghton RA. 1975. Nutrient concentrations in plants in the Brookhaven oak-pine forest. Ecology, 56:318-332.
    Wootton JT. 2005. Field parameterization and experimental test of the neutral theory of biodiversity.Nature, 433:309-312.
    Yu DW, Terborgh JW, Potts MD. 1998. Can high tree species richness be explained by Hubbell's null model? Ecology Letters, 1:193-199.
    Zhang DY, Lin K. 1997. The effects of competitive asymmetry on the rate of competitive displacement: how robust is Hubbell's community drift model? Journal of Theoretical Biology,188: 361-367.
    Zhang QG, Zhang DY. 2006. Resource availability and biodiversity effects on the productivity,temporal variability and resistance of experimental algal communities. Oikos, 114: 385-396.
    李德志,石强,臧润国,王绪平,盛丽娟,朱志玲,王长爱.2006.物种或种群生态位宽度与生态位重叠的计测模型.林业科学,42(7):95-103.
    李德志.1995.东北东部山区天然次生林群落中优势树木种群生态位的计测与分析.中华林学季刊(台湾),28(2):3-12.
    林鹏.1986.植物群落学.上海科学出版社,上海.
    刘建国,马世骏.1990.扩展的生态位理论.现代生态学透视.科学出版社,北京.72-89.
    刘建国.1992.当代生态学博论.中国科学技术出版社,北京.
    刘瑞棠,苏鸿杰.1983.森林植物生态学.台湾商务印书馆,台湾.
    梅RM.1980.理论生态学.科学出版社,北京.
    曲仲湘.1986.植物生态学.高等教育出版社,北京.
    尚玉昌.1988.现代生态学中的生态理论.生态学进展,5(2):77-84.
    孙鸿良.1987.生态位理论在生态农业建设中的拓广应用.农业现代化研究,4:12-16.
    孙儒泳.1987.动物生态学原理.北京师范大学出版社,北京.
    王伯荪.1987.植物群落学.高等教育出版社,北京.
    王刚,1990a.生态位理论若干问题探讨.兰州大学学报(自然科学版),26(2):109-113.
    王刚.1990b.植物群落的群落位.草业科学,7(2):52-56.
    王刚,张大勇.1996.生物竞争理论.西安:陕西科学技术出版社.50-135.
    王刚,赵松林,张鹏云.1984.关于生态位定义的探讨及生态位重叠计测公式改进的研究.生态学报,4(2):119-126.
    杨利民,韩梅,周广胜,王玉辉.2002.草地群落物种多样性维持机制的研究Ⅲ物种分布格局.吉林农业大学学报,24(1):58-61.
    杨利民,周广胜,王国宏.2001.草地群落物种多样性维持机制的研究Ⅱ物种实现生态位.植物生态学报,21(5):634-638.
    余世孝,奥罗西.1994.物种多维生态位宽度测量.生态学报,14(1):32-39.
    张金顿.1995.植被数量生态学方法.中国科学出版社,北京.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700