用户名: 密码: 验证码:
荒漠植物红砂、白刺和沙拐枣抗旱指标及抗旱性综合评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红砂、白刺和沙拐枣抗旱、耐盐、耐高温,是干旱、半干旱地区防风、固沙和水土保持的优良植物。它们广泛分布于我国干旱荒漠地区,特别广布于西北的半干旱地区,其抗逆性强,生态可塑性大,具有很强的抗旱和集沙能力。因此研究这三种荒漠植物的抗旱性对其植被保护和恢复以及为荒漠植物抗逆性研究具有重要的意义。本文以分布于不同地区的红砂、白刺和沙拐枣为材料,通过对自然干旱条件下三种荒漠植物的光合特性、荧光特性、水分生理、相关代谢物质的变化、酶活性变化以及叶绿素的变化进行了研究,以期进一步阐明这三种荒漠植物的抗旱机制,并对它们进行抗旱性综合评价。主要研究结果如下:
     1.三种荒漠植物的光合、蒸腾速率日变化曲线特征可以分为两类:(1)双峰型,包括红砂;(2)单峰型,包括白刺和沙拐枣。而按光合、蒸腾强弱划分可以分为3类:(1)低光合、低蒸腾型,包括红砂;(2)高光合,高蒸腾型,包括白刺;(3)低光合、高蒸腾型,有沙拐枣。在环境因子中,光合有效辐射是影响三种植物光合和蒸腾速率的最重要因子;中午高光强造成白刺和沙拐枣的光抑制现象,但并未对红砂产生光抑制效应。三种植物的光合最适宜温度范围分别为红砂25~30℃,白刺28~32℃,沙拐枣35~37℃。水分条件是导致地区间植物光合和蒸腾速率产生差异主要因素,而且空气相对湿度主要对植物的蒸腾速率起作用。在内在因素中,红砂光合午休以及沙拐枣10:00以前光合强弱的主要原因是气孔因素,并且干旱加剧会提高这两种植物的气孔调节能力。白刺气孔调节能力受诸多环境因子以及植物因素影响,但白刺气孔调节对光合的作用大于对蒸腾的作用。结果表明,在水分条件降低时,红砂通过气孔调节和渗透调节来提高水分利用效率;白刺的水分利用效率则随一天环境条件的改变而变化;沙拐枣由于光合碳同化途径的不同,以及植物本身蒸腾特性的差异,使其水分利用效率始终高于其它两种植物。
     2.强光尽管使红砂光合作用的Fv/Fm和ΦPSⅡ下降,却并没有发生光抑制现象;水分是引起红砂光化学效率下降主要因素,而光化学效率下降是红砂光合午休的非气孔因素之一。强光引起了白刺和沙拐枣的光抑制现象发生,而且水分条件的降低则加剧了这种现象,但沙拐枣光抑制出现有滞后现象,说明其光抑制较轻。在强光、高温及干旱环境中红砂主要依赖于叶黄素循环的热能耗散机制使其光合机构得以保护,而不是光抑制因素;而白刺和沙拐枣则既依赖于叶黄素循环的热能耗散又依赖于光抑制。
     3.三种荒漠植物的水分生理变化表明:从WP的角度来说,红砂的耐旱能力最强,沙拐枣最弱;而按照RWC和WSD判断则以沙拐枣的抗旱性最强,红砂最低。
     4.研究发现,在干旱荒漠区Pro和SS在水分匮乏的情况下短时积累是有益,是植物干旱忍耐的一种方式,但在不同植物中的作用不同。以Pro和SS的高低来判断三种植物的抗旱性顺序为红砂﹥白刺﹥沙拐枣。三种荒漠植物在水分减少时均引发膜脂过氧化作用和超氧自由基产生速率加快,造成了对细胞膜系统的破坏。以MDA含量和O2-.产生速率来判断这三种植物的抗旱性顺序应该为沙拐枣﹥红砂﹥白刺。在水分亏缺时,沙拐枣通过提高SOD和CAT酶活性来抵御干旱伤害的作用强于其它两种植物,而POD对三种植物在极端干旱条件下的保护能力是有限。按SOD和CAT的作用来判断三种植物的抗旱性顺序为红砂﹥白刺﹥沙拐枣。本实验条件下的土壤含水量对红砂和白刺造成了干旱胁迫,从而引起它们体内Chl的减少;而在相同条件下对沙拐枣构成的胁迫较小,其体内的Chl含量升高,说明沙拐枣对水分条件的改变反应迟缓。
     5.结果显示,不同地区红砂的抗旱性强弱顺序为:WWM﹥JQJ﹥ZYL﹥LZJ;不同地区白刺的抗旱性强弱顺序为:JQJ﹥WWM﹥ZYL﹥LZJ;不同地区沙拐枣的抗旱性强弱顺序为:JQJ﹥WWM﹥ZYL。可以看出,水分条件越差得地区植物的抗旱性越强,这是植物通过自身生理调节对外部环境条件产生适应的结果。
     6.研究结果表明,本实验所测的18项指标在红砂、白刺和沙拐枣的抗旱性中相互制约,相互依赖,综合调节着它们的内在抗旱机制。但通过降低蒸腾速率来提高水分利用效率、依赖于叶黄素循环的热能耗散机制以及以Pro为主的渗透调节这3大机制在红砂的抗旱机制中占有重要的地位;而依赖于叶黄素循环的热能耗散机制和光抑制的光保护机制在白刺的抗旱机制中占有主导地位。沙拐枣的抗旱机制比红砂和白刺的复杂,其以较强的保持水、贮水能力和很高的水分利用率适应土壤与大气干旱的双重胁迫,同时在其它两种植物中不占有重要地位的叶绿素和SOD、CAT酶活性机制在沙拐枣的抗旱机制中表现也较为突出。
Reaumuria soongorica, Nitraria tangutorum and Calligomum mongolicum are the best plants to prevent wind and sand , to conservate soil and water at the arid and semi-arid areas because they are drought-resistant,salt-resistant and high temperature-resistant. They are wide-ranging distributed over desert especially over semi-arid area of NorthWest, and they have the drought-resistant ablities. So it is very important to study the drought-resistance of these plants. This paper presented the studies on the change of photosynthetic characteristic, chlorophyll fluorescence characteristic, water physiology, metabolic products, activities of enzyme and chlorophyll in Reaumuria soongorica, Nitraria tangutorum and Calligomum mongolicum from four area (LZJ, WWM, ZYL and JQJ) under natural environment. This studies were analyzed and discussed to elucidate further the mechanisms of drought-resistance in the three plants,and comprehensive evaluated their drought-resistance.The main results were summarized as follows:
     1. Diurnal changes of net photosynthetic rate and transpiration rate in leaves of Reaumuria soongorica, Nitraria tangutorum and Calligomum mongolicum could be classified tow types:(1) bimodal curve, including Reaumuria soongorica,(2)single curve, including Nitraria tangutorum and Calligomum mongolicum; Their phtosynthetic typy could be classified tow typies: (1)low net photosynthetic rate(Pn) and transpiration rate(Tr) , including Reaumuria soongorica,(2)high Pn and Tr, including Nitraria tangutorum,(3) low Pn and high Tr, including Calligomum mongolicum. Among the environmental factors, photosynthetically active radiation (PAR) had a leading effect on both Pn and Tr ,the high light intensity of noon caused photoinhibition on Nitraria tangutorum and Calligomum mongolicum,but did not produce on Reaumuria soongorica. The scope of the most suitable photosynthetic temperature of the three plants are 25~30℃(Reaumuria soongorica),28~32℃(Nitraria tangutorum)and 35~37℃(Calligomum mongolicum) respectively. Water condition was the main factor that caused the different Pn and Tr of different area, and relative humidity (RH)mainly effected on Tr. Among internal factors, stomatal conductance (Gs) was the major determinant of midday depression in Pn of Reaumuria soongorica and Pn before 10:00 of Calligomum mongolicum, and the water stress would increase the Gs ability of the tow plants. The Gs adjustment ability of Nitraria tangutorum was effected by many factors, but the ability effected on Pn more than on Tr. The results showed that under the water stress condition, Reaumuria soongorica increased water use efficiency(WUE) through adjusting its Gs and osmoregulation matters; WUE of Nitraria tangutorum changed with the enviromrntal condition,while WUE of Calligomum mongolicum was all over higher than other plants because its different photosynthetic way and transpiraion property.
     2. A decline in maximal photochemical efficiency of PSII (Fv/Fm) and actual photochemistry efficiency(ΦPSⅡ) but not photoinhibition of Reaumuria soongorica was caused by high light intensity. The decline of photochemical efficiency of PSII which was one of non-stomatal factors on midday depression in Pn of Reaumuria soongorica was caused by drought stress.High light intensity produced photoinhibition of Nitraria tangutorum and Calligomum mongolicum,and the decline of soil water aggravated this phenomenon.The photoinhibition of Calligomum mongolicum was not serious because it lagged behind that of Nitraria tangutorum. The major photoprotective mechanism which helped Reaumuria soongorica to adap the adverse circumstances was the xanthophyll cycle_dependent thermal energy dissipation but not the photoinhibition under extreme soil drought coupling with high temperature, strong solar radiation and low air humidity,while Nitraria tangutorum and Calligomum mongolicum were dependent on tow photoprotective mechanisms.
     3. The changes of water physiology in three desert plants from different area showed that the drought resistant capability of three desert plants decreased in order of Reaumuria soongorica, Nitraria tangutorum and Calligomum mongolicum from water potential(WP), but in order of Calligomum mongolicum, Nitraria tangutorum and Reaumuria soongorica from relative water content(RWC) and water saturation deficit (WSD).
     4.The results showed that it was useful to accumulate proline (Pro) and soluble sugar (SS) in short time under the water deficient in desert, it was the way that plants restrain drought stess,but the condition was different in different plants. The drought resistant capability of three desert shrub plants decreased in order of Reaumuria soongorica, Nitraria tangutorum and Calligomum mongolicum from Pro and SS. The content of malondialdehyde ( MDA) and O2-. production rate of three plants from different area were increased under the water deficient ,and it destroyed the cytomembrane. The drought resistant capability of three desert plants decreased in order of Calligomum mongolicum, Reaumuria soongorica and Nitraria tangutorum from MDA and O2-..The effect of Calligomum mongolicum to clean the active oxygen molecule by improving the activityof super oxide dismutase (SOD) , catalase (CAT) was much more remarkable than Reaumuria soongorica and Nitraria tangutorum. While the effect of peroxide enzyme (POD) was not remarkable to protect the plants under the drought stress. The drought resistant capability of three desert plants decreased in order of Reaumuria soongorica, Nitraria tangutorum and Calligomum mongolicum from SOD and CAT. Chlorophyll content of Reaumuria soongorica and Nitraria tangutorum were decreased because the soil drought stress.While chlorophyll content of Calligomum mongolicum was increased under the same condition .It showed that Calligomum mongolicum was tardied to the changing of water.
     5. The results showed that the drought resistant capability of Reaumuria soongorica from different area decreased in order of WWM﹥JQJ﹥ZYL﹥LZJ, the drought resistant capability of Nitraria tangutorum from different area decreased in order of JQJ﹥WWM﹥ZYL﹥LZJ,the drought resistant capability of Calligomum mongolicum from different area decreased in order of JQJ﹥WWM﹥ZYL.We could see that the more drought stress the more drought resistant capability of desert plants, it was the result that plants adapted to environmental condition through adjusting their physiological changing.
     6. Eighteen drought resistant indexes were restricted and relyed on each other in the drought resistant mechanisms of three plants, and they adjusted the inner drought resistant mechanisms comprehensively. While three mechanisms such as increasing WUE through declining Tr, the xanthophyll cycle-dependent thermal energy dissipation and osmoregulation matters relying on mainly on Pro occupied important place in the drought resistant mechanisms of Reaumuria soongorica. The xanthophyll cycle-dependent thermal energy dissipation and the photoprotective mechanism of photoinhibition played leading roles in the drought resistant mechanisms of Nitraria tangutorum. The drought resistant mechanisms of Calligomum mongolicum was complicated more than other plants,because chlorophyll adjusting and enzyme ability of SOD and CAT mechanisms which were not important in other plants played important roles in Calligomum mongolicum, at the same time, it adapted to the double drought stress of soil and air through higher ability of holding and saving water and WUE.
引文
[1]安守芹,于卓.四种固沙灌木苗期抗热抗寒性的研究[J].干旱区资源与环境, 1995, 9(1): 72~77.
    [2]白琰,龙瑞军,刘玉冰.红砂的净光合速率与蒸腾速率的日变化特征[J].甘肃农业大学学报,2006,41(2):56~58.
    [3]白振兰.灰色关联分析研究综述[J].灰色系统理论与实践, 1993, 3(2): 119~122.
    [4]薜慧勤,孙兰珍,甘信民.花生品种抗旱性综合评价及其抗旱机理的数量分析[J].干旱地区农业研究, 1999, 17(1): 83~87.
    [5]曹兵,苏润海,王标,等.水分胁迫下臭椿幼苗几个生理指标的变化[J].林业科技, 2003, 28(3): 1~3.
    [6]柴宝峰,李毳.甘蒙怪柳与沙棘抗旱性研究[J].应用与环境生物学报, 1998, 4(1): 24~27.
    [7]柴宝峰,李洪建,王孟本.晋西黄土丘陵区若干树种水分生理及抗旱性量化研究[J].植物研究, 2000, 20(1): 79~85.
    [8]陈立松,刘星辉.水分胁迫对荔枝叶片氮和核酸代谢的影响及其与抗旱性的关系[J].植物生理学报, 1999, 25(1): 49~56.
    [9]陈少瑜,郎南军,贾利强等.干旱胁迫对坡柳等抗旱树种幼苗膜脂过氧化及保护酶活性的影响[J].植物研究,2006,26(1):88~92.
    [10]陈贻竹,李晓萍.叶绿素荧光技术在植物环境胁迫研究中的应用[J].热带亚热带植物学报.1995,3(4):79~86.
    [11]陈颖.南方主要造林树种幼苗抗旱性研究[D].南京:南京林业大学, 1997.
    [12]陈由强,朱锦惫,叶冰莹.水分胁迫对芒果幼苗细胞活性氧伤害的影响[J].生命科学研究,2000,4(l):60~64.
    [13]慈龙骏.中国强沙尘暴灾害及其荒漠化的未来扩展趋势[M].见卢琦,杨有林主编,全球沙尘暴警世录,北京:中国环境科学出版社,2001,199~206.
    [14]崔大方.中国琵琶柴属分类、分布、生态和形态解剖学的初步研究[J].干旱区究,1988,50(1):65~69.
    [15]崔宏安,刘莉丽,陈铁山,等.葛藤不同类型叶耐旱结构的比较解剖学研究[J].西北植物学报, 2003, 23(12): 2211~2215.
    [16]崔骁勇,刘世荣,赵广东,等.甘肃民勤绿洲-流沙过渡带植物群落光合和呼吸特征的比较研究[J].林业科学,2003,39(3):6~14.
    [17]单长森,田雷亮.冬小麦水分生理特性对水分胁迫的响应[J].吉林农业科学, 2007, 32(6): 16~21.
    [18]党宏忠,赵雨森.甘肃省高原山地树种的抗旱性研究[ J].中国水土保持科学, 2003, 1(3): 21~25.
    [19]邓雄,李小明,张希明,等.4种荒漠植物气体交换特征的研究[J].植物生态学报, 2002,26(5):605~612.
    [20]邓雄,李小明,张希明,等.多枝柽柳气体交换特性研究[J].生态学报,2003,23(1):180~187.
    [21]邓雄,李小明,张希明,叶万辉.塔克拉玛干4种荒漠植物气体交换与环境因子的关系初探[J].应用与环境生物学报,2002,8(5):445~452.
    [22]段爱国,保尔江,张建国.水分胁迫下华北地区主要造林树种离体枝条叶片的叶绿素荧光参数[J].林业科学研究,2005,18(5):578~584.
    [23]段金廒,周荣汉,赵守训.唐古特白刺叶黄酮类及酚酸类成分的分离鉴定[J].植物资源与环境,1999,8(1):6~9.
    [24]冯朝红.天然油莱素内脂处理后文冠果苗木的抗旱性研究[D].西北农林科技大学,2008
    [25]冯显透.宁夏干旱区叶片旱生结构的研究[J].林业科技通讯,1981,(11):13~17.
    [26]冯玉龙,巨关升,朱春全.杨树无性系幼苗光合作用和PV水分参数对水分胁迫的响应[J].林业科学,2003,39(3):30~36.
    [27]高洁,曹坤芳,王焕校,等.干热河谷主要造林树种光合作用光抑制的防御机制[J].应用与环境生物学报,2004,10(3):286~291.
    [28]高洁,叶洪刚,杨荣喜.攀枝花干热河谷14个树种的耐旱性研究[J].西南林学院学报,1996,16(3): 135~139.
    [29]高清竹,杨吉力,乌力吉,等.库布齐沙地油蒿光合作用特性与环境因子的关系[J].中国沙漠,1999,19(3):276~279.
    [30]郭明玲,李楠,郭劲玲.兰州市南北两山4个造林树种抗旱性的初步研究[J].甘肃科技,2005,21(7):175~176.
    [31]郭振飞,卢少云,李宝盛.不同耐旱性水稻幼苗对氧化胁迫的反应[J].植物学报,1997,39(8 ): 748~752
    [32]韩永伟,姚云峰,韩建国,等.吉兰泰地区退化梭梭光合生态生理学特性[J].草地学报,2001,9 (2):143~153.
    [33]郝再彬,苍晶,徐仲.植物生理实验[M].哈尔滨:哈尔滨大学出版社,2004,101~108.
    [34]何炎红,郭连生,田有亮.白刺叶不同水分状况下光合速率及其叶绿素荧光特性的研究[J].西北植物学报,2005,25(11):2226~2233.
    [35]洪涛,许大全.珊瑚树和大豆叶片叶绿素荧光的非光化学猝灭[J].植物生理学报, 1999, 25(1): 15~21.
    [36]胡景江,顾振琦,文建雷,等.水分胁迫对元宝枫膜脂过氧化作用的影响[J].西北林学院学报,1999,14(2):7~11.
    [37]胡小文,王彦荣,武艳培.荒漠草原植物抗旱生理生态学研究进展[J].草业学报,2004,13( 3): 9~15.
    [38]华东师范大学生物系植物生理教研组主编.植物生理实验指导[M].北京:人民教育出版社,1980,1~3.
    [39]黄培佑,聂湘萍,等.准噶尔盆地中部琵琶柴群落的生理研究[J].新疆大学学报,1988,5(3):66~71.
    [40]贾宝全,黄培佑.刺木琴和大果白刺在准噶尔盆地南缘沙区侵移定居的初步研究[J] ,新疆大学学报(自然科学版),1992,9 (4):8 9~95.
    [41]贾荣亮,周海燕,谭会娟,等.超旱生植物红砂与珍珠光合生理生态日变化特征初探[J].中国沙漠,2006,26(4):631~636.
    [42]蒋高明,朱桂杰.高温强光环境条件下3种沙地灌木的光合生理特点[J].植物生态学报,2001,25(5)525~531.
    [43]蒋明义,郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用[J].植物生理学通讯,1996,32 : 144~150.
    [44]蒋志荣.沙冬青抗旱机理的探讨[J].中国沙漠, 2000, 20(1): 71~74.
    [45]景蕊莲.作物抗早研究的现状与思考[J].干早地区农业研究.1999,6:79~85
    [46]景芸.三种青冈属苗木的生理特性研究[J].江西农业大学学报, 2004, 26(2): 187~190.
    [47]黎祜琛,印治军.树木抗旱性及抗旱造林技术研究综述[J].世界林业研究, 2003, 16(4): 17~22.
    [48]黎燕琼,郑绍伟,陈私,等.林木抗早性研究及其进展[J].世界林业研究,2007,20(1):10~15.
    [49]李必华,孙圣毖,等.白刺及其开发利用[Jl.山东林业科技,1994, ( 3):7 ~11.
    [50]李合生.植物生理生化实验原理和技术[M].高等教育出版社,2003,110~111.
    [51]李慧卿,马文元.沙生植物抗旱性比较的主要指标及分析方法[J].干旱区研究, 1998, 15(4): 12~15.
    [52]李吉跃.太行山区主要造林树种耐旱特性的研究[D].北京:北京林业大学, 1990.
    [53]李吉跃.太行山区主要造林树种耐旱特性的研究[J].北京林业大学学报, 1991,13(增刊): 251~255.
    [54]李军,卫发兴,陈风顺.从六个核桃无性系(种)叶的形态解剖比较其抗旱性[J].河南林业科技,1997,17(3):9~11
    [55]李昆,曾觉民,赵虹.金沙江干热河谷造林树种游离脯氨酸含量与抗旱性关系[J].林业科学研究, 1999, 12(1): 103~107.
    [56]李林芝,邵麟惠,于应文,等.柴达木荒漠草原4种灌木叶片解剖结构与其抗旱性的研究[J].草原与草坪,2009,3:20~23.
    [57]李禄军,蒋志荣,李正平,等. 3树种抗旱性的综合评价及其抗旱指标的选取[J].水土保持研究,2006, 13(6):252~254.
    [58]李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,2002,17 (3):59~63.
    [59]李鹏民,高辉远, Reto J.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报, 2005, 31(6): 559~566.
    [60]李向义,Frank M T, Andrea F等.自然状况下头状沙拐枣对水分条件变化的响应[J].植物生态学报,2002,27(40):516~521.
    [61]李向义,张希明,何兴元等.沙漠一绿洲过渡带四种多年生植物水分关系特征[J].生态学报.2004a,24 (6):1164~1171.
    [62]李向义,赵强,何兴元等.策勒绿洲前沿两种植物的水分生理生态特征[J].干旱区研究.2004b,21 (2): 171~174.
    [63]李晓燕,李连国,刘志华,等.葡萄叶组织结构与抗旱性关系的研究[J].内蒙古农牧学院学报,1994, 15(3): 30~32.
    [64]李彦慧,周怀军,杨敏生,等.廊坊杨苗期的抗旱性研究[J].西北林学院学报,2004,19(l):27~31.
    [65]李正理.我国甘肃九种旱生植物同化枝的解剖观察[J].植物学报,1981,(11):13~17.
    [66]梁红柱,窦德泉,冯玉龙.热带雨林下砂仁叶片光合作用和叶绿素荧光参数在雾凉季和雨季的日变化[ J].生态学报, 2004, 24(7): 1421~1429.
    [67]梁建生,张建华.根系逆境信号ABA的产生和运输及其生理作用[J].植物生理学通讯, 1998, 34(5): 329~338.
    [68]刘广全,赖亚飞,李文华. 4种针叶树抗旱性研究[J].西北林学院学报, 2004, 19(1): 22~26.
    [69]刘家琼,黎志坚,蒲锦春,等.我国沙漠中部地区主要不同生态类型植物脯氨酸德累积、光合、呼吸和叶绿素含量[J].植物学报,1988,30(1):85 ~95.
    [70]刘家琼,蒲锦春,刘新民.中国沙漠中部地区主要不同类型植物的水分关系和旱生结构比较研究[J].植物学报,1987,29(6):662~667.
    [71]刘家琼,邱明新,蒲锦春,等.我国典型超旱生植物—红砂[J].植物学报,1982,24(5):48 5~488.
    [72]刘建泉.沙拐枣水分生理特征及抗旱性分析[J].青海农林科技,1999,2:29~32.
    [73]刘建泉.沙拐枣群落特征与生物学特性的研究[J].甘肃林业科技,1995,2:18~22.
    [74]刘建伟,刘雅荣,王世绩.不同杨树无性系光合作用与其抗旱能力的初步研究[J].林业科学, 1994, 30(1): 83~87.
    [75]刘淑明,陈海滨,孙长忠,等.黄土高原主要造林树种的抗旱性研究[J].西北农林科技大学学报(自然科学版),2003,31(4): 149~153.
    [76]刘速,刘晓云.琵琶柴地上生物量的估测模型[J].干旱区研究,1996,13(1):36~40.
    [77]刘学师,任小林.宁南八种植物组织结构抗旱性的研究[J].水土保持研究, 2005, 12(3): 76~80.
    [78]刘瑛心.中国白利属植物的分类和分布〔A],见:中国科学院治沙队编,治沙研究C(第七号) ,北京:科学出版社,1995,1~6.
    [79]刘玉冰,张腾国,李新荣,等.红砂忍耐极度干旱的保护机制:叶片脱落和茎中蔗糖累积[J].中国科学C辑生命科学,2006,36(4):328~333.
    [80]刘祖棋,张石城.植物抗性生理学[M].北京:中国农业出版社,1994,3~5,121~124.
    [81]娄成后,王学成.年.作物产量形成的生理学基础[M].北京:中国农业出版社,2001,39~41.
    [82]卢从明,张其德,匡廷云.水分胁迫对小麦光系统Ⅱ的影响[J].植物学报,1994,36(2):93~98.
    [83]卢琦.中国沙情[M].北京:开明出版社,2000,21~25.
    [84]罗青红,李志军,伍维模,等.胡杨、灰叶胡杨光合及叶绿素荧光特性的比较研究[J].西北植物学报, 2006, 26(5): 983~988.
    [85]罗耀华. C3,C4和CAM途径的生态意义[J].生态学报,1985,5(1):15~27.
    [86]马剑英,周邦才,夏敦胜,等.荒漠植物红砂叶绿素和脯氨酸累积与环境因子的相关分析.西北植物学报, 2007, 27(4): 0769~0775.
    [87]马剑英,陈发虎,夏敦胜,等.荒漠植物红砂叶片元素和水分含量与土壤因子的关系[J].生态学报,2008a,28(3):983~992.
    [88]马剑英,陈发虎,夏敦胜,等.荒漠植物红砂叶片δ13C值与生理指标的关系[J].应用生态学报,2008b,19(5): 1166~1171.
    [89]马剑英,方向文,夏敦胜,等.荒漠植物红砂叶片元素含量与气候因子的关系[J].植物生态学报,2008c,32(4)848~857.
    [90]马茂华,孔令韶.新疆呼图壁绿洲外缘的琵琶柴生物生态学特性研究[J].植物生态学报,1998,22(3 ):237~244.
    [91]潘晓玲,沈观见,陈鹏.白刺属植物的分类学及系统学研究[Jl.云南植物研究,1999,21 (3 )287~295.
    [92]裴鑫德.多元统计分析及其应用[M].北京:北京农业大学出社, 1999: 196~216.
    [93]裴冬,张喜英.高梁、谷子根系发育及其抗旱性研究[J].中国生态农业学报,2002,10(4):28~30.
    [94]彭立新,李德全,束怀瑞.园艺植物水分胁迫生理及耐早机制研究进展[J].西北植物学报.2002,22(5):1275~1281.
    [95]祁迎林,魏窦兴,达海兰,等.柴达木盆地唐古特白刺的抗逆性及其开发利用价值[J].草业科学,2004,21(9):13-15.
    [96]邵麟惠,杨占武,于应文等.柴达木盆地6种灌木主要渗透调节物质分布特征和抗旱性研究[J].草原与草坪,2007,120(1):19~23.
    [97]沈元月,黄丛林,张秀海,等.植物抗旱的分子机制研究[J].中国生态农业学报.2004,10(l):30~34
    [98]宋耀选,周茂先,张小由,等.额济纳绿洲主要植物的水势与环境因子的关系[J].中国沙漠, 2005, 25(4):496~499.
    [99]苏培玺,严巧嫡,张立新,等.荒漠植物梭梭和沙拐枣光合作用、蒸腾作用及水分利用效率特征[J].西北植物学报,2003,23(1):11~17.
    [100]孙彩霞,沈秀瑛,郝宪彬,等.根系和地上部生长指标与玉米基因型抗旱性的灰色关联度分析[J].玉米科学,2000,8(1):31~33
    [101]孙祥.籽篙与白刺的特性及其利用的研究[Jl,内蒙古林学院学报(自然科学版),1998, 20(3 ): 43~49.
    [102]谭勇,潘伯荣,段士民,等.中国沙拐枣属天然群落特征及其物种多样性研究[J].西北植物学报,2008,28(5):1049~1055.
    [103]孙立平,李德全.LEA蛋白的分子生物学研究进展[J].生物技术通报,2003,6:5~8.
    [104]唐先兵,赵恢武,林忠平.植物耐旱基因程研究进展[J].首都师范人学学报(白然科学版),2002,23(3):47~52.
    [105]汤章城.植物对环境的适应和环境资源的利用[J].植物生理学通讯,1994,30 (6):401~405.
    [106]陶玲,任珺.不同种子预处理对10种沙拐枣植物萌发的影响[J].西北植物学报,2004,24(4):601~609.
    [107]涂瑾,王克勤.干旱地区造林树种的水分生理生态的研究进展[J].西北林学院学报, 2003, 18(3): 26~30.
    [108]万劲,石雷.盐胁迫对鸢尾叶片生理指标的影响[J].南京林业大学学报,2006,30(1):105~110.
    [109]王霞,候平,伊林克.水分胁迫对柽柳植物可溶性糖的影响[J].干旱地区研究,1999,16(2):1~10.
    [110]王颖,魏国印,张志强,等. 7种园林树种光合参数及水分利用效率的研究[J].河北农业大学学报, 2006,29(6): 44~48.
    [111]王爱国,罗广华.植物的超氧自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,26(6):55~57.
    [112]王邦锡,王辉,黄久常.沙拐枣同化枝的光合作用和呼吸作用对生长季节、光照强度、高温和干旱的响应[J].林业科学.1997.33 ( 1):18~24.
    [113]王海珍,梁宗锁.黄土高原乡土树种抗旱生理指标的主成分析[J].塔里木农垦大学学报,2004,16(1):13~15.
    [114]王洪春.植物抗性生理[J].植物生理学通讯, 1981, 17(6):72~81.
    [115]王珲,夏玉芳,陆飞,等.马尾松针叶解剖构造及其抗旱适应性初步研究[J].贵州林业科技, 2005, 33(4): 17~20.
    [116]王均明,孟丽,孙金花.林木抗旱性与其根次生构造关系的研究[J].中国水土保持,1999,6:20~22.
    [117]王孟本,李洪建,柴宝峰,等.黄土区树种抗旱性指数的研究[J].植物学研究, 1999, 19(3): 341~346.
    [118]王孟本,李洪建,任建中,等.杨树杂交无性系品种抗旱性的比较研究[J].山西大学学报(自然科学版), 2002, 25(2):176~179.
    [119]王青宁,唐静,衣学慧,等.基于多元统计评价毛白杨无性系的抗旱性[J].西北林学院学报, 2005, 20(4): 21~26.
    [120]王霞.水分胁迫对柽柳植物可溶性物质的影响[J].干旱区研究, 1999, 16(2) : 7~11.
    [121]王孝安.安西荒漠植物群落和优势种的分布与环境的关系[J].植物学报,1940(11):1047~1052.
    [122]王勋陵,马骥.从旱生植物叶结构探讨其生态适应的多样性[J].生态学报, 1999, 19( 6):787~792.
    [123]王彦荣,曾彦军,付华,陈善科.过牧及封育对红砂荒漠植被演替的影响[J].中国沙漠,2002a,922 (4 ):321~327.
    [124]王彦荣,曾彦军,张宝郴,等.不同退化红砂荒漠草地的水分分配格局[J].应用生态学报,2002b,13(8): 962~966.
    [125]王怡.三种抗旱植物叶片解剖结构的对比观察[J].四川林业科技,2003,24(1):64~67.
    [126]韦小丽,徐锡增,朱守谦.水分胁迫下榆科3种幼苗生理生化指标的变化[J].南京林业大学学报(自然科学版), 2005, 29(2): 47~50.
    [127]魏岩,谭敦炎,尹林克.中国怪柳科植物叶解剖特征与分类关系的探讨[J].西北植物学报,1999,19(1): 113~I18.
    [128]魏亦农,孔广超,曹连莆.新小黑麦1号光合速率及叶绿素荧光特性的研究[J].麦类作物学报, 2002, 22(4): 91~93.
    [129]魏永胜,梁宗锁,等.利用隶属函数值法评价苜蓿抗旱性[J].草业科学, 2005,22(6):33~36.
    [130]吴彩霞,周志宇,庄光辉,等.强旱生植物霸王和红砂地上部营养物质含量及其季节动态[J].草业学报,2004,21(3): 30~34.
    [131]吴克宁,杨扬,吕巧灵.模糊综合评判在烟草生态适宜性评价中的应用[J]. 2007, 38(4): 631~634.
    [132]肖强,叶文景,朱珠,等.利用数码相机和Photoshop软件非破坏性测定叶面积的简便方法[J].生态学杂志,2005, 24(6): 711~714.
    [133]谢寅峰,沈惠娟.水分胁迫下3种针叶树幼苗抗早性与峭酸还原酶和超氧化物歧化酶活性的关系[J].浙江林学院学报,2000,17(l):24~27.
    [134]徐当会.红砂和柠条脱水复水过程中的生理生态特性研究[D].博士学位论文.兰州:兰州大学,2007:36.
    [135]徐莉,王丽,岳明,等.新疆阜康荒漠红砂种群构件结构与环境因子的灰色关联度分析[J].植物生态学报, 2003 ,27(6): 742~748.
    [136]徐莉,王丽,李珊,等.影响新疆阜康荒漠地区红砂光合日变化因素的分析[J].西北大学学报(自然科学版), 2005,35(4):421~432.
    [137]薛慧勤,孙兰珍,甘信民.花生品种抗旱性综合评价及其抗旱机理的数量分析[J].干旱地区农业研究, 1999, 17(1): 83-87.
    [138]闫海龙,张希明,许浩,等.塔里木沙漠公路防护林植物沙拐枣气体交换特性对干旱胁迫的响应[J].中国沙漠,2007,27(3):460~465.
    [139]燕玲,李红,刘艳. 13种锦鸡儿属植物叶的解剖生态学研究[J].干旱区资源与环境, 2002, 16(1): 100~106.
    [140]闫玉春.科尔沁沙地九种灌木苗期水分生理与抗旱性研究[D].呼和浩特:内蒙古农业大学硕士论文,2005.
    [141]杨俊,马健,王婷婷,等.5种荒漠植物抗旱性及其与抗旱指标相关性的定量评价[J].干旱区资源与环境,2009,23(6) :143~146.
    [142]杨敏生,费保华,朱之悌.白杨双交杂种无性系抗旱性鉴定指标分析[J].林业科学,2002,38(6):36~42.
    [143]杨明,董怀军,杨文斌,等.四种沙生植物的水分生理生态特性及其在固沙造林中的意义[J].内蒙古林业科技,1994. 2:4~7.
    [144]杨世杰.植物生物学[M].北京:科学出版社,2000:130~149.
    [145]姚砚武,李淑英,周连第.常绿阔叶林木在北方地区抗旱适应类型分析[J].北京农业科学,2001,(4): 24~29.
    [146]姚允聪.不同浇水处理过程中柿树SOD.CAT和膜脂过氧作用的变化[J].北京农学院学报,1996,22(5):451~455.
    [147]尹春英,李春阳.杨树抗旱性研究进展[J].应用与环境生物学报, 2003, 9(6): 662~668.
    [148]于金慧,柏明娥,方伟,等.干旱胁迫对4种灌木生理生化特性的影响[J].浙江林学院学报2009,26(4):485~489
    [149]于卓,王林和.三种沙拐枣种子休眠原因研究初报[J].西北林学院学报,1998,13(3):9~13
    [150]俞嘉宁,山仑.LAE蛋白与植物的抗旱性[J].生物工程进展,2002,2:10~14.
    [151]曾彦军,王彦荣,张宝林,等.红砂和猫头刺种子萌发生态适应性的研究[J].草业学报,2000,9(3):36~42.
    [152]曾彦军,王彦荣,张宝林,等.红砂种群繁殖特性的研究[J].草业学报,2002,11(2):66~71.
    [153]张鹤山,张德罡,刘晓静,等.灰色关联度分析法对不同处理下草坪质量的综合评判[J].草业科学, 2007, 24(11): 73~76
    [154]张建国.中国北方主要造林树种耐旱特性及其机理的研究[D].北京:北京林业大学, 1993.
    [155]张锦春,赵明,张应昌,徐延双.灌溉植被梭梭、白刺光合蒸腾特性及影响因素研究[J].西北植物学报,2005,25(1):0070~0076.
    [156]张奎,邹受益.治沙原理与技术[M]北京:中国林业出版社,1990.
    [157]张宪政.植物叶绿素含量测定-丙酮乙醇混合液法[J].辽宁林业科学.1986,3.
    [158]张孝仁,徐先英.沙拐枣属种间抗干旱抗风蚀性比较试验研究[J].干旱区资源与环境, 1992, 6(4): 55-62.
    [159]张振师,薛智德,崔宏安,等.延安地区3种灌木叶旱性结构的解剖研究[J].西北林学院学报, 2004, 19( l): 32~35.
    [160]赵成义,宋郁东,王玉潮,等.几种荒漠植物地上生物量估算的初步研究[J].应用生态学报,2004,15(1):49 ~52.
    [161]周桂莲,杨惠霞.小麦抗旱鉴定的生理指标及分析评价[J].干旱地区农业研究, 1996, 14(2): 65~71.
    [162]周海燕,黄子琛.不同使其毛乌苏沙区主要植物种光合和蒸腾作用的变化[J].植物生态学报, 1996,20(2):120~131.
    [163]周海燕,李新荣,樊恒文,等.极端条件下几种锦鸡儿属灌木的生理特性[J].中国沙漠,2005 25(2):182~190.
    [164]朱春云,赵越,刘霞,等.锦鸡儿等旱生树种抗旱生理的研究[J].干旱区研究, 1996, 13(1): 59~63.
    [165]朱芸,相颖,刘金荣.白刺果实脂肪和脂肪酸的含量测定[J].现代中药研究与实践,2003,17(4):28~29.
    [166]庄丽,陈亚宁,陈明,等.模糊隶属法在塔里木河荒漠植物抗旱性评价中的应用[J].干旱区地理, 2005, 28(3):368~371.
    [167]庄丽,陈亚宁.2006.塔里木河下游干旱胁迫条件下怪柳生理代谢的响应[J].科学通报,51(4): 442~447.
    [168]邹春静,韩士杰,徐文铎,等.沙地云杉生态型对干旱胁迫的生理生态响应[ J].应用生态学报, 2003, 14 (9): 1446~1450.
    [169]邹琦,李德全,郑国生,等.作物抗旱生理生态研究[M].济南:山东科学技术出版社,1994:24~29.
    [170] Aasamma K, Sher A, Hartung W, Niinemets I. Rate of stomatal opening, shoot hydraulic conductance and photosynthetic characteristics in relation to leaf abscisic acid concentration in six temperate deciduous trees[J].Tree Phyio,l 2002, 22: 267~276.
    [171] Alberte R S, Thornber J P, Fiscus E L. Water stress effects on the content and organization of chlorophyll in mesophyll and bundle sheach chloroplasts of maize[J]. Plant Physiology, 1977,59:351~353.
    [172] Aderson M N, Kohom B D.Inactivation of arabidopsis lead to reduced levels of sugars and drought tolerance[J].Journal of Plant Physiology ,2001,158,1215~1219.
    [173] Aono M. Paraquat tolerance of transgenic Nicotiana tabacum with enhanced activities of glutathione reductase and superoxide dismutase[J].Plant and Cell Physiology,1995,36:1687~1691.
    [174] Asada K. Production and action of active oxygen in photosynthetic tissue[M].CRC Press,Boca Raton FL,1994,77~104.
    [175] Barker D J, Sullivian C Y, Moser L E.Water deficit effects on osmotic potential, cell wall elasticity, and proline in five forage grasses[J]. Agronomy Journal,1993,85:270~275.
    [176] Bhaskaran S, Smith R H,Newton R J.Physiological changes in cultured sorghum cells in reponse to induced water stress[J].Plant Physiology,1985,79:266~269.
    [177] Bloch D, Hoffmann C M, Marlander B. Solute aeeumulation as a cause for quality losses in sugar beet submitted to continuous and temporary drought stress[J].Joumal of Agronomy and Crop Science,2006,192(l):17~24.
    [178] Blum A, Ebercon A.Genotypic responses in sorghum to drought stress.Free proline accumulation and drought resistance[J].Crop Science,1976,16:428~431.
    [179] Bowler C, Fluhr R.The role of calcium and activated oxygens as signals for controlling cross tolerance[J].Trends in Plant Science,2000,5(6):241~246.
    [180] Bowler C,Slooten L,Vandenbranden S. Manganese superoxide dismutase can rduce cellular damage mediated by oxygen radicals in transgenic plant[J].EMBO Journal,1991,10:1723~1732.
    [181] Carrasco M R, Rodriguez S J, Pérez P. Changes in chlorophyⅡfluorescence during the course of photoperiod and in response to drought in Casuarina equisetifolia Forst & Forst[ J]. Photosynthetica, 2002, 40(3): 363~368.
    [182] Chaves M M, Maroeo J R, Pereira J S. Under standing plant responses to drought from genes to the whole Plant[J].Functional Plant Biology,2003,30,239~264.
    [183] Chaves M M, Oliveira M M.Mecllarlisms underlying plant resistence to wayer deficits:prospect for water saving agriculture[J]. J Bot.2004,55(407): 65~84..
    [184] Bray E A.Molecular response to water deficit[J].Plant Physiology,1993,103:1035~1040.
    [185] Casper B B, Forseth I N, Wait D A. A stage based study of drought response in Cryptantha flava (Boraginaceae): Gas exchange, water use efficiency, and whole plant performance[J]. Am J Bot, 2006, 93(7): 978~987.
    [186] Chartzoulakis K, Patakas A, Bosabalidis A M. Changes in water relations,photosynthesis and leaf anatomy indueed by intermittent drought in two olive eultivars[J]. Environmental and Experimental Botany,1999,42,113~120.
    [187] Chaves M M. Effects of water deficits on carbon assimilation[J]. Journal of Experimental Botany,1991,42(234):1~6.
    [188] Cornic G, Briantaris J M. Partitioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf (Phaseolus vulgaris L.) at different CO2 concentrations and during droughtstress[J]. Planta, 1991,183: 178~184.
    [189] Delseny M, Gaubier P, Hull G.Nuclear genes expressed during seed desiccation:relationship with responses to stress[M].In:Basra AS,ed.Stress_Induced Geng Expression in Plants,Reading,UK.Harwood Academic Press,1994,25~59.
    [190] Demmig A D, Ams B, Adamsw W. Photoprotection and other responses of plants to high light stress[J].Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:599~626.
    [191] Dure L. P1ant responses to ce11u1ar dehydration during environment stress[J].Plant Physiology,1993,(10):91~103.
    [192] Ehleringer J R. In physiological ecology of north american plant communities,eds[M]. Chabot B F, Mooney H A . New York: Chapman & Hall,1985,162~180.
    [193] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annu Rev Plant Physiol, 1982,33:317~345.
    [194] Filella I, Llusia J, Pinol J,etal. Leaf gas exchange and fluorescence of Phillyrea latifolia,Pistacia lentiscus and Quercus lexsaplings in severe drought and high temperature conditions[J]. Environmental Experimental Botany, 1998,39: 213~220.
    [195] Fridovich I. Superoxide dismutase[J].Ann Review of Bioehemistry, 1975, 44:147~159.
    [196] Glynn C P, Colin N, Sheriffs. Identification of drought tolerant woody perennials using chlorophyll fluorescence[J].Journal of Arboriculture 28(5),2002,9:215~221.
    [197] Gong J R, Zhao A F, Huang Y M, et al. Water relations, gas exchange, photochemical efficiency, and peroxidative stress of four plant species in the Heihe drainage basin of northern China[J]. Photosynthetica, 2006, 44(3): 355~364.
    [198] Gzik A. Accumulation of proline and patten of amino acids in sugar beet plants in response to osmotic,water and salt stress[J].Environamental and Experimental Botany,1996,36:29~38.
    [199] Hamilton E W, Heekathom S A. Mitochondrial adaptations to NaCI. Complex ? is proteeted by antioxidants and small heat shock proteins,whereas Complex II is protected by proline and betaine[J].Plant Physiology,2001,126,1266~1274.
    [200] Handa S, Handa A K, Hasegawa P M. Proline accumulation and adaptation of cultured plant cells to water stress[J]. Plant Physiology,1986,80:93~945.
    [201] Hanson A D, Nesen C F, Everson E H. Evahrtion of free proline accumulation as an index of drought using to contracting barley cultivars[J].Crop Science,1977,17:720~726.
    [202] Hare P D, Cress W A, Van Staden J. Disseeting the roles of osmolyte aceumulation during stress[J].Plallt Cell Environament,1998,21:535~553.
    [203] Hare P D,Cress W A. Metabolic implications of stress indueed proline accumulation in plants[J].Plant Growth Regulation,1997,21:79~102.
    [204] Holmberg N, Bulow L. Improving stress tolerance in plants by gene transfer[J].Trends in Plant Science, 1998,3:61~66
    [205] Hu J J, Gu Z Y, Wen J L, etal. Effect of water stress on membrane lipid peroxidation in maple[J]. Journal of Northwest Forestry College, 1999, 14(2): 7~11.
    [206] Ingram J,Bartels D.The moleeular basis of dehydration tolerance in plants[J].Annual Review on Plant Physiology & Plant Molecular Biology,1996,47:377~403.
    [207] Inze D,Montagu M V.Oxidative stress in plan t [J]. Current Opinion in Biotechnology, 1995,6:153~158.
    [208] Iturbe O, Eseuredo P R,Arrese I C. Oxidative damage in pea plants exposed to water deficit or paraquat[J]. Plant Physiology,1998,116:173~181.
    [209] John G,Scandalios.Oxygen stress and superoxide dismutases[J].Plant Physiology,1993,101:7~12.
    [210] Kameli A,Losel D M. Contribution of carbohydrates and other solutes to osmotic adjustment in wheat leaves under water stress[J].Journal of plant Physiology,1995,145:363~366.
    [211] Khalil A A M,Grace J.Acclimation to drought in acer pseudoplatnus L.(Sycamore) seedlings[J]. Journal of Experimental Botany,1992,43:1591~1602.
    [212] Knetsch M LW,Wang M, Snaar-Jagalska B E. Abscisic acid induce smitogen actived protein kinase activation in barley aleurone protoplasts[J].Plant Cell,1996,8:1061~1067.
    [213] Koster K L.Glass formation and desiccation tolerance in seeds[J].Plant Physiology,1991,96:302~304.
    [214] Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: the basic[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1991,42: 313~349.
    [215] Lal A , Ku M S,Edwards. Analysis of inhibition of photosynthesis due to water stress in the C3 species Hordeum vulgareand Vicia faba: electron transport,CO2 fixation and carboxylation capacity[J]. Photosynthetic Research, 1996, 49: 57 ~69.
    [216] Levitt J.Response of plants to environmental stresses [M].New York:Academic Press, 1980: 325~358.
    [217] Liu J Y, Qiu B S, Liu Z L et al. Diurnal photosynthesis and photoinhibition of rice leaves with chlorophyll fluorescence[J]. Acta Botanica Sinica, 2004, 46(5): 552~559.
    [218] Loggini B, Scartazza A, Brugnoli E. Antioxidative defense system,pigment composition,and photosyntheticefficiency in two wheat cultivars subjected to drought[J].Plant Physiology, 1999, 119:1091~1099
    [219] Lwalor D W. Photosynthesis.Moleeular, Physiological and Enviormnenatl Processes[M].Lonnglna Seieniific and Teehnieal,Essex, UK. 1993.
    [220] Mao Z, Jiang H, Wang Y, et al. 2004.Water balance of birch and larch leaves and their resistance to short and progressive soil drought[J]. Russ J Plant Physiol, 51: 697~701.
    [221] Marler T E,Miehelbart M V.Drought,leaf gas exehange,and chlorophyll fluoreseenceof field grown papaya[J].Journal of the Ameriean Society for Horticultural Science,1998,23(4):714~718.
    [222] Mittler R. Oxidative stress antioxidants and stress tolerance[J].Trends in Plant Science,2002,7(9):405~409.
    [223] Mohammed G H, Binder W D, Gillies S L. Chlorophyll fluorescence: a review of its practical forestry applications and instrumentation[J]. Scandinavian Journal of Forest Research, 1995,10: 383~410.
    [224] Morgan J M. Interaction of water supply and N in wheat[J]. PlantPhysio,1984, 76: 112~117.
    [225] Niyogi K K. Photoprotection revisited,genetic and moleeular approaches[J]. Annual Review of Plant Physiology and Plant Molecule Biology,1999,50:333~359.
    [226] Odasz-Albrigtsen A M, Tommervik H, Murphy P. Decreased photosynthetic efficiency in plant species exposed to multiple airborne pollutants along the RussianNorwegian border[J]. Can J Bot ,2000,78: 1021~1033.
    [227] Oechel W C, Lawrence W, Mustafa J, et al. Energy and carbon allocation[M]. In: Mille P C. ed. Resource use by Chaparral and Matorral. Berlin: Springer Press. 1981,151~183.
    [228] Pacific R E, Davies K. Hydrophobicity as the signal for selective de gradationg of hydroxyl radical- modified hemoglobin by the multicatalytic proteinase complex proteasome[J]. Journal of Biological Chemistry,1993,268:1545~1551.
    [229] Patakas A, Noitsakis B. Meehanisms involved in diumal changes of osmotie potential in grapevines under drought conditions[J]. Journal of Plant Physiology,1999,154,767~74.
    [230] Paul M J, Pellny T K, Goddijn O J M. Enhancing photosynthesis with sugar signals[J].Trends in Plant Scienee,2001,6,197~200.
    [231] Perl A, Perl T R,Galili S. Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu/Zn superoxide dismutases[J].Theoretical and Applied Genetics,1993,85:568~576.
    [232] Polle A. Dissecting the superoxiode dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling.Computer stimulation as a step towards flux analysis[J].Plant Physiology,2001,126:445~462.
    [233] Quick W P, Chaves M M, Wendler R,et al. The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions[J]. Plant,Cell and Environment, 1992. 15: 25~35.
    [234] Quist G, Chow W, Anderson J M . Photoinhibtion of photosynthesis represents a mechanism for the longterm regulation of photosystemll[J] . Planta, 1992, 186 (6 ): 450~460.
    [235] Robert E S, Lenoble M E. ABA, ethylene and the control of shoot and root growth under water stress[J]. J Exper Bot, 2002, 53: 33~37.
    [236] Rouhi V, Samson R, Lemeur R, et al. Photosynthetic gas exchange characteristics in three different almond species during drought and subsequent recovery[J]. Environ Exp Bot, 2007, 59(2): 117~129.
    [237] Samuel D, Kumar T K, Ganesh G, et al. Proline inhibits aggregation during protein refolding[J].Protein science,2000,9,344~352.
    [238] Sanchez R J, Perez P, Martinez C R. Photosynthesis, carbohydrate levels and chlorophyll fluorescence estimated intercellular CO2 in water stressed Casurarina equisetifolia forest[J]. Plant,Cell and Environment, 1999,22: 867~873.
    [239] Schreiber U. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: anoverview[A]. Papageorgiou G C,Govindjee,Eds. Chlorophyll fluorescence: a signature of photosynthesis[C]. Dordrecht: Springer, 2004:279~319.
    [240] Serra J R, Sinelair T R. Osmolyte accumulation:can it really help increase crop yield under drought conditions[J]? Plant Cell and Environmenr,2002,25,333~341.
    [241] Serrano R, Mulet J, Rios G. A glimpse of the mechanisms of ion homeostasis during salt stress[J]. Journal of Experimental Botany,1999,50:1022~1036
    [242] Shabala S N, Lew R R.Turgor regulation in osmotieally stressed arabidopsis epidermal root cells:Direct support for the role of inorganic ion uptake as revealed by coneurrent fluxand cell Turgor measurements[J].Plant Physiologr,2002,129,290~299.
    [243] Sherwin H W. Hydraulic architecture of myrothamnus flabellifolius:Water relation and wood anatomy[J].Ann.Bot., 1998,81(4):567~575
    [244] Smirnoff N. Antioxidant systems and plant response to the environment[M].In: Smirnoff N, ed. Environment and plant metabolism: flexibility and acclimation.Oxford:Bios Science Press,1995,217~243.
    [245] Smith S D,Nowak R S. Ecophysiology of plants in the inter mountain low lands[M]. New York:Springer -Verlag,1990,179~241.
    [246] Sofo A, Dichio B, Xiloyannis C,et al. Lipoxygenase activity and proline accumulation in leaves and roots of olive tree response to drought stress[J].Physiology Plant,2004,121:58~65.
    [247] Stadtman E R.Prorein Oxidation and aging[J].Science,1992,257:1220~1224.
    [248] Tarcznski M C,Jensen R G, Bohnert H J. Stress potention of transgenic tobacco by production of the osmolyte mannitol[J].Science,1993,259:508~510.
    [249] Tenhunen J D A, Sala Serra P C, Harley R L, et al. Factors influencing carbon fixation and water use by Mediterranean sclerophyll shrubs during summer drought[J]. Oecologia, 1990,82: 381~393.
    [250] Turner N C, Stem W R, Evans P.Water relations and osmotic adjustment of leaves and roots of lupins in response to water deficits[J].Crop Science,1987,27:977~983.
    [251] Wang R Z, Gao Q. Photosynthesis, transpiration and water use efficiency in two divergent Leymus chinensis populations from northeast China[J].Photosynthetica,2001,39:123~126.
    [252] Willekens H, Channongpol S, Davey M. Catalase is a sink for H2O2 and is indispensable for stress defen in C3 plants[J].EMBO Journal,1997,16:4806~4816.
    [253] Willekens H, Langebartels C, Tire C. Differential expression of catalase genes is Nicotiana plumbaginifolia (L.)[J].Proceedings of National Academy of Science (USA),1994,91:10450~10454.
    [254] Wright G C, Smith R C G, Morgan J M. Differences between two grain sorghum genotypes in adaption to drought stress[J].Physiological responses. Agricultural Researeh, 1983,34:736~741.
    [255] Xu L ,WangY L ,WangX M ,et al.Genetics tructure of Reaumuria soongorica population in Fukang Desert,Xinjiang and its relationship with ecological factors[J]. Acta Botonica Sinica,2003 ,45( 7):787~794.
    [256] Xu Z C, Li D Q, Zou Q, et al. Effect of drought on chlorophyll fluorescence and xanthophyll cycle components in winter wheat leaves with different ages[J]. Acta Photophysiologica Sinica,1999,25(1):29~37.
    [257] Zhu J K. Salt and drought stress signal transduction in plants[J].Annual Review of Plant Biology,2002,53:247~273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700