用户名: 密码: 验证码:
太湖富营养化水体中典型污染物的臭氧氧化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地表水体日益受到各种有机物的污染,对水环境和人类健康构成了严重的威胁。在太湖流域,许多水体面临富营养化的威胁,其中由藻类大量繁殖引起的水华和由此带来的一系列水环境问题,给地表水水质和生态系统带来了诸多影响。其中由水体生物大量死亡带来的腐殖质、藻类代谢产生的异味物质和微囊藻毒素对水体的影响尤为明显,而且常规的水处理工艺很难将这些物质去除或者存在去除效果差的问题。臭氧(O3)以及以产生自由基( ?O H)为基础的高级氧化技术(AOP)能够有效地去除水体中的这些有机污染物和对藻类进行杀灭。
     本文对降解和杀灭地表水体中的难降解有机物和藻细胞的高级氧化技术进行了深入研究,主要包括臭氧氧化降解腐殖酸(Humic acid)、灭活藻细胞、去除异味化合物和脱毒微囊藻毒素(Microcystins)的效能和机理,以及此过程中的条件优化。设计开发以太阳能为主要能源的地表水处理设备,为富营养化水体的处理探索新的方法和工艺。研究结果表明:
     (1)臭氧氧化能够有效地去除腐殖酸,提高水体的可生化性,它能使腐殖酸元素组成改变、官能团发生变化、改变其分子量分布,产生芳香族、醇酚、醛酮、酸酯等挥发性有机物。臭氧氧化腐殖酸的整体反应遵守一级动力学方程。通过对腐殖酸臭氧氧化过程中的温度、pH的优化,确定了温度为25℃和pH 7.0为合适的反应条件,购自Sigma的腐殖酸标准品的反应速率常数k为3.6×10-3 s-1,实验室分离自太湖底泥腐殖酸的k为2.9×10-3 s-1。使用叔丁醇(t-BuOH)作为自由基清除剂考察了不同条件下臭氧氧化反应的
     2种主要途径(直接分子氧化和自由基反应)对整个臭氧氧化反应的贡献,发现反应的直接分子氧化降解腐殖酸反应随温度的变化遵循Arrehenius方程:另外pH的升高,能大大增加自由基反应的贡献率,提高总体反应速率和效率;使用催化剂对腐殖酸的催化臭氧化考察,得到了不同的增强因子:f(Mn2+)=1.31;f(Fe2+)=1.09;f(H2O2)=1.69。
     (2)臭氧氧化能够破坏铜绿微囊藻细胞壁和细胞膜,使藻细胞破裂,从而使藻细胞失活,达到杀藻的效果;当溶液臭氧浓度达到3 mg L-1,臭氧处理时间30 min时,能使溶液中的藻细胞因遭受损伤而不能继续正常代谢,导致藻细胞的整体死亡。水体中的本底物质能够很大程度上影响臭氧的杀藻效率:本底DOC通过和臭氧的竞争性反应而降低藻类去除率,DOC浓度越高,臭氧杀藻效率越差;自由基清除剂通过自身对臭氧化反应间接途径的阻断,也能很大程度上降低臭氧的杀藻效果,NaHCO3作为自由基清除剂在溶液中的浓度越高,臭氧杀藻效率也越差。
     (3)对太湖蓝藻水华水样GC-MS分析发现的6种典型的藻类代谢异味化合物,使用臭氧氧化的方法对这些异味物质进行降解去除发现,目标异味化合物的降解符合一级动力学反应方程,反应速率由高到低为:β-紫罗兰酮(3.3×10-3 s-1)﹥β-柠檬醛(2.8×10-3 s-1)﹥2,4-癸二烯醛(2.7×10-3 s-1)﹥香叶基丙酮(2.2×10-3 s-1)﹥土味素(1.4×10-3 s-1)﹥2-甲基异莰醇(5.6×10-4 s-1)。臭氧化反应速率由目标物质的化学性质和结构决定。臭氧化反应还产生了大量醛、酮、醇和酯类小分子物质。同时,这些物质的臭氧氧化反应受水体中DOC浓度和自由基清除剂影响,这些物质的浓度越高,目标异味化合物的去除效果越差。
     (4)臭氧氧化降解由铜绿微囊藻代谢的微囊藻毒素(MCs)主要通过Adda途径和Mdha途径来完成对MCs的脱毒作用。臭氧氧化藻毒素的Adda途径是通过臭氧分子或者自由基对MCs上Adda侧链的进攻,断开具有活性的Adda侧链,而达到去毒的目的;臭氧氧化的Mdha途径是通过对MCs肽环上面Mdha和Ala的断键,打开环状肽链变为直链肽,使藻毒素失去/降低活性。整个臭氧化过程中Adda途径占主导作用。通过对MCs及其臭氧化副产物的蛋白磷酸酶抑制(PP1)和小鼠急性毒性试验结果,表明臭氧氧化对MCs的脱毒作用明显:PP1对MCs的检测和HPLC结果相一致,表明MCs臭氧化产物不表现毒性或者表现毒性不明显;同时小鼠急性毒性表明,MCs臭氧化产物对小鼠肝毒性不显著。说明了臭氧氧化作用做MCs脱毒的可靠性。
     (5)根据实验室研究结果开发以臭氧氧化技术为主要手段的地表水处理系统,设备以臭氧投加量为5 g t-1、臭氧/空气曝气比例为1:5对现场富营养化的地表水体处理一周期(15 d)的效果为:COD去除率78.9%,叶绿素a去除率为49.0%,NH3-N去除率为50.6%;同时使水体DO达到6.2,恢复水体的自净化能力。表明了该设备对富营养化水体污染物具有很好的去除率和针对性。针对水处理系统能量要求来设计太阳能地表水处理设备的发电系统,通过计算得到处理水量为3 t h-1的水处理设备的太阳能光伏发电系统的配置要求:3.24 KW的太阳能电池方阵、48 V/5 KW的逆变器、24个48 V的蓄电池并联。
     综上所述,本文研究表明臭氧氧化技术对地表水污染可以起到很好的控制作用,可以有效地去除水体有机物、杀灭藻细胞并降解其代谢产物,保障饮用水安全。
Organic pollution in water gradually become a serious threaten to water environment and human health. Especially, the eutrophication of water in Taihu Lake Basin leads to excessive growth of algae and formation of blooms. These bring out many problems in water ecosystem such as humic substance from the death of vegetable substances, odorous organic compounds and microcystins from metabolism of algae. They are difficult to be eliminated with routine processes of water treatment. Ozonation and AOPs, which could produce ?O H, perform powerfully in the removal of these pollutions. The investigation focused on the effect of ozonation to NOM and algae with its metabolites in surface wates, which mainly includes mechanism study and condition optimization of humic acids (HAs) degradation, algae killing, odorous compounds removal and microcystins (MCs) detoxification. Finally, a surface water treatment system powered by solar energy was designed and developed for eutrophication water. Research results of this thesis are as follows.
     (1) Ozonation with its direct and indirect reaction pathways can not only rearrange molecular structures of HA and convert it to more hydrophilic forms but partition the HA macromolecules into small fractions. The reaction of HA ozonation followed a pseudo-first order model, rate constant of HA bought from Sigma is 3.6×10-3 s-1 and HA extracted from Taihu Lake 2.9×103 s-1. The proper condition of ozonation of HA was optimized as 25℃and pH 7.0. The contributions of two pathways (molecular ozone attack and .OH attack) to HA ozonation could be traced using tert-butanol as the radical scavenger at different pH, temperature, and the results showed that .OH oxidation are more sensitive to operating variables than molecular ozone oxidation and exerted a contribution of approximately 50-60% to the overall reaction at the different operating parameters. And molecular ozone attack was found followed Arrehenius equation under different temperature, Catalytic ozonation of HA by different catalyst was further investigated, enhancement factor was calculated as follows: f(Mn2+)=1.31;f(Fe2+)=1.09;f(H2O2)=1.69.
     (2) The ozonation of M. Aeruginosa led to the damage of cell wall and celluar cytoplasm release from the cells, which caused the DOC increase in solution and odorous organic compounds production. A the ozone dosage of 3 mg L-1 and reaction time of 30 min could seriously damage the cells, which led to the death of algae. Further investigation found out that DOC and radicals scavenger (NaHCO3) exerted an important influence on the ozonation of algae. High concentration of these compounds leds to low efficiency of algae killing.
     (3) Ozonation was applied to investigate the removal efficiency of 6 odorous organic compounds in eutrophic water from Taihu Lake. The results showed that the ozonation process could be described by first order kinetic model and the overall kinetic rates of the odorous compounds were determined by their chemical characteristic and structure, which could be ranked:β-Ionone (3.3×10-3 s-1)﹥β-Cyclocitral (2.8×10-3 s-1)﹥2,4-Decadienal (2.7×10-3 s-1)﹥Neryl Acetone (2.2×10-3 s-1)﹥Geosmin (1.4×10-3 s-1)﹥2-Methylisoborneol (5.6×10-4 s-1). Ozonation of eutrophic water led to the formation of a series of aldehydes, ketones, alcohols and esters. The influence of DOC and radicals scavenger (NaHCO3) on odorous compounds ozonation were further investigated, results showed that the radicals scavenger could restrain the effect of ozonation by cutting down the radical pathway and DOC in the water by competition with target compounds.
     (4) The decomposition of MCs by ozonation appears to involve substitution and cleavage of the Adda conjugated diene structure, cleavage of the peptide bond between Mdha and Ala, and attack of the Adda benzene ring. The degradation rate of MC-RR was a little slower than that of MC-LR, which lead to more byproducts from Adda side chain cleavage in our study. The Adda moiety, which is important in MCs toxicity, is readily oxidized and destroyed by ozonation. It is apparent from this study that Adda degradation pathway is the major destruction pathway of both MC-LR and MC-RR. The heptotoxity of MCs expressed as inhibition of PP1 and damage in mouse liver was greatly reduced or eliminated by the ozonation process.
     (5) The surface water treatment system was developed as the output of equipment was 3 t h-1. The system was applied to eutrophication water in Taihu Lake and obtained the results as COD removal of 78.9%, Chl-a 49.0%, NH3-N 50.6%. Simultaneously, DO of water increased to 6.2 mg L-1. The device was equipped with the solar cell array of 3.24 KW, an inverter of 48 V/5 KW and 24 parallel connection of 48 V storage battery.
     In conclusion, the results indicate that ozonation was found an innovative and prospective method in surface water treatment. The application of ozonation was including organic compounds decomposition, algae and its metabolites killing and removal for dringking water security.
引文
[1]孟伟.中国流域水环境污染综合防治战略[J].中国环境科学, 2007, 27 (5) ,712-716.
    [2]太湖流域水环境监测中心. 2007年10月太湖流域水质通报[R].
    [3] Dawson R M. The toxicology of microcystins [J]. Toxicon, 1998, 36: 953-962.
    [4] Chen Y M, Lee T H, Lee S J, et al. Comparison of protein phosphatase inhibition activities and mouse toxicities of microcystins [J]. Toxicon, 2006, 47: 742-746.
    [5] Tarczynska M, Nalecz-Jawecki G, Romanowska-Duda Z, et al. Tests for the toxicity assessment of cyanobacterial bloom samples [J]. Environ Toxicol, 2001, 16: 383-390.
    [6] Kondo F, Matsumoto H, Yamada S, et al. Detection and identification of metabolites of microcystins formed in vivo in mouse and rat livers [J]. Chem Res Toxicol, 1996, 9: 1355-1359.
    [7]柳丽丽,钟儒刚,曾毅.微囊藻毒素污染及其促肝癌作用研究进展[J].卫生研究, 2006, 35 (3): 377-379.
    [8]周伦,鱼达,余海等.饮用水源中的微囊藻毒素与大肠癌发病的关系[J].中华预防医学杂志, 2000, 34 (4): 224-226.
    [9] Soares R M, Cagido V R, Ferrara R B, et al. Effects of microcystin-LR on mouse lungs [J]. Toxicon, 2007, 50: 330-338.
    [10] Kuiper-Goodman T, Falconer I, Fitzgerald J. Toxic cyanobacteria in water [C]. E& FN Spon: London, 1999.
    [11] Carmichael W W. The toxins of cyanobacteria [J]. Sci Am, 1994, 270 (1): 78-86.
    [12]朱兴东.太湖流域河流污染及修复维护对策[J].环境保护, 2006, 24: 43-44.
    [13]梁鸣.我国城市湖泊富营养化现状及外源控制技术[J].武汉理工大学学报, 2006, 29 (8): 194-197.
    [14]莫孝翠,杨开,袁德玉.湖泊内源污染治理中的环保疏浚浅析[J].人民长江, 2003, 34 (12): 47-49.
    [15]吴洁,王锐,俞剑莹,等.西湖引水治理后的底栖动物群落[J].环境污染与防治, 1999, 21 (5): 25-29.
    [16]刘臣炜,汪德爟.湖泊富营养化内源污染的机理和控制技术研究[J].农业环境科学学报, 2006, 25: 814-818.
    [17] Rodriguez E, Majado M E, Meriluoto J, et al. Oxidation of microcystins by permanganate: Reaction kinetics and implications for water treatment [J]. Water Res, 2007, 41 (1): 102-110.
    [18] Twiss M R, Rattan K J, Sherrell R M, et al. Sensitivity of phytoplankton to copper in Lake Superior [J]. J Grest Lakes Res, 2004, 30: 245-155.
    [19] Berg U, Neumann T, Donnert D, et al. Sediment capping in eutrophic lakes - efficiency of undisturbed calcite barriers to immobilize phosphorus [J]. Appl Gerchem, 2004, 19 (11): 1759-1771.
    [20] Rodriguez E, Onstad G D, Kull T P J, et al. Oxidative elimination of cyanotoxins: Comparison of ozone, chlorine, chlorine dioxide and permanganate [J]. Water Res, 2007, 41 (15): 3381-3393.
    [21] Lai W L, Yeh H H, Tseng I C, et al. Conventional versus advanced treatment for eutrophic source water [J]. J Am Water Works Assoc, 2002, 94 (12): 96-108.
    [22] Nishijima W, Kim W H, Shoto E, et al. The performance of an ozonation biological activated carbon process under long term operation [J]. War Sci Technol, 1998, 38 (6):163-169.
    [23]宋关玲.生物修复技术在水体富营养化治理中的应用[J].安徽农业科学, 2007, 27: 90-92.
    [24] Agustina T E, Ang H M, Vareek V K. A review of synergistic effect of photocatalysis and ozonation on wastewater treatment [J]. J Photochem Photobiol C, 2005, 6 (4): 264-273.
    [25] Svrcek C, Smith D W. Cyanobacteria toxins and the current state of knowledge on water treatment options: a review [J]. J Environ Eng Sci, 2004, 3 (3): 155-185.
    [26] Bhattacharjee S, Shah Y T. Mechanisms for advanced photooxidation of aqueous organic waste compounds [J]. Rev Chen Eng, 1998, 14 (1): 1-46.
    [27] Kurniawan T A, Lo W H, Chan G Y S. Radicals-catalyzed oxidation reactions for degradation of recalcitrant compounds from landfill leachate [J]. Chem Eng J, 2006, 125 (1): 35-57.
    [28] Pokhrel D, Viraraghavan T. Treatment of pulp and paper mill wastewater: a review [J]. Sci Total Environ, 2004, 333 (1-3): 37-58.
    [29] Ikehata K, El-Din M G. Aqueous pesticide degradation by ozonation and ozone-based advanced oxidation processes: A review (Part II) [J]. Ozone Sci Eng, 2005, 27 (3): 173-202.
    [30] Neyens E, Baeyens J. A review of classic Fenton's peroxidation as an advanced oxidation technique [J]. J Hazard Mater, 2003, 98 (1-3): 33-50.
    [31] Wu C H. Decolorization of CI reactive red 2 in O3, Fenton-like and O3/Fenton-like hybrid systems [J]. Dyes Pigments, 2008, 77: 24-30.
    [32] Peternel I T, Koprivanac N, Bozic A M L, et al. Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution [J]. J Hazard Mater, 2007, 148 (1-2): 477-484.
    [33] Malati M A. The photocatalysed removal of pollutants from water [J]. Environ Technol, 1995, 16 (11): 1093-1099.
    [34] McCullagh C, Robertson J M C, Bahnemann D W, et al. The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review [J]. Res Chem Intermed, 2007, 33 (3-5): 359-375.
    [35] Gherardini L, Comninellis C, Vatistas N. Electrochemical oxidation of para-chlorophenol on Ti/SnO2-PbO2 electrodes: Introduction of a parameter for the estimation of their efficiency [J]. Annali Di Chimica, 2001, 91 (3-4): 161-168.
    [36] Cong Y Q, Wu Z C. Electrocatalytic generation of radical intermediates over lead dioxide electrode doped with fluoride [J]. J Phys Chem C, 2007, 3: 3442-3446.
    [37] Suslick K S, Doktyes S J, Flint E B. On the origin if sonoluminescence and sonochemistry [J]. Ultrasonics, 1990, 28: 280-285.
    [38] Inez H, Hochemer U H, Hoffxnanu M R. Sonolytic hydrolysis of p-nitrophenyl acetate: the role of supercritical water [J]. J Phys Chem, 1995, 99: 2335-2343.
    [39] Docampo M L, Pellon R F, Estevez-Braun A, et al. Ultrasound-promoted reaction of 2-chlorobenzoic acids and aliphatic amines [J]. Eur J Org Chem, 2007, 4111-4115.
    [40] Blaskovicova M, Gaplovsky A, Blasko J. Synthesis and photochemistry of 1-iodocyclohexene: Influence of ultrasound on ionic vs. radical behaviour [J]. Molecules, 2007, 12 (2): 188-193.
    [41] Memarian H R, Abdoli-Senejani M. Ultrasound-assisted photochemical oxidation of unsymmetrically substituted 1, 4-dihydropyridines [J]. Ultrasonics Sonochem, 2008, 15: 110-114.
    [42] Alvares A B C, Diaper C, Parsons S A. Partial oxidation by ozone to remove recalcitrance from wastewaters - A review [J]. Environ Technol, 2001, 22 (4): 409-427.
    [43]储金宇,吴春笃,陈万金.臭氧技术及应用[M].北京:化学工业出版社, 2002.
    [44] Havekamp R G, Miller B B, Free K W. Ozone production in a high frequency dielectric barrier discharge generator [J]. Ozone Sci Eng, 2002, 24: 321-328.
    [45] Hoigne′J, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water I: non-dissociating organic compounds [J]. Water Res, 1983, 17: 173-183.
    [46] Hoigne′J, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water II: dissociating organic compounds [J]. Water Res, 1983, 17: 185-194.
    [47]赵伟荣.阳离子红X-GRL染料的UV、O3、O3/UV氧化处理研究[D]: [博士学位论文].浙江:浙江大学环境与资源学院, 2004.
    [48] Rodrigues F H A, Santos E F, Feitosa J P A, et al. Ozonation of unstretched natural rubber: Part I. Effect of film thickness[J]. Rubber Chem Technol, 2001, 74 (1): 57-68.
    [49] Zaror C, Carrasco V, Perez L, et al. Kinetics and toxicity of direct reaction between ozone and 1, 2-dihydrobenzene in dilute aqueous solution [J]. Water Sci Technol, 2001, 43 (2): 321-326.
    [50] Zhang F F, Yediler A, Liang X M. Decomposition pathways and reaction intermediate formation of the purified, hydrolyzed azo reactive dye C.I. Reactive Red 120 during ozonation [J]. Chemosphere, 2007, 67 (4): 712-717.
    [51] Dilmeghani M, Zahir KO. Kinetics and mechanism of chlorobenzene degradation in aqueous samples using advanced oxidation processes [J]. J Environ Qual, 2001, 30 (6): 2062-2070.
    [52] Staehelin J, Hoign′J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reaction [J]. Environ Sci Technol, 1985, 79: 1206-1213.
    [53] Elovite M S, Von-Gunten U. Hydroxyl radical/ozone rations during ozonation processΙ, The Rct concept [J]. Ozone Sci Eng, 1999, 21: 239-260.
    [54] Staehelin J, Hoign′J. Decomposition of ozone in water: rate of initiatation by hydroxide ions and hydrogen peroxide [J]. Environ Sci Technol, 1982, 16 (10): 676-681.
    [55] Nemes A, Fabian I, Gordon G. Experimental aspects of mechanistic studies on aqueous ozone decomposition in alkaline solution [J]. Ozone Sci Eng, 2000, 22 (3): 287-304.
    [56] Hoign′J. Chemistry of aqueous ozone and transformation pollutants by ozonation and advanced oxidation processes [M]. Berlin: Handbook of Environmental Chemistry, Hrubec J ed, Springer-Verlag, 1998, 5(C). 83-141.
    [57] Westerhoff P, Aiken G, Amy G, et al. Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals [J]. Water Res, 1999, 33: 2265-2276.
    [58] Wang L, Wang B Z, Wang D, et al Performance of advanced water treatment plant for removing Fe, Mn and organic pollutants from raw water [J]. J Water Supp Res Technol, 2002, 51 (3): 209-216.
    [59] Hofmann R, Andrews R C. Potential side effects of using ammonia to inhibit bromateformation during the ozonation of drinking water [J]. J Environ Eng Sci, 2007, 6 (6): 739-743.
    [60] Udrea I, Avramescu S. Catalytic oxidation of SCN- and CN- ions from aqueous solutions [J]. Environ Technol, 2004, 25 (10): 1131-1141.
    [61] Masuda J, Fukuyama J, Fujii S. Ozone injection into an activated carbon bed to remove hydrogen sulfide in the presence of concurrent substances [J]. J Air Waste Manage Assoc, 2001, 51 (5): 750-755.
    [62]史惠祥,赵伟荣,汪大翚.偶氮染料的臭氧氧化机理研究[J].浙江大学学报(工学版), 2003, 37 (6): 734-737.
    [63] Turhan K, Turgut Z. Reducing chemical oxygen demand and decolorization of direct dye from synthetic-textile wastewater by ozonization in a batch bubble column reactor [J]. Fresenius Environ Bull, 2007, 16 (7): 821-825.
    [64]沈慧芳,陈焕钦.臭氧与对硝基苯酚溶液在鼓泡塔中反应的模拟(英文) [J].华南理工大学学报(自然科学版), 2005, 33 (2): 24-33.
    [65] Weiss S, Jakobs J, Reemtsma T. Discharge of three benzotriazole corrosion inhibitors with municipal wastewater and improvements by membrane bioreactor treatment and ozonation [J]. Environ Sci Technol, 2006, 40 (23): 7193-7199.
    [66] Chedeville O, Debaccq M, Almanza M F A, et al. Use of an ejector for phenol containing water treatment by ozonation [J]. Sep Purif Technol, 2007, 57 (2): 201-208.
    [67] Anotai J, Wuttipong R, Visvanathan C. Oxidation and detoxification of pentachlorophenol in aqueous phase by ozonation [J]. J Environ Manage, 2007, 85 (2): 345-349.
    [68]陈岚,史惠祥,汪大翚.臭氧与2,4-二氯苯氧乙酸的直接反应动力学[J].化工学报, 2005, 56 (11): 2204-2206.
    [69] Seredynska-Sobecka B, Tomaszewska M, Morawski A W. Removal of humic acids by the ozonation-biofiltration process [J]. Desalination, 2006, 198 (1-3): 265-273.
    [70]贾瑞宝,刘军,王珂等.气浮/微絮凝/臭氧/活性炭工艺除藻效果[J].中国给水排水, 2003, 19: 47-48.
    [71]朱光灿,吕锡武.紫外-微臭氧工艺降解微囊藻毒素的动力学特性[J].东南大学学报(自然科学版), 2005, 35: 438-441.
    [72] Tsai T Y, Okawa K, Nakano Y, et al. Decomposition of trichloroethylene and 2, 4-dichlorophenol by ozonation in several organic solvents [J]. Chemosphere, 2004, 57 (9): 1151-1155.
    [73]吴红清.太阳能光伏工程应用[C].江苏省能源研究会学术年会论文集.无锡:江苏能源研究会, 2004.
    [74]张耀明.塔式太阳能热发电系统研究进展[C].江苏省能源研究会学术年会论文集.无锡:江苏能源研究会, 2004.
    [75]徐俊毅.强势扩充中的中国太阳能光伏产业[J].电子与电脑, 2007, 8: 35-39.
    [76]李俊峰.中国光伏发电商业化发展报告[M].北京:中国环境科学出版社, 2001.
    [77] Luque A, Hegedus S. Handbook of photocoltaic science and engineering [M]. UK: Wiley, 2003. 11-19.
    [78] Cody G, Tiedje T A. A learing curve approach to projecting cost and performance in thin film photovoltaics [C]. Photovoltaic Apecialists Conference, Conference Record of the Twenty Fifth IEEE. Washington: IEEE, 1996. 1521-1524.
    [79] Tomita T. Toward giga-watt production of silicon photocoltaic cells, modules and systems [C]. Photovoltaic Apecialists Conference, Conference Record of the Twenty Fifth IEEE. Washington: IEEE, 2005. 7-11.
    [80] Hotopp R. Technical requirements and consultation concept for small grid-connected PV plants within the German 1000-roof PV programme [C]. Proceedings of the International Conference on Photoxoltaic. Solar Energy, 1991. 1308.
    [81]杨军.太阳能光伏发电前景展望[J].沿海企业与科技, 2005, 8: 110-112.
    [82]赵玉文.我国太阳能利用技术的发展概况和趋势[J].农村电气化, 2004, 9: 5-8.
    [83]沈辉,曾祖勤.太阳能光伏发电技术[M].北京:化学工业出版社, 2005, 9.
    [84] Kabra K, Chaudhary R, Sawhney R L. Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review [J]. Industry Eng Chem Res, 2004, 43 (24): 7683-7696.
    [85] Gobbels F J, Puttmann W. Structural investigation of isolated aquatic fulvic and humic acids in seepage water of waste deposits by pyrolysis gas chromatography mass spectrometry [J]. Water Res, 1997, 31 (7): 1609-1618.
    [86] Kim J, Chung Y, Shin D, et al. Chlorination by-products in surface water treatment process [J]. Desalination, 2003, 151 (1): 1-9.
    [87] Wang S B, Terdkiatburana T, Tade M O. Single and co-adsorption of heavy metals and humic acid on fly ash [J]. Sep Purif Technol, 2008, 58 (3): 353-358.
    [88]斯尼茨尔M,汉S U.环境中的腐殖酸[M].北京:化学工业出版社, 1979.
    [89] Hua G H, Reckhow D A. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants [J]. Water Res, 2007, 41 (8): 1667-1678.
    [90] Seredynska-Sobecka B, Tomaszewska M, Morawski A W. Removal of humic acids by the ozonation-biofiltration process [J]. Desalination, 2006, 198 (1-3): 265-273.
    [91]白帆.腐殖酸的过氧化氢催化氧化特性研究[D]: [硕士学位论文].西安:西安建筑科技大学环境与市政工程学院, 2004.
    [92] Masschelein W J. Measurement of high ozone concentrations in gases by KI titration and monitoring by UV-absorption [J]. Ozone Sci Eng, 1998, 20 (6): 489-493.
    [93] Bader H and Hoigne J, Determination of ozone in water by the indigo method [J]. Water Res, 1981, 15: 449-456.
    [94] Myllykangas T, Nissinen T K, Rantakokko P, et al. Molecular size fractions of treated aquatic humus [J]. Water Res, 2002, 36 (12): 3045-3053.
    [95] Nissinen T K, Miettinen I T, Martikainen P J, et al. Molecular size distribution of natural organic matter in raw and drinking waters [J]. Chemosphere, 2001, 45 (6-7): 865-873.
    [96] Bao ML, Pantani F, Griffini O, et al. Determination of carbonyl compounds in water by derivatization-solid-phase microextraction and gas chromatographic analysis [J]. J Chromatogr A, 1998, 809: 75-87.
    [97] Wendelken S C, Pepich B V, Munch D J. Determination of carbonyl compounds in drinking water by fast gas chromatography [S]. USA: EPA method 556.1, 1999.
    [98] Bajt O, Mailhot G, Bolte M. Degradation of dibutyl phthalate by homogeneous photocatalysis with Fe (III) in aqueous solution [J]. Appl Catal B Environ, 2001, 33: 239-248.
    [99]国家环境保护总局.水和废水监测分析方法(第四版) [M].北京:中国环境科学出版社, 2002.
    [100] Rastogi S, Kumar A, Mehra N K, et al. Development and characterization of a novel immobilized microbial membrane for rapid determination of biochemical oxygen demand load in industrial waste-waters [J]. Biosens Bioeng, 2003, 18 (1): 23-29.
    [101] Yu M J, Kim Y H, Han I, et al. Characterization of humic substances isolated from Han River water and change in the structural and chemical characteristics by ozonation [J]. Environ Technol, 2005, 26 (9): 1033-1041.
    [102] Yu M J, Kim Y H, Han I, et al. Ozonation of Han River humic substances [J]. Water Sci Technol, 2002, 46 (11-12): 21-26.
    [103] Jansen R H S, Zwijnenburg A, Van Der Meer W G J, et al. Outside-in trimming of humic substances during ozonation in a membrane contactor [J]. Environ Sci Technol, 2006, 40 (20): 6460-6465.
    [104] Nawrocki J. Comment on "outside-In trimming of humic substances during ozonation in a membrane contactor" [J]. Environ Sci Technol, 2007, 41 (14): 5161-5161.
    [105] Lee J E, Jin B S, Cho S H, et al. Catalytic ozonation of humic acids with Fe/MgO [J]. Koren J Chem Eng, 2005, 22 (4): 536-540.
    [106] Kasprzyk-Hordern B, Raczyk-Stanislawiak U, Swietlik J, et al. Catalytic ozonation of natural organic matter on alumina [J]. Appl Catal B, 2006, 62 (3-4): 345-358.
    [107] Leitner N K V, Fu H X. pH effects on catalytic ozonation of carboxylic acids with metal on metal oxides catalysts [J]. Top Catal, 2005, 33 (1-4): 249-256.
    [108] Chin A, Berube P R. Removal of disinfection by-product precursors with ozone-UV advanced oxidation process [J]. Water Res, 2005, 39 (10): 2136-2144.
    [109] Ikematsu T, Hayashi N, Ihara S, et al. Advanced oxidation processes (AOPs) assisted by excimer lamp [J]. Vacuum, 2004, 73 (3-4): 579-582.
    [110] Kerc A, Bekbolet M, Saatci A M. Sequential oxidation of humic acids by ozonation and photocatalysis [J]. Ozone Sci Eng, 2003, 25 (6): 497-504.
    [111] Kerc A, Bekbolet M, Saatci A M. Effect of partial oxidation by ozonation on the photocatalytic degradation of humic acids [J]. Int J Photoenergy, 2003, 5 (2): 75-80.
    [112] Eisenberg G. Colorimetric determination of hydrogen peroxide [J]. Ind Eng Chem Anal Ed, 1943, 15 (5): 327-328.
    [113] Beltran F J, Garcia-Araya JF, Alvarez P M, et al. Aqueous degradation of atrazine and some of its main by-products with ozone/hydrogen peroxide [J]. J Chem Technol Biotechnol, 1998, 71 (4): 345.
    [114] Chu W, Ma C W. Quantitative prediction of direct and indirect dye ozonation kinetics [J]. Water Res, 1999, 34 (12): 3153.
    [115] Sa′nchez-Polo M, Rivera-Utrilla J, Zaror C A. Advanced oxidation with ozone of 1, 3, 6-naphthalenetrisulfonic acid in aqueous solution [J]. J Chem Technol Biotechnol, 2002, 77 (2): 148-153.
    [116] Acero J L, Stemmers K, Von Gunten U. Degradation kinetics of atrazine and its degradation products with ozone and OH Radicals: a predictive tool for drinking water treatment [J]. Environ Sci Technol, 2000, 34 (4): 591-596.
    [117] Coniglio A, Galli C, Gentili P, et al. Oxidation of amides by laccase-generated aminoxyl radicals [J]. J Mol Catal B, 2008, 50 (1): 40-49.
    [118] Liu X L, Xu D, Wu F, et al. Preliminary study on the photoproduction of hydroxyl radicals in aqueous solution with Aldrich humic acid, algae and Fe (III) under high-pressure mercury lamp irradiation [J]. Photochem Photobiol, 2004, 79 (3): 259-264.
    [119] Zhang Y, Kang G, Ni Y, et al. Degradation of wood polysaccharide model compounds during ozone treatment [J]. J Pulp Pap Sci, 1997, 23 (1): J23-J27.
    [120] Rosenfeldt E J, Linden K G, Canonica S, et al. Comparison of the efficiency of center dot OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2 [J]. Water Res, 2006, 40 (20): 3695-3704.
    [121] Fukushima M, Tatsumi K, Morimoto K. The fate of aniline after a photo-fenton reaction in an aqueous system containing iron (III), humic acid, and hydrogen peroxide [J]. Environ Sci Technol, 2000, 34 (10): 2006-2013.
    [122]宋立荣,李林,陈伟等.水体异味及其藻源次生代谢产物研究进展[J].水生生物学报, 2004, 28 (4): 434-439.
    [123]李林,万能,甘南琴等.武汉大莲花湖异味化合物日变化及其相关因子分析[J].水生生物学报, 2007, 31 (1): 112-118.
    [124] Schrader K K, Regt M Q, Tidwell P D, et al. Compounds with selective toxicity towards the off-flavor metabolite-producing cyanobacterium Oscillatoria cf. chalybea [J]. Aquaculture, 1998, 163 (1-2): 85-99.
    [125] Westerhoff P, Nalinakumari B, Pei P. Kinetics of MIB and geosmin oxidation during ozonation [J]. Ozone Sci Eng, 2006, 28 (5): 277-286.
    [126] Wnorowski A U, Scott W E. Incidence of off-flavors in South-African surface waters [J].Water Sci Technol, 1992, 25 (2): 225-232.
    [127] Paul V Z, Casey C G. A synoptic survey of musty/muddy odor metabolites and microcystin toxin occurrence and concent ration in southeastern USA channel catfish production ponds [J]. Aquaculture, 2003, 218: 81-87.
    [128] Casey C G, Steven W L, Paul V Z. Inst rumental versus sensory detection of off-flavors in farm-raised channel catfish [J]. Aquaculture, 2004, 236: 309-319.
    [129] Suda K, Tanji Y, Hori K, et al. Evidence for a novel Chlorella virus-encoded alginate lyase [J]. FEMS Microbiol Lett, 1999, 180 (1): 45-53.
    [130] Kull T P J, Sjovall O T, Tammenkoski M K, et al. Oxidation of the cyanobacterial hepatotoxin microcystin-LR by chlorine dioxide: Influence of natural organic matter [J]. Environ Sci Technol, 2006, 40 (5): 1504-1510.
    [131] Hu W R, Liu P Q, Pei H Y. Characteristic and mechanism of inactivating algae with O3 and ClO2 [J]. Chin Sci Bull, 2003, 48 (9): 862-868.
    [132] Huang J L, Wang L, Ren N Q, et al. Disinfection effect of chlorine dioxide on viruses, algae and animal planktons in water [J]. Water Res, 1997, 31 (3): 455-460.
    [133] Chang C Y, Hsieh Y H, Shih I C, et al. The formation and control of disinfection by-products using chlorine dioxide [J]. Chemosphere, 2000, 41 (8): 1181-1186.
    [134] Hargesheimer, E E; Watson, S B. Drinking water treatment options for taste and odor control [J]. Water Res, 1996, 30 (6): 1423-1430.
    [135] Mouchet P, Bonnelye V. Solving algae problems: French expertise and world-wide applications [J]. Aqua (Oxford), 1998, 47 (3): 125-141.
    [136] Joe W H, Choi I C, Baek Y A, et al. Advanced treatment for taste and odour control indrinking water: case study of a pilot scale plant in Seoul, Korea [J]. Water Sci Technol, 2007, 55 (5): 111-116.
    [137] Huang, W J; Cheng, B L; Hu, S K, et al. Ozonation of algae and odor causing substances in eutrophic waters [J]. J Environ Sci Health Part A, 2006, 41 (8): 1587-1605.
    [138] Park, G; Yu, M; Koo, J Y, et al. Oxidation of geosmin and MIB in water using O3/H2O2: kinetic evaluation [J]. Drinking Water Treatment Supp Manage ASIA, 2006, 6 (2): 63-69.
    [139] Yun Y S, Lim S R, Cho K K, et al. Variations of photosynthetic activity and growth of freshwater algae according to ozone contact time in ozone treatment [J]. Biotechnol Lett, 1997, 19 (9): 831-833.
    [140] Ma J, Liu W. Effectiveness and mechanism of potassium ferrate (VI) preoxidation for algae removal by coagulation [J]. Water Res, 2002, 36 (4): 871-878.
    [141]王利平,虞锐鹏,刘扬岷,等.气相色谱-质谱联用测定富营养化水体中的异味物质[J].理化检验, 2006, 42 (12): 1013-1015.
    [142]李林,宋立荣,甘南琴等.顶空固相微萃取-气相色谱-质谱测定水中的异味化合物[J].分析化学, 2005, 33: 1058-1062.
    [143] Kabra K, Chaudhary R, Sawhney R L. Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review [J]. Industry Eng Chem Res, 2004, 43 (24): 7683-7696.
    [144] Huang W J, Cheng B L, Hu S K, et al. Ozonation of algae and odor causing substances in eutrophic waters [J]. J Environ Sci Health Part A, 2006, 41 (8): 1587-1605.
    [145] Chen J J, Yeh H H. The mechanisms of potassium permanganate on algae removal [J]. Water Res, 2005, 39 (18): 4420-4428.
    [146] Petrusevski B, vanBreemen A N, Alaerts G. Effect of permanganate pre-treatment and coagulation with dual coagulants on algae removal in direct filtration [J]. J Water Sup Res Technol AQUA, 1996, 45 (6): 316-326.
    [147] Wang C H, Li G F, Wu Y, et al. Role of bipolar pulsed DBD on the growth of Microcystis aeruginosa in three-phase discharge plasma reactor [J]. Plasma Chem Plasma Process, 2007, 27 (1): 65-83.
    [148] Diao M, Li X Y, Gu J D, et al. Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and Fenton reaction [J]. Process Biochem, 2004, 39 (11): 1421-1426.
    [149] Matsunage T, Nakasono S, Kitajima Y, et al. Electrochemical disinfection of bacteria in drinking eater using activated carbon fibers [J]. Biotech Bioeng, 1993, 43: 429-433.
    [150] Matsunage T, Nakasono S, Takamuku Y, et al. Disinfection of drinking water by using anovel electrochemical reactor employing carbon-cloth electrodes [J]. Appl Environ Microbiol, 1992, 58: 686-689.
    [151] Oguz E, Keskinler B. Removal of colour and COD from synthetic textile wastewaters using O3, PAC, H2O2 and HCO3- [J]. J Hazard Mater, 2008, 151 (2-3): 753-760.
    [152] Alaton I A, Kornmuller A, Jekel M R. Ozonation of spent reactive dye-baths: Effect of HCO3-/CO32- alkalinity [J]. J Environ Eng ASCE, 2002, 128 (8): 689-696.
    [153] Yapsakli K, Can Z S. Interaction of ozone with formic acid: A system which supresses the scavenging effect of HCO3-/CO32- [J]. WATER Quality Res J Can, 2004, 39 (2): 140-148.
    [154] Codd G A, Bell S G, Brooks W P. Cyanobacterial toxins in water [J]. Water Sci Technol, 1989, 21: 1-13.
    [155] Hunter P R. Cyanobacterial toxins and human health [J]. J Appl Micro Sympos Suppl, 1998, 84: 35S-40S.
    [156] Pouria S, de Andrade A, Barbosa J, et al. Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil [J]. Lancet, 1998, 352 (9121): 21-26.
    [157] Ueno Y, Nagata S, Tsutsumi T, et al. Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay [J]. Carcinogenesis, 1996, 17 (6): 317-321.
    [158] Liu Y D, Song L R, Li X Y, et al. The toxic effects of microcystin-LR on embryo-larval and juvenile development of loach, Misguruns mizolepis Gunthe [J]. Toxicon, 2002, 40 (4): 395-399.
    [159] Ding W X, Shen H M, Zhu H G, et al. Cenotoxicity of microcystic cyanobacteria extract of a water source in China [J]. Mutat Res, 1999, 422: 69-77.
    [160] Rao P V L, Bhattacharya R, Parida M M, et al. Freshwater cyanobacterium Microcystics aeruginosa (UTEX 2385) induced DNA damage in vivo and in vitro [J]. Environ Toxicol Pharmacol, 1998, 5: 1-6.
    [161]虞锐鹏,戴军,陈尚卫等.反相高效液相色谱法测定蓝藻中的微囊藻毒素[J].分析科学学报, 2005, 12 (6): 613-615.
    [162] Mackintosh C. Cyanobacterial microcystin-LR is aoptent and pecific inhibitor of protein phosphatases 1and 2A from both ammals and highter plants [J]. FEBS Lett, 1990, 264: 187-192.
    [163] David E, Williams D E, Craig M, et al. Evidence for a covalently bound from of microcystin-LR in salmon liver and Dungeness crab larvae [J]. Chem Res Toxicol, 1999, 10: 463-469.
    [164] Williams D E, Craig M, Dawe S C, et al. 14C-labeled microcystin-LR administered to Atlantic salmon via intraperitoneal injection provides in vivo evidence for covalent binding of microsytin-LR in salmon livers [J]. Toxicon, 1977, 35: 985-989.
    [165] Ding W X, Shen H M, Zhuo H G, et al. Studies on oxidative damage induced by cyanobacterial extract in primary cultured rathepatocytes [J]. Environ Res, 1998, 78 (1): 12-18.
    [166] Tsuji K, Watanuki T, Kondo F, et al. Stability of microcystins from cyanobacteria-II. Effect of UV light on decomposition and isomerization [J]. Toxicon, 1995, 33: 1619-1631.
    [167] Harada K I, Tsuji K, Watanabe M F, et al. Stability of microcystins from cyanobacteria-III, effect of pH and temperature [J]. Phycologia, 1996, 35 (6): 83-88.
    [168]闫海,潘刚,张明明,等.微囊藻毒素的提取和提纯研究[J].环境科学学报, 2004, 24 (2): 355-359.
    [169] Song W H, Teshiba T, Rein K, et al. Ultrasonically induced degradation and detoxification of microcystin-LR (cyanobacterial toxin) [J]. Environ Sci Technol, 2005, 39: 6300-6305.
    [170] Lawton L A, Edwards C. Purification of microcystins [J]. J Chromatpgr A, 2001, 912: 191-209.
    [171] Al Momani F, Smith D W, El-Din M G. Degradation of cyanobacteria toxin by advanced oxidation processes [J]. J Hazard Mater, 2008, 150 (2): 238-249.
    [172] Heresztyn T, Nicholson, B C. Determination of cyanobacterial hepatotoxins directly in water using a protein phosphatase inhibition assay [J]. Water Res, 2001, 36 (13): 3049-3056.
    [173] Liu I, Lawton L A, Robertson P K J. Mechanistic studies of the photocatalytic oxidation of microcystin-LR: An investigation of byproducts of the decomposition process [J]. Environ Sci Technol, 2003, 37, 3214-3219.
    [174] Schlede E, Genschow E, Spielmann H, et al. Oral acute toxic class method: A successful alternative to the oral LD50 test [J]. Regul Toxicol Pharm, 2005, 42 (1): 15-23.
    [175]张志勇,梁恒进,沈汉民,等.蓝藻提取物对原代大鼠肝细胞的氧化损伤作用研究[J].中国公共卫生, 1999, 15 (4): 280-282.
    [176]江泽民.对中国能源问题的思考[J].上海交通大学学报, 2008, 42 (3): 345-359.
    [177]孔娟.太阳能光伏发电系统的研究[D]: [硕士学位论文].青岛:青岛大学自动化工程学院, 2006.
    [178]毛爱华.太阳能电池研究和发展现状[J].包头钢铁学院学报, 2002, 21 (1): 94-98.
    [179]刘群生.太阳能光伏直流冰箱的能量管理和系统匹配研究[D]: [硕士学位论文]. 上海:上海交通大学机械与动力工程学院, 2007.
    [180]任斌,赖树明,陈卫,等.有机太阳能电池研究进展[J].材料导报, 2006, 20 (9): 124-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700