用户名: 密码: 验证码:
改善纳米TiO_2光催化性能的合成方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,半导体催化剂因其在空气净化、有害污染物治理和水清洁等环境方面的广泛应用而备受关注。在众多的半导体氧化物光催化剂中,TiO_2因其氧化能力强、廉价、物理化学性质稳定而成为被广泛应用的光催化剂之一。然而,TiO_2在实际应用中仍然存在着量子效率和可见光利用率低等问题,极大的限制了TiO_2的发展。本论文针对TiO_2光催化领域存在的这些问题,通过改善合成方法和优化实验条件制备出不同系列的光催化剂,研究了晶相结构、比表面积等性质对光催化活性的影响本质,为进一步发展高活性纳米TiO_2光催化剂的制备方法积累经验。本论文的主要内容如下:
     发展了以十六烷基三甲基溴化铵(CTAB)和氨水协同作用制备高活性纳米TiO_2光催化剂的方法。用该方法制备的TiO_2具有小晶粒、大比表面积、晶化程度高的优点,从而大大提高了光催化剂的催化活性。这种方法是在钛酸四丁酯水解得到的纳米晶和CTAB共存的条件下,经过水热和氨水回流处理,焙烧后制得小晶粒尺寸、大比表面积、晶化程度好的高活性纳米TiO_2光催化剂。在制备的过程中,CTAB抑制纳米粒子聚集并组装TiO_2纳米晶,氨水除与TiO_2纳米粒子有较强的相互作用外,在回流处理过程中还增强了CTAB与TiO_2纳米粒子的相互作用,这种CTAB与氨水间的协同作用极大地阻碍了TiO_2纳米粒子间的进一步接触,提高了TiO_2的热稳定性,抑制了在焙烧过程中晶粒的增长、聚集、比表面积降低和相转变的发生,使TiO_2在保持较小晶粒和较大比表面积的同时,仍然具有较适宜的晶化度,通过这种方法制备的TiO_2显示出了比Degussa P25更高的光催化活性。
     发展了CTAB和乙二胺协同作用制备高活性纳米TiO_2光催化剂的方法。采用这种方法同样制备了小晶粒、大比表面积、晶化程度高的纳米TiO_2,这种方法中用乙二胺代替氨水主要是为了克服氨水易分解、成本高以及所带来的操作繁琐等缺点,并对CTAB和乙二胺协同作用制备高活性纳米TiO_2的合成机理进行了分析。所制备的纳米TiO_2的光催化活性显著高于Degussa P25,这为进一步制备高活性的纳米TiO_2提供了新的合成思路。
     发展了改变溶剂极性制备晶相组成可控的介孔TiO_2的合成方法。该方法通过改变溶剂的极性(水和乙醇的比例)制备了纯锐钛矿以及锐钛矿和板钛矿比例可调的一系列介孔TiO_2。结果表明溶剂极性的不同会引起TiO_2中锐钛矿和板钛矿的相对含量、晶粒尺寸和比表面积的变化,研究了晶相结构、组成、比表面积等性质对光催化活性的影响。
     发展了以高热稳定性、小晶粒、大比表面积TiO_2作为原材料制备氮掺杂TiO_2可见光催化剂的方法。这种方法是将按照本论文第5章的实验方法制备的锐钛矿TiO_2在空气中800℃焙烧后直接降至某一温度,通入NH3/N2的混合气,并在此温度下保持一定时间制备了氮掺杂TiO_2。结果表明,该方法可以有效地掺氮而同时保持原有的锐钛矿结构以及小晶粒、大比表面积的优点。氮掺杂后的TiO_2明显拓展了可见光响应范围,制备的适当氮掺杂量的TiO_2在保持较高的紫外光催化活性的基础上显著提高了可见光催化活性,显现出比同样条件下进行氮掺杂的Degussa P25高很多的光催化活性。
     发展了ZrO_2改性的硫掺杂介孔TiO_2可见光催化剂的制备方法。该方法是在蒸发诱导自组装的基础上,通过加入硫脲和氧氯化锆制得具有可见光响应的硫掺杂介孔TiO_2,而ZrO_2的引入则显著的抑制了晶粒的生长和聚集,阻碍了锐钛矿向金红石的转变,同时也抑制了硫元素在焙烧时的过度损失。因此,所制备的ZrO_2改性的硫掺杂TiO_2相对于未改性的硫掺杂TiO_2具有更小的粒径、更大的比表面积和孔体积,并显示出比未改性的硫掺杂TiO_2更高的可见光响应和催化活性。
In recent years, a great deal of effort has been devoted to developing heterogeneous semiconductor photocatalysts with high photocatalytic activity for their wide environmental applications such as air purication, water disinfection, hazardous waste remediation and water purication. Among various oxide semiconductor photocatalysts, titanium dioxide has been proved to be one of the best photocatalysts due to its high oxidative ability, cost-effectiveness, physical and chemical inertness for widespread environmental applications. However, there still remain some problems in practical applications, such as the preparation of photocatalyst with high photocatalytic activity, the light utilization ratio. The photocatalytic activity of titania must be further enhanced from the point of practical use and commerce. In the present work, aiming at the the existing problems,we try to improve on the fabrication methods and conditions so as to synthesize a serial of TiO_2 photocatalyst with high photocatalytic activity. Lots of studies were done to explain the effect of crystal structure, surface area and other properties on the photocatalytic activity. This can accumulate experience for the development of synthetic methods of high photocatalytic activity. The main results of the present work were as follows:
     A method was developed to prepare superior photoactive TiO_2 nanopowders under synergistic effect of CTAB and ammonia. The prepared TiO_2 has a characteristic of small crystal size, large surface area and high crystallinity, which can improve the photocatalytic activity. In this method, nano TiO_2 particles were synthesized by a hydrothermal process in the presence of cetyltrimethylammonium bromide (CTAB) and a post-treatment with ammonia. During the hydrothermal process, CTAB can make the agglomeration resulting from the amorphous phase after the hydrolysis dispersed, along with the transformation from amorphous to TiO_2 crystallites, and further induce the assembly of the as-prepared TiO_2 crystallites to form mesoporous titania. The ammonia post treatment can maintain the porous structure and suppress the phase transformation from anatase to rutile, moreover, there is a synergistic effect of CTAB and ammonia. All the effects make it possible to obtain nano-sized TiO_2 simultaneously with fine particle size and high crystallinity. The photocatalytic activity of prepared photocatalysts was obviously higher than that of commercial Degussa P25, and therefore is a promising photocatalyst with high photocatalytic performance.
     A method was developed to prepare superior photoactive TiO_2 nanopowders under synergistic effect of CTAB and ethylenediamine. The prepared TiO_2 also has a characteristic of small crystal size, large surface area and high crystallinity. It is well known that ammonia is alkalescent, not stable, and apt to decompose during the refluxing treatment; this would bring much discommodity to the work. To overcome the shortcomings of ammonia, ethylenediamine was used as a base during the post treatment. Stable porous TiO_2 photocatalysts, with higher photocatalytic activity than Degussa P25, were also synthesized via a hydrothermal process using CTAB as the template, the post-treatment considerably increased the thermal stability of the porous framework and inhibited the undesirable grain growth and phase transformation during calcinations, and one possible formation mechanism of the stable porous titania was proposed. This work may provide a new insight into preparing high photoactive TiO_2 photocatalysts. A method was developed to prepare a series of TiO_2 samples with stable, controllable crystalline phase content mesoporous TiO_2 by means of the change of solvent polarity. Results demonstrate that crystal phase content of anatase and brookite, particle size can vary with the change of solvent polarity (H2O/EtOH ratios). The effects of crystal structure, composition and surface area on the photocatalytic activity were also studied. A method was developed to prepare nitrogen doped TiO_2 with visible light activity on the basis of TiO_2 with high thermal stability, large surface area and small crystal size. Nitrogen doped TiO_2 powders were prepared by annealing anatase TiO_2 at 800℃in air, subsequently under NH3/N2 flow in a suitable temperature for a certain time. The results revealed that, a proper nitrogen concentration can enhance photocatalytic activity, the catalyst prepared at the best condition showed higher photocatalytic activity than the nitrogen doped Degussa P25 under the same condition.
     ZrO_2 modified mesoporous S-TiO_2 has been successfully synthesized via the evaporation-induced self-assembly (EISA) in the presence of Thiourea and zirconium oxychloride. Results revealed that Sulphor was doped into the lattice of TiO_2 by the thermal treatment of mixed TiO_2 gels, converting the TiO_2 into a visible-light responsive catalyst. The introduction of ZrO_2 strongly inhibited the undesirable crystallite growth and aggregation, and the crystal phase transformation from anatase-to-rutile structure. Consequently, the ZrO_2 modified S-TiO_2 showed larger BET surface area, higher pore volume, and an improved thermal stability over the corresponding unmodified S-TiO_2 sample. The photocatalytic activity of mesoporous ZrO_2 modified S-TiO_2 composites was superior than that of unmodified S-TiO_2 under visible light irridiation.
引文
[1]韩世同,习海玲,史瑞雪.半导体光催化研究进展与展望[J].化学物理学报, 2003, 16: 339-349.
    [2] M. R. Hoffmann, S. T. Martin, D. W. Bahneman. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev, 1995, 95: 69-96.
    [3]李圭白.水的社会循环和水资源可持续利用[J],给水排水, 1998, 24: 1-4.
    [4]于忠民.当代水污染防治的特点及发展[J].中国给水排水, 1997, 13: 26-27.
    [5] E. Gordon, J. Brown. Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms[J]. Chem. Rev. 1999, 99:77-174.
    [6] X. Chen, S. S. Mao. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications[J]. Chem. Rev. 2007, 107, 2891-2959.
    [7] M. Fernandez-Garc?a, A. Mart?nez-Arias J. C. Hanson, J. A. Rodriguez. Nanostructured oxides in chemistry: characterization and properties[J]. Chem. Rev. 2004, 104: 4063-4104.
    [8] I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, E Takeuchi. Role of oxygen vacancy in the plasma-treated TiO_2 photocatalyst with visible light activity for NO removal[J]. J. Mol. Catal. A Chem., 2000, 161: 205-212.
    [9] J. Matos , J. Laine, J.-M. Herrmann, D. Uzcategui, J. L. Brito. Influence of activated carbon upon titania on aqueous photocatalytic consecutive runs of phenol photodegradation[J]. Appl. Catal. B, 2007, 70: 461-469.
    [10] A. L. Linsebigler, G. Lu, J. T. Yates. Photocatalysis on TiO_2 surface: principles, mechanisms, and selected results[J]. Chem. Rev., 1995, 95: 735-758.
    [11] C. C. Chen, P. X. Lei, H. W. Ji, W. H. Ma, J. C. Zhao. Photocatalysis by titanium dioxide and polyoxometalate/TiO_2 cocatalysts: intermediates and mechanistic study[J]. Environ. Sci. Technol., 2004, 38: 329-337.
    [12] U. Rammelt, N. Hebestreit, A. Fikus. Investigations of polybithiophene/n-TiO_2bilayers by electrochemical impedance spectroscopy and photoelectrochemistry[J]. Electrochim. Acta, 2001, 46: 2363-2371.
    [13] A. Fikus, U. Rammelt, W. Plieth. Characterization of semiconductor properties of polybithiophene film electrodes in contact with aqueous electrolytes[J]. Electrochim. Acta, 1999, 44: 2025-2035.
    [14]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001, 1-36.
    [15] B. E. Hayden, D. Pletcher, M. E. Rendall, J.-P. Suchsland. CO oxidation on gold in acidic environments: particle size and substrate effects[J]. J. Phys. Chem. C, 2007, 111: 17044-17051.
    [16] H. Z. Zhang, M. Finnegan, J. F. Banfield. Preparing single-phase nanocrystalline anatase from amorphous titania with particle sizes tailored by temperature[J]. Nano Lett., 2001, 1: 81-85.
    [17] O. Bondarchuk, Y. K. Kim, J. M. White, J. Kim, B. D. Kay. Surface chemistry of 2-propanol on TiO_2(110): low- and high-temperature dehydration, isotope effects, and influence of local surface structure[J]. J. Phys. Chem. C, 2007, 111: 11059-11067.
    [18]张立德.纳米材科[M].北京:化工出版社, 2000, 56-100.
    [19] S. L. Isley, R. L. Penn. Titanium dioxide nanoparticles: effect of sol-gel pH on phase composition, particle size, and particle growth mechanism[J]. J. Phys. Chem. C, 2008, 112: 4469-4474.
    [20] J. Schmidt, W. Vogelsberger. Dissolution kinetics of titanium dioxide nanoparticles: the observation of an unusual kinetic size effect[J]. J. Phys. Chem. B, 2006, 110: 3955-3963.
    [21] P. Wang,C. Klein,R. HumPhyr-Baker. A high molar extinction coefficient sensitizer for stbale dye-sensitized solar cells[J]. J. Am. Chem. Soc., 2005, 127: 808-809.
    [22] B. Wenger, M. Gratzel, J. E. Moser. Rationale for kinetic heterogeneity of ultrafastlight-induced electron transfer from Ru(II) complex sensitizers to nanocrystalline TiO_2[J]. J. Am. Chem. Soc., 2005, 127: 12150-12151.
    [23] S. Nishimura, N. Abrams, B. A. Lewis. Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals[J]. J. Am. Chem. Soc., 2003, 125: 6306-6310.
    [24] T. A. Heimer, E. J. Heilweil. Direct time-resolved infrared measurement of electron injection in dye-sensitized titanium dioxide films[J]. J. Phys. Chem. B, 1997, 101: 10990-10993.
    [25] C. L. Huisman, A. Huijser, H. Donker. UV polymerization of oligothiophenes and their application in nanostructured heterojunction solar cells[J]. Macromolecules, 2004, 37: 5557-5564.
    [26] R. Asahi, T. Morikawa, T. Ohwaki. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293: 269-271.
    [27] S. Chu, S. moue, K. Wada. Highly porous TiO_2/A12O3 composite nanostructures on glass by anodization and the sol-gel process: fabrication and photocatalytic characteristics[J]. J. Mater. Chem., 2003, 13: 866-870.
    [28] M. Mirza, K. Taqui, R. C. Bhardwa. Catalytic fixation of nitrogen by the photocatalytic CdS/Pt/RuO, particulate system in the presence of aqueous [Ru(Hedta)N2] complex[J]. Anew. Chem. Int. Ed. End., 1988, 27: 923-925.
    [29] T. Sato, K. Masaki, K. Sato. Photocatalytic properties of layered hydrous titanium oxide/CdS-ZnS nanocomposites incorporating CdS-ZnS into the interlayer[J]. J. Chem. Tech. Biotechnol., 1996, 67: 339-344.
    [30] A. Fujishima, K. Honda. Electrochemical photolysis of water at semiconductor electrode[J]. Nature, 1972, 238: 37-38.
    [31] D.F. Ollis, E. Pelizzetti, N. Serpone. Destruction of water contaminants[J]. Environ. Sci. Technol., 1991, 25: 1523-1528.
    [32] A. A. Gribb, J. F. Banfield. Particle size effects on transformation kinetics andphase stability in nanocrystalline TiO_2[J]. American Mineralogist, 1997, 82: 717-729.
    [33] X. Y. Li, D. S. Wang, G. X. Cheng. Preparation of polyaniline-modified TiO_2 nanoparticles and their photocatalytic activity under visible light illumination[J]. Appl. Catal. B, 2008, 81: 267-273.
    [34] Y. D. Qu, X. J. Li, R. Y. Li. Preparation and characterization of the TiO_2 ultrafine particles by detonation method[J]. Mater. Res. Bull., 2008, 43: 97-103.
    [35]郭永,巩雄,杨宏秀.纳米粒子的制备方法及其进展[J].化学通报, 1996, 3: 1-4.
    [36]吴凤清,阮圣平,李晓平.纳米TiO_2的制备、表征及光催化性能的研究.功能材料[J]. 2001, 32: 69-71.
    [37]余家国,赵修建,赵青南.TiO_2纳米薄膜的溶胶-凝胶工艺制备和表征[J].物理化学学报,2000, 16: 792-797.
    [38] C. C. Wang, J. Y. Ying. Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals[J]. Chem. Mater., 1999, 11: 3113-3120.
    [39] H. Z. Zhang, M. Finnegan, J. F. Banfield. Preparing single-phase nanocrystalline anatase from amorphous titania with particle sizes tailored by temperature[J]. Nano Lett., 2001, 1: 81-85.
    [40] R. C. Bhave, B. I. Lee. Experimental variables in the synthesis of brookite phase TiO_2 nanoparticles[J]. Mater. Sci. Eng. A, 2007, 467: 146-149
    [41] J. Z. Zhao, Z. C. Wang, L.W. Wang. The preparation and mechanism studies of porous titania[J]. Mater. Chem. Phys., 2000, 63: 9-12.
    [42]余锡宾,王桂华,罗衍庆.二氧化钛纳米微粒的制备与光催化活性[J].化学研究与应用, 2000, 12: 14-19.
    [43] H. M Cheng, J. M. Ma, W. Zhang. Hydrothermal preparation of uniform nanosize rutile and anantase particles[J]. Chem. Mater., 1995, 7: 663-671.
    [44]郑燕青,施尔胃,元如林.二氧化钛晶粒的水热制备及其形成机理研究[J].中国科学(E辑), 1999, 23: 206-213.
    [45]刘泽,李永祥,吴冲若.水热法制备二氧化钛晶须[J].硅酸盐学报, 1998, 26: 392-394.
    [46]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社. 2001, 131-133.
    [47]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学化工出版社, 2002, 7-59.
    [48] A. L. Linsebigler,G. Lu,T. Y. John. Photocatalysis on TiO_2 surfaces: principles, mechanisms, and selected results[J]. Chem. Rev., 1995, 95: 735-758.
    [49] L. Chen, J. Zhu,Y. M. Liu,Y. Cao,H. X. Li. Photocatalytic activity of epoxide sol–gel derived titania transformed into nanocrystalline aerogel powders by supercritical drying[J]. J. Mol. Catal. A, 2006,255: 260-268.
    [50] X. C. Wang, J. C. Yu, H. Y Yip, L. Wu, P. K. Wong, S. Y Lai. A mesoporous Pt/TiO_2 nanoarchitecture withcatalytic and photocatalytic functions[J]. J. Chem. Eur., 2005, 11: 2997-3004.
    [51] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Light-induced amphiphilic surfaces[J]. Nature, 1997, 388: 431-432.
    [52]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社, 2002, 8-100.
    [53] L. Svetlana, T. H. Joseph. Evaluation of the energetics of electron trap states at the nanocrystalline titanium dioxide/aqueous solution interface via time-resolved photoacoustic spectroscopy[J]. Chem. Phys. Lett., 2000, 330: 231-236.
    [54] J. G.. Yu, J. C. Yu, W. K. Ho, K-P. Mitch, B. Cheng, G.. k. Zhang, X. j. Zhao. Effects of alcohol content and calcination temperature on the textural properties of bimodally mesoporous titania[J]. Appl. Cata A: General, 2003, 255: 309-320.
    [55] M. Anpo, H. Nakaya, S. Kodama, Y. Kubokawa, K. Domen, T. Onishi. Photocatalysis over binary metal oxides: enhancement of the photocatalytic activity of titanium dioxide in titanium-silicon oxides[J]. J. Phys. Chem., 1986, 90:1633-1636.
    [56] M. Anpo, T. Kawamura, S. Kodama, K. Maruya, T. Onishi. Photocatalysis on titanium-aluminum binary metal oxides: enhancement of the photocatalytic activity of titania species[J]. J. Phys. Chem., 1988, 92: 438-440.
    [57] H. Wang, Y. Wu , B. Q. Xu. Preparation and characterization of nanosized anatase TiO_2 cuboids for photocatalysis[J]. Appl. Catal. B, 2005, 591: 39-146.
    [58] Y. Takahashi, T. Tatsuma. Oxidative energy storage ability of a TiO_2-Ni(OH)2 bilayer photocatalyst[J]. Langmuir, 2005, 21: 12357-12361.
    [59] Y. W. Wang, L. Z. Zhang, K. J. Deng, X. Y. Chen, Z. G. Zou. Low temperature synthesis and photocatalytic activity of rutile TiO_2 nanorod superstructures[J]. J. Phys. Chem. C, 2007, 111: 2709-2714.
    [60] L. Spanhel, H. Weller, A. Henglein. Photochemistry of semiconductor colloids electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles[J]. J. Am. Chem. Soc., 1987, 109: 6632-6635.
    [61] V. Guidi, M. C. Carotta, M. Ferroni, G.. Martinelli, M. Sacerdoti. Effect of dopants on grain coalescence and oxygen mobility in nanostructured titania anatase and rutile[J]. J. Phys. Chem. B, 2003, 107: 120-124.
    [62]吴越.催化化学[M].北京:科学出版社, 1998, 1325-1346.
    [63] J. Yin,Z. G. Zou,J. H. Ye. Photophysical and photocatalytic properties of MIn0.5Nb0.5O3 (M = Ca, Sr, and Ba)[J]. J. Phys. Chem. B, 2003, 107: 61-65.
    [64] K. Naoi,Y. Ohko, T. Tasuma. TiO_2 Films loaded with silver nanoparticles: control of multicolor photochromic behavior[J]. J. Am. Chem. Soc., 2004, 126: 3664-3668.
    [65] V. Subramanian,E. E. Wolf,P. V. Kamat. Influence of metal/metal ion concentration on the photocatalytic activity of TiO_2-Au composite nanoparticles[J]. Langmuir, 2003, 19: 469-474.
    [66] S. Hwang,M. C. Lee,W. Choi. Highly Enhanced photocatalytic oxidation of COon ttania deposited with Pt nanoparticles: kinetics and mechanism[J]. Appl. Catal. B, 2003, 46: 49-63.
    [67] Z. S. Wang, Y. Ebina,K. Takada. Inorganic multilayer assembly of titania semiconductor nanosheets and Ru complexes[J]. Langmuir, 2003, 19: 9534-9537.
    [68] M. G. Kang, H. -E. Han, K. -J. Kim. Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO_2[J]. J. Photochem. Photobiol. A, 1999, 119: 119-125.
    [69] M. R. Dhananjeyan, V. Kandavelu, R. Renganathan. A study on the photocatalytic reactions of TiO_2 with certain pyrimidine bases: effects of dopants(Fe3+) and calcinations[J]. J. Mol. Catal. A, 2000, 151: 217-223.
    [70]水淼,岳林海,徐铸德.几种制备方法的掺铁二氧化钛光催化活性[J].物理化学学报. 2001, 17: 282-285.
    [71] K. Wilke, H. D. Breuer. The influence of transition metal doping on the physical and photocatalytic properties of titania[J]. J. Photochem. Photobiol. A, 1999, 121: 49-53.
    [72] W. Choi, A. Termin, M. R. Hoffmann. The role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics[J]. J. Phys. Chem., 1994, 98: 13669-13679.
    [73] M. Gr?tzel, R. F. Howe. Electron paramagnetic resenance studies of doped TiO_2 colloids[J]. J. Phys. Chem., 1990, 94: 2566-2572.
    [74] O. A. IlePeruma, K. Tennakone,W. D. D. P. Dissanayake. Photocatalytic behaviour of metal doped titanium dioxide: studies on the photochemical synthesis of ammonia on Mg/TiO_2 catalyst systems[J]. Appl. Catal., 1990, 62: L1-L5.
    [75] B. O'Regan, M. Gratzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films[J]. Nature, 1991, 353: 737-740.
    [76] D. Bach, P. Lupo. Solid-state dye sensitized mesoporous TiO_2 solar cells with highphoton-to-electron conversion efficiencies[J]. Nature, 1998, 395: 583-585.
    [77] L. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, K. Takeuchi. Role of oxygen vacancy in the plasma-treated TiO_2 photocatalyst with visible light activity for NO removal[J]. J. Mol. Catal. A, 2000, 161: 205-212.
    [78] K. F. McCarty, J. A Nobel, N. C Bartelt. Vacancies in solids and the stability of surface morphology[J]. Nature, 2001, 412: 622-625.
    [79] T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping[J]. Appl. Catal. B, 2003, 42: 403-409.
    [80] L. Justicia, P. Ordejon, G.. Canto. Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis[J]. Adv Mater., 2002, 14: 1399-1402.
    [81] M. Anpo, M. Takeuchi. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation[J]. J. Catal., 2003, 216: 505-516.
    [82] M. Kitano, M. Takeuchi, M. Matsuoka, J. -M. Thomas, A. Masakazu. Preparation of visible light-responsive TiO_2 thin film photocatalysts by an RF magnetron sputtering deposition method and their photocatalytic reactivity[J]. Chem. Lett., 2005, 34: 616-617.
    [83] H. Liu, H. T. Ma, X. Z. Li, W. Z. Li, M. Wu. The enhancement of TiO_2 photocatalytic activity by hydrogen thermal treatment[J]. Chemosphere, 2003, 50: 39-46.
    [84] I. N. Martyanov, S. Uma, S. Rodrigues, K. J. Klabunde. Structural defects cause TiO_2-based photocatalysts to be active in visible light[J]. Chem. Commun., 2004, 2476-2477.
    [85] M. Miyauchi, M. Takashio, H. Tobimatsu. Photocatalytic activity of SrTiO3 codoped with nitrogen and lanthanum under visible light illumination[J]. Langmuir, 2004, 20: 232-236.
    [86] D. Li, H. Haneda, S. Hishita, N. Ohashi, K. Nitin. Labhsetwar fluorine-doped TiO_2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde[J]. J. Fluorine Chem., 2005, 126: 69-77.
    [87] Y. Li, D. Hwang, N. Lee, S. Kim. Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst[J]. Chem. Phys. Lett., 2005, 404: 25-29.
    [88] W. Ho,J. C. Yu,J. Lin. Preparation and photocatlytic behavior of MoS2 and WS2 nanocluster sensitized TiO_2[J]. Langmuir,2004,20: 5865-5869.
    [89] Y. Bessekhouad, D. Robert, J. V. Weber. Bi2S3/TiO_2 and CdS/TiO_2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant[J]. J. Photochem. Photobio. A, 2004, 163: 569-580.
    [90] A. Hagfeldt, M. Gratzel. Light-induced redox reactions in nanocrystalline systems[J]. Chem. Rev., 1995, 95: 49-68.
    [91] W. Zhao, W. Ma,C. Chen, J. Zhao, Z. Shuai. Efficient degradation of toxic organic pollutants with Ni2O3/TiO_2-xBx under visible irradiation[J]. J. Am. Chem. Soc., 2004, 126: 4782-4783.
    [92] Z. V. Saponjic, N. M. Dimitrijevic, O. G. Poluektov, L. X. Chen. Charge separation and surface reconstruction: a Mn2+ doping study[J]. J. Phys. Chem. B, 2006, 110: 25441-25450.
    [93] R. Asahi, T. Morikawa, T. Ohwaki. Visible-light photocatalysis in nitrogen doped titanium oxides[J]. Science, 2001,293: 269-271.
    [94] Z. P. Wang, W. M. Cai, X. T. Hong, X. L. Zhao, F. Xu , C. G. Cai. Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO_2 suspensions with various light sources[J]. Appl. Catal. B, 2005, 57: 223-231.
    [95] S. Yin, H. Yamaki, Q. W. Zhang, M. Komatsu. Mechanochemical synthesis of nitrogen-doped titania and its visible light induced NOx destruction ability[J].Solid State Ionics, 2004, 172: 205-209.
    [96] A. R. Gandhe, S. P. Naik, J. B. Fernandes. Selective synthesis of N-doped mesoporous TiO_2 phases having enhanced photocatalytic activity[J]. Micro. Meso. Mater., 2005, 87: 103-109.
    [97] K. Kobayakawa, Y. Murakami, Y. Sato. Visible-light active N-doped TiO_2 prepared by heating of titanium hydroxide and urea[J]. J. Photochem. Photobiol. A, 1999, 170: 177-179.
    [98] H. Li, J. Li, Y. Huo. Highly active TiO_2 N photocatalysts prepared by treating TiO_2 precursors in NH3/ethanol fluid under supercritical conditions[J]. J. Phys. Chem. B, 2006, 110: 1559-1565.
    [99] T. Umebayashi, T. Yamaki, S. Tanaka. Visible light-induced degradation of methylene blue on S-doped TiO_2[J]. Chem. Lett., 2003, 32: 330-331.
    [100] J. C. Yu, W. Ho, J. Yu, H. Yip, P. K. Wong, J. Zhao. Efficient visible light induced photocatalytic disinfection on sulfur-doped nanocrystalline titania[J]. Environ. Sci. Technol., 2005, 39: 1175-1179.
    [101] S. Kahn, M. Al-Shahiy, M. Ingle, W. B. Jr. Efficient photochemical water splitting by a chemically modified N-TiO_2[J]. Science, 2002, 297, 2243-2245.
    [102] H. Irie, Y. Watanabe, K. Hashimoto, Carbon-doped anatase TiO_2 powders as a visible-light sensitive photocatalyst[J]. Chem. Lett. 2003, 32: 772-773.
    [103] T. Yamaki, T. Umebayashi, T Sumita. Fluorine-doping in titanium dioxide by ion implantation[J]. Technique Nucl. Instr. and Meth. B, 2003, 206: 254-258.
    [104] J. H. Xu, W. L. Dai, J. X. Li, Y. C. H. X. Li, K. N. Fan. Novel core-shell structured mesoporous titania microspheres: preparation, characterization and excellent photocatalytic activity in phenol abatement[J]. J. Photochem. Photobio A, 2008, 195: 284-294.
    [105] M. Miyauchi, A. Nakajima, A, Fujishima, K, Hashimoto. Photoinduced surface reactions on TiO_2 and SrTiO3 films: photocatalytic oxidation and photoinducedhydrophilicity[J]. Chem. Mater., 2000, 12: 3-5.
    [106] M. Machida, K. Norimoto, T. Watanabe, K. Hashimoto, A. Fujishima. The effect of SiO_2 addition in super-hydrophilic property of TiO_2 photocatalyst[J]. J. Mater Sci, 1999, 34: 2569-2574.
    [107] Y. Segura, L. Chmielarz, C. Kustrowski,. R. Dziembaj, E. F. Vansant. Preparation and characterization of vanadium oxide deposited on thermally stable mesoporous titania[J]. J. Phys. Chem. B, 2006, 110: 948-955.
    [108] J. H. Pan, I. L. Wan, Preparation of highly ordered cubic mesoporous WO3/TiO_2 films and their photocatalytic properties[J]. Chem. Mater., 2006, 18: 847-853.
    [109] A. Mills, J. Wang. Simultaneous monitoring of the destruction of stearic acid and generation of carbon dioxide by self-cleaning semiconductor photocatalytic films[J]. J. Photochem. Photobio A, 2006, 182: 181-186.
    [110] P. Parkin, R. G. Palgrave, Self-cleaning coatings[J]. J. Mater. Chem., 2005, 15: 1689-1694.
    [111] J. C. Yu, L. Z. Zhang, Z. Zheng, J. C. Zhao. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity[J]. Chem. Mater., 2003, 15: 2280-2286.
    [112] S. C. Pillai, P. Periyat, R. George, D. E. McCormack, M. K. Seery, H. Hayden, J. Colreavy. Synthesis of high-temperature stable anatase TiO_2 photocatalyst[J]. J. Phys. Chem. C, 2007, 111: 1605-1611.
    [113] H. Choi, Y. J. Kim, R. S. Varma, D. D. Dionysiou. Thermally stable nanocrystalline TiO_2 photocatalysts synthesized via sol-gel methods modified with ionic liquid and surfactant molecules[J]. Chem. Mater., 2006, 18: 5377-5384.
    [114] K. Cassiers, T. Linssen, M. Mathieu, Y. Q. Bai, H. Y. Zhu, P. Cool, E. F. Vansant. Surfactant-directed synthesis of mesoporous titania with nanocrystalline anatase walls and remarkable thermal stability[J]. J. Phys. Chem. B, 2004, 108: 3713-3721.
    [115] S. C. Wilson, V. Burnett, K. S. Waterhouse, K. C. Jones. Volatile organic compounds in digested united kingdom sewage sludges[J]. Environ. Sci. Technol., 1994, 28: 259–266.
    [116] D. F. Ollis, E. Pelizzetti, N. Serpone. Photocatalyzed destruction of water contaminants[J]. Environ. Sci. Techol., 1991, 25: 1522-1529.
    [117] Z. Ding, G. Q. Lu, P. F. Greenfield. Role of the crystallite phase of TiO_2 in heterogeneous photocatalysis for phenol oxidation in water[J]. J. Phys. Chem. B, 2000, 104: 4815-4820.
    [118] Y. Q. Wang, X. H. Tang, W. Huang, Y. Yin, R. Hacohen, A. Gedanken. Sonochemical synthesis of mesoporous titanium oxide with wormhole like framework structures[J]. Adv. Mater. 2000, 12: 1183-1186.
    [119] P. Pucher, M. Benmami, R. Azouani, G.. Krammer, K. Chhor, J.-F. Bocquet, A. V. Kanaev. Nano-TiO_2 sols immobilized on porous silica as new efficient photocatalyst[J]. Appl. Cata. A, 2007, 332: 297-303.
    [120] J. Ovenstone, K. Yanagisawa. Effect of hydrothermal treatment of amorphous titania on the phase change from anatase to rutile during calcinations[J]. Chem. Mater. 1999, 11: 2770-2774.
    [121] D. C. Hurum, K. A. Gray. Recombination pathways in the Degussa P25 formulation of TiO_2: surface versus lattice mechanism[J]. J. Phys. Chem. B, 2005, 109: 977-980.
    [122] J. G. Yu, J. C. Yu, W. Ho, L. Z. Zhang. Preparation of highly photocatalytic active nano-sized TiO_2 particles via ultrasonic irradiation[J]. Chem. Commun., 2001, 19: 1942-1943.
    [123] T. Ozawa, M. Iwasaki, H. Tada, T. K. Akita, S. I. Tanaka. Low-temperature synthesis of anatase–brookite composite nanocrystals: the junction effect on photocatalytic activity[J]. J. Colloid Interface Sci., 2005, 281: 510-513.
    [124] H. Zhang, J. F. Banfield. Thermodynamic analysis of phase stability ofnanocrystalline titania[J]. J. Mater. Chem., 1998, 8: 2073-2076.
    [125] D. T. On. A simple route for the synthesis of mesostructured lamellar and hexagonal phosphorus-free titania(TiO_2)[J]. Langmuir, 1999, 15: 8561-8564.
    [126] K. T. Ranjit, I. Willner, S. H. Bossmann, A. M. Braun. Lanthanide oxide-doped titanium dioxide photocatalysts: novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid[J]. Environ. Sci. Techol., 2001, 35: 1544-1549.
    [127] V. F. J. Stone, R. Davis. Synthesis, characterization, and photocatalytic activity of titania and niobia mesoporous molecular sieves[J]. Chem. Mater., 1998, 10: 1468-1474.
    [128] S. H. Elder, Y. Gao, X. Li, J. Liu, D. E. Cready, C. F. Windisch. Preparation of stable anatase-type TiO_2 and its photocatalytic performance[J]. Chem. Mater., 1998, 10: 3140-3145.
    [129] X. C. Wang, J. C. Yu, Y. L. Chen, L. Wu, X. Z. Fu. ZrO_2-modified mesoporous nanocrystalline TiO_2-xNx as efficient visible light photocatalysts[J]. Environ. Sci. Techol., 2006, 40: 2369-2374.
    [130] V. Luca, N. J. Watson, M. Ruschena, R. Knott. Anionic surfactant templated titanium oxide mesophase: synthesis, characterization, and mechanism of formation[J]. Chem. Mater., 2006, 18: 1156-1168.
    [131] T. Berger, M. Sterrer, O. Diwald, E. Knolzinge. Light-induced charge separation in anatase TiO_2 particles[J]. J. Phys. Chem. B, 2005, 109: 6061-6068.
    [132] G. A. Tompsett, G. A. Bowmaker, R. P. Cooney, J. B. Metson, K. A. Rogers. The Raman spectrum of brookite TiO_2 (Pbca, Z=8)[J]. J. Raman Spectrosic., 1995, 26: 57-62.
    [133] H. Zhang, J. F. Banfield. Thermodynamic analysis of phase stability in nanocrystalline titania[J]. J. Mater. Chem., 1998, 8: 2073-2076.
    [134] Y. R. Sua, J. G. Yua, J. Linb. Vapor-thermal preparation of highly crystallizedTiO_2 powder and its photocatalytic activity[J]. J. Solid State Chem, 2007, 180: 2080–2087.
    [135] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293: 269-271.
    [136] T. Morikawa, R. Asahi, T. Ohwaki, K. Aoki, Y. Taga. Band-gap narrowing of titanium dioxide by nitrogen doping[J]. J. Appl. Phys., 2001, 40: 561-563.
    [137] H. Irie, Y. Watanable, K. Hashimoto. Nitrogen-concentration dependence on photocatalytic activity of TiO_2-xNx powders[J]. J. Phys. Chem. B, 2003, 107: 5483-5486.
    [138] X. B. Chen, Y. B. Lou, A. S. Samia, C. Burda, J. Gole. Formation of oxynitride As the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: comparision to a commercial nanopowder[J]. Adv. Funct. Mater., 2005, 15: 41-49.
    [139] J. H. Pan, W. I. Lee. Preparation of highly ordered cubic mesoporous WO3/TiO_2 films and their photocatalytic properties[J]. Chem. Mater., 2006, 18: 847-853.
    [140] L.Q. Jing, H. G. Fu, B. Q. Wang, D. J. Wang, B. F. Xin, S. D. Li, J. Z. Sun. Effects of Sn dopant on the photoinduced charge property and photocatalytic activity of TiO_2 nanoparticles[J]. Appl. Catal. B, 2006, 62: 282-291.
    [141] L. Q. Jing, Z. L. Xu, J. Shang, X. J. Sun, W. M. Cai, H. G. Fu. Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis[J]. Sol. Energy Mater. Sol. Cells, 2003, 79: 133-151.
    [142] L. Q. Jing, B. F. Xin, F. L. Yuan, B. Q. Wang, K. Y. Shi, W. M. Cai, H. G. Fu. Deactivation and regeneration of ZnO and TiO_2 nanoparticles in the gas phase photocatalytic oxidation of n-C7H16 or SO_2[J]. Appl. Catal. A, 2004, 275: 49-54.
    [143] J. C. Yu, L. Z. Zhang, J. G. Yu. Direct sonochemical preparation and characterization of highly active mesoporous TiO_2 with a bicrystalline framework[J]. Chem. Mater., 2002, 14: 4647-4653.
    [144] J. C. Yu, J. Lin, R. W. M. Kwok. Enhanced photocatalytic activity of Ti1?xVxO_2 solid solution on the degradation of acetone[J]. J. Photochem. Photobiol. A: Chem., 1997, 111: 199-203.
    [145] H. Zhang, J. F. Banfield. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO_2[J]. J. Phys. Chem. B, 2000, 104: 3481-3487.
    [146] S. Brunauer, L. Deming, W. E. Deming. On a theory of the Van Der Waals adsorption of gases[J]. J. Am. Chem. Soc., 1940, 62: 1723-1732.
    [147] K. N. P. Kumar, J. Kumar, K. Keizer. Effect of peptization on densification and phase-transformation behavior of sol-gel-derived nanostructured titania[J]. J. Am. Ceram. Soc., 1994, 77: 1396-1400.
    [148] W. A. Daoud, G. K. H. Pang. Direct synthesis of nanowires with anatase and TiO_2-B structures at near ambient conditions[J]. J. Phys. Chem. B, 2006, 110: 25746-25750.
    [149] B. O. Regan, M. A. Gratzel. Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films[J]. Nature, 1991, 353: 737-740.
    [150] S. D. Mo, W. Y. Ching. Electronic and optical properties of three phases of titanium dioxide: rutile, anatase and brookite[J]. Phys. Rev. B: Condens. Matter Mater. Phys., 1995, 51: 13023-13032.
    [151] D. Li, H. Haneda, S. Hishita, N. Ohashi. Visible-light-driven N-F-codoped TiO_2 photocatalysts. 1. synthesis by spray pyrolysis and surface characterization[J]. Chem. Mater., 2005, 17: 2588-2595.
    [152] C. D. Valentin, G. Pacchioni, A. Selloni, S. Livraghi. Characterization of paramagnetic species in N-doped TiO_2 powders by EPR spectroscopy and DFT calculations[J]. J. Phys. Chem. B, 2005, 109: 11414-11419.
    [153] T. Sugimoto, X. P. Zhou. Synthesis of uniform anatase TiO_2 nanoparticles by the gel–sol method: 2.adsorption of OH? ions to Ti(OH)4 gel and TiO_2 particles[J]. J.Colloid Interface Sci., 2002, 252: 347-353.
    [154] E. Beyers, P. Cool, E. F. Vansant. Anatase formation during the synthesis of mesoporous titania and its photocatalytic effect[J]. J. Phys. Chem. B, 2005, 109: 10081-10086.
    [155] G. J. Soler-Illia, A. A. de, A. Louis. Synthesis and characterization of mesostructured titania-based materials through evaporation-induced self-assembly[J]. Chem. Mater., 2002, 14: 750-759.
    [156] T. Y. Peng, D. Zhao, K. Dai, W. Shi, K. Hirao. Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity[J]. J. Phys. Chem. B, 2005, 109: 4947-4952.
    [157] H. Zhang, J. F. Banfield. Thermodynamic analysis of phase stability of nanocrystalline titania[J]. J. Mater. Chem., 1998, 8: 2073-2076.
    [158] E. Beyers, P. Cool, E. F. Vansant. Stabilisation of mesoporous TiO_2 by different bases influencing the photocatalytic activity[J]. Micro. Meso. Mater., 2007, 99: 112-117.
    [159] C. S. Turchi, D. F. Ollis. Mixed reactant photocatalysis: intermediates and mutual rate inhibition[J]. J. Catal., 1989, 119: 483-496.
    [160] B. Ohtani, S. i. Nishimoto. Effect of surface aadsorptions of aliphatic alcohols and silver ion on the photocatalytic activity of titania suspended in aqueous solutions[J]. J. Phys. Chem., 1993, 97: 920-925.
    [161] M. A. Fox, M. T. Dulay. Heterogeneous photocatalysis[J]. Chem. Rev., 1993, 93: 341-357.
    [162] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev., 1995, 95: 69-96.
    [163] A. L. Linsebigler, G. Q. Lu, J. T. Yates. Photocatalysis on TiO_2 surfaces: principles, mechanisms, and selected results[J]. Chem. Rev., 1995, 95: 735-758.
    [164] S. H. Elder, Y. Gao, X. Li, J. Liu, D. E. McCready. Zirconia-stabilized 25-? TiO_2anatase crystallites in a mesoporous structure[J]. Chem. Mater., 1998, 10: 3140-3145.
    [165] X. Marguerettaz, D. Fitzmaurice. Heterosupramolecular chemistry-long-lived charge trapping by vectorial electron flow in a heterotriad[J]. J. Am. Chem. Soc., 1994, 116: 5017-5018.
    [166] Y. Murakami, T. Matsumoto, Y. Takasu. Salt catalysts containing basic anions and acidic cations for the sol-gel process of titanium alkoxide: controlling the kinetics and dimensionality of the resultant titanium oxide[J]. J. Phys. Chem. B, 1999, 103: 1836-1840.
    [167] C. C. Wang, J. Y. Ying. Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals[J]. Chem. Mater., 1999, 11: 3113-3120.
    [168] K. Yanagisawa, J. Ovenstone. Crystallization of anatase from amorphous titania using the hydrothermal technique: effects of starting material and temperature [J]. J. Phys. Chem. B, 1999, 103: 7781-7787.
    [169] A. Fujishima, T. N. Rao, D. A. Tryk. Titanium dioxide photocatalysis[J]. J. Photochem. Photobio. C, 2000, 1: 1-21.
    [170] A. Sclafani, J. M. Herrmann. Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions[J]. J. Phys. Chem., 1996, 100: 13655-13661.
    [171] R. R. Bacsa, J. Kiwi. Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid[J]. Appl. Catal. B, 1998, 16: 19-29.
    [172] J. C. Yu, J. Lin, R. W. Kwok. Enhanced photocatalytic activity of Ti1?xVxO_2 solid solution on the degradation of acetone[J]. J. Photochem. Photobiol. A, 1997, 111: 199-203.
    [173] T. Ohno, K. Tokieda, S. Higashida, M. Matsumura. Synergism between rutile andanatase TiO_2 particles in photocatalytic oxidation of naphthalene[J]. Appl. Catal. A, 2003, 244: 383-391.
    [174] R. I. Bickley, T. Gonzalez-Carreno, J. S. Lees, L. Palmisano, J. D. Tilley. A structural investigation of titanium dioxide photocatalysts[J]. J. Solid State Chem., 1991, 92: 178-190.
    [175] A. K. Datye, G. Riegel, J. R. Bolton, M. Huang, M. R. Prairie. Microstructural characterization of a fumed titanium dioxide photocatalyst[J]. J. Solid State Chem., 1995, 115: 236-239.
    [176] T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura. Morphology of a TiO_2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases[J]. J. Catal., 2001, 203: 82-86.
    [177] D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh, M. C. Thunauer. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO_2 using EPR[J]. J. Phys. Chem. B, 2003, 107: 4545-4549.
    [178] J. Yu, L. Zhang, B. Cheng, Y. Su. Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania[J]. J. Phys. Chem. C, 2007, 111: 10582-10589.
    [179] S. L. Isley, R. L. Penn. Relative brookite and anatase content in sol-gel-synthesized titanium dioxide nanoparticles[J]. J. Phys. Chem. B, 2006, 110: 15134-15139.
    [180] J. C. Yu, J. Yu, W. Ho, L. Zhang. Preparation of highly photocatalytic active nano-sized TiO_2 particles via ultrasonic irradiation[J]. Chem. Commun., 2001, 19: 1942-1943.
    [181] G. Li, K. A. Gray. Preparation of mixed-phase titanium dioxide nanocomposites via solvothermal processing[J]. Chem. Mater., 2007, 19: 1143-1146.
    [182] S. Ardizzone, C. Bianchi, G. Cappelletti, S. Gialanella, C. Pirola, V. Ragaini. Tailored anatase/brookite nanocrystalline TiO_2. The optimal particle features forliquid and gas-phase photocatalytic reactions[J]. J. Phys. Chem. C, 2007, 111: 13222-13231.
    [183] J. G. Li, T. Ishigaki, X. D. Sun. Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: phase-selective synthesis and physicochemical properties[J]. J. Phys. Chem. C, 2007, 111: 4969-4976.
    [184] H. Wang, J. J. Miao, J. M. Zhu, H. M. Ma, J. J. Zhu, H. Y Chen. Mesoporous spherical aggregates of anatase nanocrystals with wormhole-like framework structures: their chemical fabrication, characterization, and photocatalytic performance[J]. Langmuir, 2004, 20: 11738-11747.
    [185] D. Dvoranova, V. Brezova, M. Mazur, M. A. Malati. Investigations of metal-doped titanium dioxide photocatalysts[J]. Appl. Catal. B, 2002, 37: 91-105.
    [186] P. Billik, G. Plesch, V. Brezova, L. Kuchta, M. Valko, M. Mazur. Anatase TiO_2 nanocrystals prepared by mechanochemical synthesis and their photochemical activity studied by EPR spectroscopy[J]. J. Phys. Chem. Solids, 2007, 68: 1112-1116.
    [187] R. Dillert, A. E. Cassano, R. Goslich, D. Bahneman. Large scale studies in solar catalytic wastewater treatment[J]. Catal. Today, 1999, 54: 267-282.
    [188] S. Malato, J. Blanco, C. Richter, M. I. Maldonado. Optimization of pre-industrial solar photocatalytic mineralization of commercial pesticides: application to pesticide container recycling[J]. Appl. Catal. B, 2000, 25: 31-38.
    [189] S. Parra, V. Sarria, S. Malato, P. Péringer, C. Pulagarin. Photochemical versus coupled photochemical–biological flow system for the treatment of two biorecalcitrant berbicides: metobromuron and isoproturon[J]. Appl. Catal. B, 2000, 27: 153-168.
    [190] J. Cunnigham, G. Al-Sayyed, P. Sedlak, J. Caffrey. Aerobic and anaerobic TiO_2-photocatalysed purifications of waters containing organic pollutants[J]. Catal. Today, 1999, 53: 145-153.
    [191] H. Kisch, L. Zang, C. Lange, W. F. Maier, C. Antonius, D. Meissner. Modified, amorphous titania: a hybrid semiconductor dor detoxification and current generation by visible light[J]. Angew. Chem., Int. Ed. Engl., 1998, 37: 3034-3036.
    [192] S. Klosek, D. Raftery. Visible light driven V-doped TiO_2 photocatalyst and its photooxidation of ethanol[J]. J. Phys. Chem. B, 2001, 105: 2815-2819.
    [193] W. Zhao, W. Ma, C. Chen, J. Zhao, Z. Shuai. Reaction of CO with molecularly chemisorbed oxygen on TiO_2-supported gold nanoclusters[J]. J. Am. Chem. Soc., 2004, 126: 13574-13575.
    [194] I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, K. Takeuchi. Role of oxygen vacancy in the plasma-treated TiO_2 photocatalyst with visible light activity for NO removal[J]. J. Mol. Catal. A, 2000, 161: 205-212.
    [195] D. Li, H. Haneda, S. Hishita, N. Ohashi. Visible-light-driven N-F-codoped TiO_2 photocatalysts. 1. Synthesis by spray pyrolysis and surface characterization[J]. Chem. Mater., 2005, 17: 2588-2595.
    [196] H. Luo, T. Takata, Y. Lee, J. Zhao, K. Domen, Y. S. Yan. Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine[J]. Chem. Mater., 2005, 16: 846-849.
    [197] J. G. Yu, M. H Zhou, B. Cheng, X. J. Zhao. Preparation, characterization and photocatalytic activity of in situ N, S-codoped TiO_2 powders[J]. J. Mol. Catal. A, 2006, 246: 176-184.
    [198] D. Li, H. Haneda, S. Hishita, N. Ohashi. Visible-light-driven N-F-codoped TiO_2 photocatalysts. 2. optical characterization, photocatalysis, and potential application to air purification[J]. Chem. Mater., 2005, 17: 2596-2602.
    [199] S. Kim, W. Choi. Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: demonstrating the existence of a surface-complex-mediated path[J]. J. Phys. Chem. B, 2005,109: 5143-5149.
    [200] S. Sato. Photocatalytic activity of NOx-doped TiO2 in the visible light region[J]. Chem. Phys. Lett., 1986, 123: 126-128.
    [201] R. Nakamura, T. Tanaka, Y. Nakato. Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes[J]. Phys. Chem. B, 2004, 108: 10617-10620.
    [202] S. Sakthivel, H. Kisch, Nitrogen-doped photocatalytic and photoelectrochemical properties of titanium dioxide[J]. Chem. Phys. Chem., 2003, 4: 487-490.
    [203] T. Lindgren, J. M. Mwabora, E. Avendano, J. Jansson, A. Hoel, C.-G.. Granqvist, S.-E. Lindquist. Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films by reactive DC magnetron sputtering [J]. J. Phys. Chem. B, 2003, 107: 5709-5716.
    [204] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293: 269-271.
    [205] H. Irie, Y. Watanabe, K. Hashimoto. Nitrogen-concentration dependence on photocatalytic activity of Ti02-XNx powders[J]. J. Phys. Chem. B, 2003, 107: 5483-5486.
    [206] C. Burda, Y. B. Lou, X. B. Chen, C. S. Samia, J. Stout, J-L. Gole. Enhanced nitrogen doping in TiO2 nanoparticles[J]. Nano. Lett., 2003, 3: 1049-1051.
    [207] B. Gao, Y. Ma, Y. Cao, W. Yang, J. Yao. Great enhancement of photocatalytic activity of nitrogen-doped titania by coupling with tungsten oxide[J]. J. Phys. Chem. B, 2006, 110: 14391-14397.
    [208] Y. Cong, J. Zhang, F. Chen, M. Anpo, D. He. Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (III)[J]. J. Phys. Chem. C, 2007, 111: 10618-10623.
    [209] X. C. Wang, J. C. Yu, Y. L. Chen, X. Z. Fu. ZrO2-modified mesoporous nanocrystalline TiO2-xNx as efficient visible light photocatalysts[J]. Environ. Sci. Technol. 2006, 40: 2369-2374.
    [210] W. Zhou, K. S. Liu, H. G. Fu, K. Pan. Multi-modal mesoporous TiO_2–ZrO_2 composites with high photocatalytic activity and hydrophilicity[J]. Nanotechnology, doi: 10.1088/0957-4484/19/03/035610.
    [211]包南,孙剑,张锋,马志会. N掺杂TiO_2纳米晶:水热-热分解法制备及光催化活性[J].无机化学学报, 2007, 1: 101-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700