用户名: 密码: 验证码:
有机低聚物电致发光材料的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光材料应用于通讯、信息、显示等许多领域,是当前国际上的一个研究热点。有机电致发光器件具有低压直流驱动、高亮度、高效率、制作工艺简单以及易实现全色大面积显示等优点,从而引起了人们对有机电致发光材料和器件研究的极大兴趣。
     本论文采用量子化学方法对有机低聚物电致发光材料进行了一系列的研究。通过系统的理论计算给出了有机低聚物的基态和最低激发态的几何结构、电子结构、能隙以及吸收光谱和发射光谱等信息。它们的结构——性质之间关系的探索为理解发光材料的微观发光机制提供了理论分析和支持,为实验合成新的发光材料和开发发光材料的潜在应用价值具有重要的指导意义。研究工作主要包括以下四方面内容:
     1.研究了一系列含磷π共轭有机低聚物。它们的光学和电子性质与含磷五元环上2,5-位置上的取代基密切相关。这些含磷衍生物可作为空穴和电子注入/传输型红色发光材料。
     2.研究了两个系列二偶极联苯氨基为终端的芳基低聚芴。分子中心芳基环的吸电子性能和共轭链长度对这些芳基低聚芴的结构、电子和光学性质有很大的影响。这些芳基低聚芴的发射光谱可以覆盖整个可见光谱范围,有很大的潜能作为空穴和电子注入/传输型的发光材料。
     3.研究了一系列具有一个1,3,5-三取代的苯环中心核和三个次乙炔基取代芳基的支链的星型有机低聚物。分子的光学和电子性质取决于二甲氧基取代芳基乙炔单元的数目和支链终端苯环上的甲氧基数目。这些星型分子可作为空穴和电子注入/传输型电致发光材料。
     4.研究了一系列顺式-4,4′-二(二芳基氨基)-1,2-二苯乙烯和芴螺旋连接化合物。分子的光学和电子性质取决于分子中心螺旋连接结构上的8,8′-位置上的取代基。它们可作为空穴注入/传输型蓝色发光材料。
In the past decade, organic electroluminescent materials have become a fascinating field in the word for their diverse potential applications in communication, information, and flat-panel displays. Organic electroluminescent devices have such advantages as low-voltage driving, high luminosity, high efficiency and large-area color display which can be realized. Thus there has been great interest in investigating organic electroluminescent materials and devices.
     In this paper, from the point of view of the molecular design, we systematically studied four types of the organic oligomer light-emitting materials by quantum-chemical methods, namely, DFT, TDDFT, HF, and CIS methods, including the properties of the ground state and the lowest excited state conformations, HOMOs, LUMOs, energy gaps, ionization potentials, electronic affinities, reorganization energies, absorption and emission spectra. The theoretical studies show that it can greatly modulate and improve the electronic and optical properties of the light-emitting materials by modification of chemical structures. Also, it can help to understand the microcosmic electroluminescent mechanism and contribute to orientate the synthesis and design of the novel light-emitting materials by exploring their structure-property relations. The following is the main results:
     1. A series of phosphole-containingπ-conjugated organic oligomers is investigated. The phosphole-based EL materials for OLEDs presented in this paper are attractive because of the flexibility available for fine-tuning their optical and electronic properties through varying the phosphole ring substituents at the 2,5-positions. The presence of the 2,5-substitution on the P-ring leads to the large twist angles between the phosphole ring and the aromatic substituents. The HOMO possesses antibonding character and LUMO holds bonding character between the two adjacent subunits, resulting in that the excited state structures of the phosphole derivatives have better coplanar conformation than the ground state structures. Importantly, the different substiuents at the 2,5-positions of the P-ring have an impact on the HOMOs, LUMOs, energy gaps, ionization potentials, electron affinities, reorganization energies and absorption and emission spectra for the phosphole derivatives. Consequently, HOMO energies increase, LUMO energies decrease, the hole and electron injection into OLEDs is greatly enhanced. The effect of substituents on the relatedπ→π* transitions can be clearly described. As expected, the absorption and emission spectra exhibit red shifts to some extent and the Stokes shifts are unexpectedly large ranging from 78 nm to 228 nm attributing to a more planar conformation of the excited state for the phosphole derivatives. The results show that these phosphole derivatives show great potential for application in OLEDs as hole and electron transport/injection red materials.
     2. Two series of D-π-A-π-D type bis-dipolar diphenylamino-endcapped oligoarylfluorenes, bearing an electron affinitive core, 9,9-dibutylfluorene as conjugated bridges, and diphenylamino as end-caps, have been studied. All the oligoarylfluorenes show more or less twisted structures because of the electronic nature of the various central aryl cores. The frontier molecular orbitals spread over the wholeπ-conjugated molecules. In general, the HOMO possesses bonding character and the LUMO holds antibonding character. However, there is antibonding interaction between the two adjacent subunits in the HOMO and bonging interaction in the LUMO. Their optical and electronic properties are affected by the electron affinitive cores of the oligoarylfluorenes. With the electron withdrawing strength and the conjugated length of the electron affinitive cores, the HOMO energies, electron affinities, and reorganization energies increase, the LUMO energies and ionization potentials decrease, the energy gaps narrow, and the absorption and emission spectra exhibit red shifts to some extent. The Stokes shifts are large. Importantly, employing the various electron affinitive central aryl cores, the emissive colors of these bis-dipolar oligoarylfluorenes can span almost the full UV-vis spectrum. So they can be used as hole and electron transport/injection materials.
     3. A series of star-shaped organic molecules that comprise a 1,3,5-trisubstituted benzene core and three oligoaryleneethynylene arms is studied. The electronic excitation leads to the varieties of the star-shaped molecular structures, especially the distances between the substituted benzene and ethylene. The HOMO possesses antibonding character and LUMO holds bonding character between the two adjacent subunits, the substituted benzene and ethylene. Importantly, for both MMPT and DMPT series, the star-shaped molecular size, namely, the number of dimethoxyphenyleneethynylene units, and the number of the methoxy groups on the terminal benzene rings at each arm have an impact on their optical and electronic properties. Consequently, the hole and electron injection into OLEDs was great enhanced. As expected, the absorption and emission spectra exhibit red shifts to some extent, and small Stokes shifts are observed, which are presumably due to the star-shaped rigid molecular structures that hinder the geometrical relaxation. In conclusion, these star-shaped organic molecules have potential application in OLEDs as hole and electron transport/injection materials.
     4. A series of doubly ortho-linked cis-4,4-bis(diarylamino)stilbene /fluorene hybrids has been investigated. The results show that all the molecules have a rigid spiral butterfly-shape structure, which prevents intermolecular parallelπ-πstacking, eximer formation, and fluorenone formation. The frontier orbitals are mainly localized on the both cis-stilbene and its 8,8′-substituents. Their optical and electronic properties are significantly affected by the presence of various 8,8′-substituents. In contrast to the molecule 1, the absorption and emission spectra exhibit red shifts to some extent. All the electronic transitions are assigned toπ→π* character arising from S_1, HOMO→LUMO transition. Particularly, the molecules 3-6 have similar absorption wavelengths and transition natures. And the Stoke shifts range moderately from 40 to 86 nm, resulting from the rigid spiral butterfly-shaped structure that hinder the geometrical relaxation. In conclusion, they can function as efficient hole transporting-type, sky-blue fluorescent OLED materials.
引文
[1] Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R. ; et al. Light emitting diodes based on conjugated polymers [J], Nature, 1990, 347, 539.
    [2] Forrest, S. R. Ultrathin organic films grown by organic molecular beam deposition and related techniques [J], Chem. Rev. 1997, 97, 1793-1896.
    [3] 邵炎,邱勇,有机金属配合物电致发光材料 [J],现代显示,1998,2,32-37。
    [4] Kalinowski, J. Electroluminescence in organics [J], J. Phys. D: Appl. Phys. 1999, 32, R179-R250.
    [5] Shen, Z. L.; Burrows, P. E.; Bulovi?, V.; et al. Three-color, tunable, organic light-emitting devices [J], Science, 1999, 276, 2009-2011.
    [6] 李文连,有机 EL 和 LED 与无机 EL 和 LED 发光机制的异同[J],液晶与显示,2001,16 (1) ,33-37。
    [7] 黄剑,曹镛,有机电致发光材料研究进展,化工新型材料,2001,29 (9),10-15。
    [8] Haskal, E. I.; Büchel, M.; Duineveld, P. C.; et al. Passive-matrix polymer light-emitting displays [J], MRS Bulletin, 2002, 864-869.
    [9] Forrest, S. R. The road to high efficiency organic light emitting devices [J], Organic Electronics, 2003, 4, 45-48.
    [10] 邹应萍,谭松庭,赵斌,有机电致发光材料的研究进展,液晶与显示,2004,19 (3),191-198。
    [11] Pope, M.; Kallmann, H. P. Mangnantep, Electroluminescence in organic crystals, J. Chem. Phys. 1963, 38, 2042-2043.
    [12] Tang, C. W.; Vanslyke, S. A. Organic electroluminescent diodes, Appl.Phys. Lett. 1987, 51, 913-915.
    [13] Tang, C. W. Inf Display, 1996, 10, 16.
    [14] Chen, C. H.; Shi, J. Tang, C. W. Macromol. Symp. 1997, 125, 1.
    [15] Shibata, T. JP 1994, 6, 122, 874.
    [16] Tashiro, M.; Mataga, S.; Takahashi, K.; Saito, S.; Tsutsui, T.; Adachi, C.; Sato, Y.; Maeda, S. US 1991, 5, 059, 863.
    [17] Burrows, P. E.; et al. Metalion dependent luminescence effects in metal trisquinolate organic heterojunetion light emitting devices, Appl. Phys. Lett. 1994, 64, 2718-2722.
    [18] Nakamura, N.; Wakabayashi, S.; et al. A novel blue light emitting material prepared from 2-(o-hydroxyphenyl) benzoxazole, Chem. Lett. 1994, 1741.
    [19] Hamada, Y.; Sano, T.; et al. A novel white light emitting material prepared from 2-(o-hydroxyphenyl) benzothiazolate, Jpn. J. Appl. Phys. 1996, 35, 1339-1341.
    [20] Arno Kraft, Andrew C. Grimsdale, Andrew B. Holmes, Electroluminescent conjugated polymers-seeing polymers in a new light, Angew. Chem. Int. Ed. 1998, 37, 402-428.
    [21] Cmpecchi, S.; Renault, O.; Moon, D. G. High-efficiency organic electroluminescent devices using an organoterbium emitter [J], Adv. Mater. 2000, 12, 1591.
    [22] 赵莹,杨丽敏,赵莹,含三价铕荧光络合物与聚甲基丙烯酸甲酯的发光材料[J], 高分子学报,2000,4,393-396。
    [23] 凌启淡,范希智,陈君,.一种含铽单体的合成及其电致发光研究[J],化学学报,2001,59 (1),115-118。
    [24] Zhang, A.; Braun, D.; Heeger, A. J. Light-emitting diodes from partially conjugated poly(p-phenylene vinylene), J. Appl. Phys. 1993, 73, 5177.
    [25] Gaustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colsneri, N.; Heeger, A. J. Flexible light-emitting diodes made from soluble conducting polymers, Narure, 1992, 357, 477.
    [26] Greenham, N. C.; Moratti, S. C.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B. Efficient light-emitting diodes based on polymers with high electron affinities, Nature (London), 1993, 365, 628-630.
    [27] Tarkka, R. M.; Zhang, X.; Jenekhe, S. A. Electrically generated intramolecular proton transfer: electroluminescence and stimulated emission from polymers, J. Am. Chem. Soc. 1996, 118, 9438.
    [28] Sheats, J. R.; Antoniadis, H.; Hueschen, M.; Leonard, W.; Miller, J.; Moon, R.; Roitman, D.; Stocking, A. Organic electroluminescent devices, Science, 1996, 273, 884-888.
    [29] Jenekhe, S. A.; Zhang, X.; Chen, X. L.; Choong, V.-E.; Gao, Y.; Hsieh, B. R. Finite size effects on electroluminescence of nanoscale semiconducting polymer heterojunctions, Chem. Mater. 1997, 9, 409.
    [30] Sapp, S. A.; Sotzing, G. A.; Reynolds, J. R. High contrast ratio and fast-switching dual polymer electrochromic devices, Chem. Mater. 1998, 10, 2101-2108.
    [31] Zhang, X.; Shetty, A. S.; Jenekhe, S. A. Electroluminescence and photophysical properties of polyquinolines, Macromolecules, 1999, 32, 7422.
    [32] Bouillud, A. D.; Lévesque, I.; Tao, Y.; D’Iorio, M. Light-emitting diodes from fluorene-based -conjugated polymers, Chem. Mater. 2000, 12, 1931.
    [33] Bernius, M.; Inbasekaran, M.; O’Brien, J.; Wu, W. Progress with light-emitting polymers, Adv. Mater. 2000, 12, 1737-1750.
    [34] Weinfurtner, K.; Fujikawa, H.; Tokito, S.; Taga, Y., Control of color and efficiency of light-emitting diodes based on polyfluorenes blended withhole-transporting molecules, Appl. Phys. Lett. 2000, 76, 2502.
    [35] Thompson, B. C.; Schottland, P.; Zong, K.; Reynolds, J. R. In situ colorimetric analysis of electrochromic polymer films and devices, Synth. Met. 2001, 119, 333-334.
    [36] Tonzola, C. J.; Alam, M. M.; Jenekhe, S. A. New soluble n-type conjugated copolymer for light-emitting diodes, Adv. Mater. 2002, 14, 1086-1090.
    [37] Zhu, Y.; Alam, M. M.; Jenekhe, S. A. Regioregular poly(4-alkylquinoline)s: synthesis, self-organization, and properties, Macromolecules, 2002, 35, 9844.
    [38] Alam, M. M.; Jenekhe, S. A. Polybenzobisazoles are efficient electron transport materials for improving the performance and stability of polymer light-emitting diodes, Chem. Mater. 2002, 14, 4775. 5285.
    [39] Beaupré, S.; Leclerc, M. Fluorene-based copolymers for red-light- emitting diodes, Adv. Funct. Mater. 2002, 12, 192-196.
    [40] Yang, R.Q.; Tian, R. Y.; Yang, W.; Cao, Y. Synthesis and optical and electroluminescent properties of novel conjugated copolymers derived from fluorene and benzoselenadiazole, Macromolecules, 2003, 36, 7453.
    [41] Meng, H.; Zeng, J.; Lovinger, A. L.; Wang, B. C.; Van Patter, P. G.; Bao, Z. Oligofluorene-thiophene derivatives as high-performance semiconductors for organic thin film transistors, Chem. Mater. 2003, 15, 1778.
    [42] Sonmez, G.; Meng, H.; Wudl, F. Organic polymeric electrochromic devices: polychromism with very high coloration efficiency, Chem. Mater. 2004, 16, 574.
    [43] Oyaizu, K.; Iwasaki, T.; Tsukahara, Y.; Tsuchida, E. Linear ladder-type -conjugated polymers composed of fused thiophene ring systems,Macromolecules, 2004, 37, 1257.
    [44] Wang, F.; Han, M.-Y.; Mya, K. Y.; Wang, Y.; Lai, Y.-H. Aggregation-driven growth of size-tunable organic nanoparticles using electronically altered conjugated Polymers, J. Am. Chem. Soc. 2005, 127, 10350-10355.
    [45] Ashok K. Mishra; Michael Graf; Florian Grasse; Josemon Jacob; Emil J. W. List; Klaus Mullen. Blue-emitting carbon- and nitrogen-bridged poly(ladder-type tetraphenylene)s, Chem. Mater. 2006, 18, 2879-2885.
    [46] Jessica M. Hancock; Angela P. Gifford; Yan Zhu; Yun Lou; Samson A. Jenekhe. n-Type conjugated oligoquinoline and oligoquinoxaline with triphenylamine endgroups: efficient ambipolar light emitters for device applications, Chem. Mater. 2006, 18, 4924-4932.
    [47] Ping-I Shih; Chu-Ying Chuang; Chen-Han Chien; Eric Wei-Guang Diau; Ching-Fong Shu. Highly efficient non-doped blue-light-emitting diodes based on an anthrancene derivative end-capped with tetraphenylethylene groups, Adv. Funct. Mater. 2007, 17, 3141–3146.
    [48] Toshihiro Okamoto; Zhenan Bao. Synthesis of solution-soluble pentacene-containing conjugated copolymers J. Am. Chem. Soc. 2007, 129, 10308-10309.
    [49] 王建营,李银奎,胡文祥,聚合物电致发光器件的研究进展[J],半导体光电,1998,19 (5),283-286。
    [50] 孟凡宝,张宝砚,聚合物电致发光材料的研究现状及应用前景[J],化工新型材料,2000,28 (11),29-32。
    [51] Patil, A. O.; Heeger, A. J.; Wudl, F. Optical properties of conducting polymers[J], Chem. Rev. 1988, 88, 183-200.
    [52] Friend, R. H.; Gymer, R. W.; Holmes, A. B.; et al. Electroluminescence in conjugated polymers[J], Nature, 1999, 397, 121-128.
    [53] 卢志云等,聚合物电致发光材料及器件,材料导报,2000,14 (8),50-56。
    [54] Liao, L.; Pang, Y.; Karasz, F. E. Comparison of optical properties between blue-emitting poly(m-phenylenevinylene) and PPV block copolymer, Macromolecules, 2002, 35 (14), 5720-5723.
    [55] 敖波,刘洪,聚合物电致发光材料与器件,西昌师范高等专科学校学报,2001,13 (2),17-21。
    [56] 覃显灿,张爱清,曾繁涤,聚合物电致发光材料与器件 (待续)—聚合物发光材料,湖北化工,2000,3,1-4。
    [57] 王文,聚合物电致发光材料研究进展[J],中国塑料,2000,14 (6),19-24。
    [58] 赵洪池,刘贤毫,聚合物电致发光材料研究进展,信息记录材料,2005,6 (1),45-49。
    [59] Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory, Chem. Phys. Lett. 1996, 256, 454-464.
    [60] Furche, F. On the density matrix based approach to time-dependent density functional response theory, J. Chem. Phys. 2001, 114, 5982-5992.
    [61] Ricciardi, G.; Rosa, A.; Baerends, E. J. Ground and excited states of zinc phthalocyanine studied by density functional methods, J. Phys. Chem. A. 2001, 105, 5242 - 5454.
    [62] Furche, F.; Ahlrichs, R.; Sobanski, A.; V?gtle, F.; Wachsman, C.; Weber, E.; Grimme, S. Circular dichroism of helicenes investigated by time-dependent density functional theory, J. Am. Chem. Soc. 2000, 122, 1717-1724.
    [63] Grozema, F. C.; Telesca, R.; Jonkman, H. T.; Siebbeles, L. D. A.; Snijders, J. G. Excited state polarizabilities of conjugated moleculescalculated using time dependent density functional theory, J. Chem. Phys. 2001, 115, 10014.
    [64] Furche, F.; Ahlrichs, R. Adiabatic time-dependent density functional methods for excited state properties, J. Chem. Phys. 2002, 117, 7433.
    [65] So Hirata; Martin Head-Gordon; Rodney J. Bartlett. Configuration interaction singles, time-dependent Hartree–Fock, and time-dependent density functional theory for the electronic excited states of extended systems, J. Chem. Phys. 1999, 111, 10774.
    [66] Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold, J. Chem. Phys. 1998, 108, 4439.
    [67] Statmann, R. E.; Scuseria, G. E. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules, J. Chem. Phys. 1998, 109, 8218.
    [68] Foresman, J. B.; Head-Gordon, M.; Pople, J. A.; et al. An ab initio study of hydrated chloride ion complexes: Evidence of polarization effects and nonadditivity, J. Chem. Phys. 1987, 87, 5892.
    [69] Zhang, H.; Balasubramanian, K. Electronic structure of the group V tetramers (P4–Bi4), J. Chem. Phys. 1992, 97, 3437.
    [70] Zhang, H.; Balasubramanian, K. Spectroscopic constants and potential energy curves for 15 electronic states of Ag2, J. Chem. 1993, 98, 7092.
    [71] Lee, A. S.; Butun, V.; Vamvakaki, M.; Armes, S. P.; Pople, J. A.; Gast, A. P.; Structure of pH-dependent block copolymer micelles: Charge and ionic strength dependence, macromolecules, 2002, 35 (22), 8540.
    [72] Condon, E. U. Nuclear motions associated with electron transitions in diatomic molecules, Phys. Rev. 1928, 32, 858.
    [73] Franck, J. Elementary processes of photochemical reactions, Trans. Faraday Soc. 1925, 21, 536-542.
    [74] Raghavachari, K.; Pople, J. A. Calculation of one-electron properties using limited configuration interaction techniques, Int. J. Quant. Chem. 1981, 20, 1067-1071.
    [75] Foresman, J. B.; Head-Gordon, M.; Pople, J. A. Toward a systematic molecular orbital theory for excited states, J. Phys. Chem. 1992, 96, 135.
    [76] Halls, M. D.; Schlegel, H. B. Molecular orbital study of the first excited state of the OLED material tris(8-hydroxyquinoline)aluminum(III), Chem. Mater. 2001, 13, 2632.
    [77] Frank, I. Excited state molecular dynamics, Invited Review, SIMU Newsletter, 2001, 3, 63-77.
    [78] Juris, A.; Barigelletti, F.; Campagna, S.; Balzain, V.; Belser, p.; von Zelewski, A. Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence, Coord. Chem. Rev. 1988, 84, 85-277.
    [79] Han, Y.-K.; Lee, S. U. 2002, 366, 9-16.
    [80] Kenneth Kam-Wing Lo; Wai-Ki Hui; Dominic Chun-Ming Ng; Kung-Kai Cheung., Synthesis, Characterization, photophysical properties, and biological labeling studies of a series of luminescent rhenium(I) polypyridine maleimide complexes, Inorg. Chem. 2002, 41, 40-46.
    [81] Keith A. Walters; Lavanya L. Premvardhan; Yao Liu; Linda A. Peteanu; Kirk S. Schanze. Metal-to-ligand charge transfer absorption in a rhenium(I) complex that contains a π-conjugated bipyridine acceptor ligand, Chem. Phys. Lett. 2001, 339, 255-262.
    [1] 唐敖庆,杨忠志,李前树,量子化学,北京,科学出版社,1982。
    [2] 徐光宪,黎乐民,王德民,量子化学基本原理和从头计算法,北京,科学出版社,1985。
    [3] Mcquarrie, D. A. Quantum chemistry university science books: Mill Vally. CA. 1983.
    [4] Hehre, W. J.; Radom, L.; Schleyer, P. V. R.; et al. Ab initio molecular orbital theory, John Wiley & Sons, Inc. 1986.
    [5] Born, M.; Oppenheimer, R. Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 1927, 84, 457.
    [6] Hartree, D. Calculations of atomic structure, Wiley, 1957.
    [7] Roothaan, C. C. J. New developments in molecular orbital theory, Rev. Mod. Phys. 1951, 23, 69-89.
    [8] Lowdin, P. O. Correlation problem in many-electron quantum mechanics, Adv. Chem. Phys. 1959, 2, 207.
    [9] Pople, J. A.; Seeger, R.; Krishnan, R. Variational configuation interaction methods and comparison with pertubation theory, Int. J. Quant. Chem. Symp. 1977, 11, 149.
    [10] Brooks, B. R.; Laidig, W. D.; Saxe, P.; Goddard, J. D.; Yamaguchi, Y.; Scjaefer Ш, H. F. Analytic gradient from correlated wave functions via the two-particle density matrix and the unitary group approach, J. Chem. Phys. 1980, 72, 4652.
    [11] Krishnan, R.; Schlegel, H. B.; Pople, J. A. Derivate studies in configuration interaction theory, J. Chem. Phys. 1980, 72, 4654.
    [12] Raghavachari, K.; Pople, J. A. Specificity and molecular mechanism of abortificient action of prostaglandins, Int. J. Quant. Chem. 1981, 20, 167-178.
    [13] Raghavachari, K.; Pople, J. A. Calculation of one-electron properties using limited configuration interaction techniques, Int. J. Quant. Chem. 1981, 20, 1067-1071.
    [14] Pople, J. A.; Head-Gordon, M.; Raghavachari, K. Quadratic configuration interaction. A general technique for determining electron correlation energies, J. Chem. Phys. 1987, 87, 5968.
    [15] Salter, E. A.; Trucks, G. W.; Bartlett, R. J. Analytic energy derivatives in many-body methods ?. First derivatives, J. Chem. Phys. 1989, 90, 1752.
    [16] Foresman, J. B.; Head-Gordon, M.; Pople, J. A. Toward a systematic molecular orbital theory for excited states, J. Phys. Chem. 1992, 96, 135.
    [17] Hohenberg, P.; Kohn, W. Inhomogeneous electron gas, Phys. Rev. B, 1964, 136, 864-871.
    [18] Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects, Phys. Rev. A, 1965, 140, 1133-1138.
    [19] Slater, J. C. Quantum theory of molecular and solids, Vol. 4: the self- consistent field for molecular and solids, McGraw-Hill: New York, 1974.
    [20] Salahub, D. E.; Zerner, M. C. The challenge of d and f electrons, ACS: Washington, D.C. 1989.
    [21] Parr, R. G.; Yang, W. Density-functional theory of atoms and molecules Oxford Univ, Press: Oxford, 1989.
    [22] Labanowski, J. K.; Andzelm, J. W. Density functional methods in chemistry, Springer-Verlag: New York, 1991.
    [23] Pople, J. A.; Gill, P. W. M.; Johnson, B. G. Kohn-Sham density- functional theory within a finite basis set, Chem. Phys. Letters, 1992, 199, 557-560.
    [24] Johnson, B. G.; Frisch, M. J. An implementation of analytic secondderivatives of the gradient-corrected density functional energy, J. Chem. Phys. 1994, 100, 7429.
    [25] Mataga, N.; Nishimoto, K. Z.Physik.Chem(Frankfrut), 1957, 13, 140.
    [26] Hegarty, D.; Robb, M. A. Application of unitary group methods to configuration interaction calculations, Mol. Phys. 1979, 38, 1795-1812.
    [27] Eade, R. H. E.; Robb, M. A. Direct minimization in mc scf theory. The quasi-newton method, Chem. Phys. Lett. 1981, 83, 362-368.
    [28] Frisch, M. J.; Ragazos, I. N.; Robb, M. A.; Schlegel, H. B. An evaluation of 3 direct MCSCF procedures, Chem. Phys. Lett. 1992, 189, 524.
    [29] Yamamoto, N.; Vreven, T.; Robb, M. A.; Frisch, M. J.; Schlegel, H. B. A direct derivative MC-SCF procedure, Chem. Phys. Lett. 1996, 250, 373.
    [30] Peukert, V. A new approximation method for electron systems, J. Phys. 1978, C11, 4945-4956.
    [31] Theophilou, A K. The energy density functional formalism for excited states, J. Phys. 1979, C12, 5419-5430.
    [32] Hadjisavvas, N.; Theophilou, A K. Rigorous formulation of the Kohn and Sham theory, Phys. Rev. 1984, A30, 2183-2186; Rigorous formulation of Slater’s transition-state theory for excited states, ibid, 1985, A32, 720-724.
    [33] Theophilou, A. K.; Gidopoulos, N. I. Density functional theory for excited states, Int. J. Quantum Chem. 1995, 56, 333-336.
    [34] Jamorski, C.; Casida, M. E.; Salahub, D. R. Dynamic polarizabilities and excitation spectra from a molecular implementation of time- dependent density-functional response theory: N2 as a case study, J. Chem. Phys. 1996, 104 (13), 5134-5147.
    [35] G. 赫兹堡著,王鼎昌译,分子光谱与分子结构-双原子分子光谱,科学出版社,1983。
    [36] 周公度,段连运 编著,结构化学基础,北京大学出版社,1995。
    [37] Condon, E. U. Nuclear motions associated with electron transitions in diatomic molecules, Phys. Rev. 1928, 32, 858-872.
    [38] Franck, J.; Dymond, E. G. Elementary processes of photochemical reactions, Trans. Faraday Soc. 1926, 21, 536542.
    [1] Dimitrakopoulos, C. D.; Malenfant, P. R. L. Organic thin film transistors for large area electronics, Adv. Mater. 2002, 14, 99-117.
    [2] Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Plastic solar cells, Adv. Funct. Mater. 2001, 11, 15-26.
    [3] Klaerner, G.; Miller, R. D. Polyfluorene derivatives: effective conjugation lengths from well-defined oligomers, Macromolecules, 1998, 31, 2007-2009.
    [4] Kl?rner, G.; Lee, J. -I.; Chan, E.; Chen, J.-P.; Nelson, A.; Markiewicz, D.; Siemens, R.; Scott, J. C.; Miller, D. Cross-linkable polymers based on dialkylfluorenes, Chem. Mater. 1999, 11, 1800-1805.
    [5] Justin Thomas, K. R.; Jiann T. Lin.; Yu-Tai Tao; Chung-Wen Ko. New star-shaped luminescent triarylamines: synthesis, thermal, photophysical, and electroluminescent characteristics, Chem. Mater. 2002, 14, 1354-1361.
    [6] Yang, L.; Ren, A. M.; Feng, J. K.; Ma, Y. G.; Zhang, M.; Liu, X. D.; Shen, J. C.; Zhang, H. X. Theoretical studies of ground and excited electronic states in a series of halide rhenium(I) bipyridine complexes, J. Phys. Chem. A 2004, 108, 6797-6808.
    [7] Li Yang; Ai-Min Ren; Ji-Kang Feng; Ji-Fen Wang. Theoretical investigation of optical and electronic property modulations of π-conjugated polymers based on the electron-rich 3,6-dimethoxy-fluorene unit, J. Org. Chem. 2005, 70, 3009-3020.
    [8] Li Yang; Yi Liao; Ji-Kang Feng; Ai-Min Ren. Theoretical studies of the modulation of polymer electronic and optical properties through the introduction of the electron-donating 3,4-ethylenedioxythiophene or electron-accepting pyridine and 1,3,4-oxadiazole moieties , J. Phys. Chem. A. 2005, 109, 7764-7774.
    [9] Li Yang; Ji-Kang Feng; Ai-Min Ren; Chia-Chung Sun. Theoretical investigations on the modulation of the polymer electronic and optical properties by introduction of phenoxazine, Polymer, 2006, 47, 3229-3239.
    [10] Kulkarni, A. P.; Tonzola, C. J.; Babel,A.; Jenekhe, S. A. Electron transport materials for organic light-emitting diodes, Chem. Mater. 2004, 16, 4556-4573.
    [11] Huang, Q.; Evmenenko, G. A.; Dutta, P.; Lee, P.; Armstrong, N. R.; Marks, T. J. Covalently bound hole-injecting nanostructures. systematics of molecular architecture, thickness, saturation, and electron-blocking characteristics on organic light-emitting diode luminance, turn-on voltage, and quantum efficiency, J. Am. Chem. Soc. 2005, 127, 10227-10242.
    [12] Kato, S. Designing interfaces that function to facilitate charge injection in organic light-emitting diodes, J. Am. Chem. Soc. 2005, 127, 11538-11539.
    [13] Yamagushi, S.; Tamao, K. A key role of orbital interaction in the main group element-containing π-electron systems, Chem. Lett. 2005, 34, 2-7.
    [14] Toal, S. J.; Jones, K. A.; Madge, D.; Trogler, W. C. Luminescent silole nanoparticles as chemoselective sensors for Cr(VI), J. Am. Chem. Soc. 2005, 127, 11661-11665.
    [15] Gate, D. Expanding the analogy between P=C and C=C bonds to polymer science, Top. Curr. Chem. 2005, 250, 107-126.
    [16] Hissler, M.; Dyer, P.; Réau, R. Top. The rise of organophosphorus derivatives in p-conjugated materials chemistry, Curr. Chem. 2005, 250, 127-163.
    [17] Mathey, F. The organic chemistry of phospholes, Chem. Rev. 1988, 88, 429-453.
    [18] Yoshihiro Matano; Tooru Miyajima; Takashi Nakabuchi; Yuichiro Matsutani; Hiroshi Imahori. A convenient method for the synthesis of 2,5-difunctionalized phospholes bearing ester groups, J. Org. Chem. 2006, 71, 5792-5795.
    [19] Hay, C.; Le Vilain, D.; Deborde, V.; Toupet, L.; Réau, R. 2,5-Di(2-pyridyl)phospholes: model compounds for the engineering of π-conjugated donor–acceptor co-oligomers with a chemically tunable HOMO–LUMO gap, Chem. Commun. 1999, 345-346.
    [20] Hay, C.; Fischmeister, C.; Hissler, M.; Toupet, L.; Réau, R. Electropolymerization of π-conjugated oligomers containing phosphole cores and terminal thienyl moieties: optical and electronic properties, Angew. Chem. 2000, 112 (10), 1882-1885.
    [21] Hay, C.; Hissler, M.; Fischmeister, C.; Rault-Berthelot, J.; Toupet, L.; Nyula′szi, L.; Réau, R. Phosphole-containing π-conjugated systems: from model molecules to polymer films on electrodes, Chem. Eur. J. 2001, 7 (19), 4222-4236.
    [22] Claire Fave; Ting-Yi Cho; Muriel Hissler; Chieh-Wei Chen; Tien-Yau Luh; Chung-Chih Wu; Régis Réau. First examples of organophosphorus-containing materials for light-emitting diodes, J. Am. Chem. Soc. 2003, 125, 9254-9255.
    [23] Caroline Hay; Claire Fave; Muriel Hissler; Jo?lle Rault-Berthelot;Régis Réau. Synthesis and electronic properties of alternating ,'-thiophene-phosphole oligomers, Organic Letters. 2003, 5(19), 3467-3470.
    [24] Lingzhi Zhang; Muriel Hissler; Hang-Beom Bu; Peter B?uerle; Christophe Lescop; Régis Réau. A study of mono- and 1,1'-diphosphaferrocenes as building blocks for π-conjugated systems, Organometallics. 2005, 24, 5369-5376.
    [25] Hai-Ching Su; Omrane Fadhel; Chih-Jen Yang; Ting-Yi Cho; Claire Fave; Muriel Hissler; Chung-Chih Wu; Régis Réau. Toward functional π-conjugated organophosphorus materials: design of phosphole-based oligomers for electroluminescent devices, J. Am. Chem. Soc. 2006, 128, 983-995.
    [26] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.04; Gaussian, Inc.: Pittsburgh, PA, 2003.
    [27] Epstein, A. J.; Lee, W. P.; Prigodin, V. N. Low-dimensional variable range hopping in conducting polymers, Synth. Met. 2001, 117, 9-13.
    [28] Reedijk, J. A.; Martens, H. C. F.; van Bohemen, S. M. C.; Hilt, O.; Brom, H. B.; Michels, M. A. J. Charge transport in doped polythiophene, Synth. Met. 1999, 101, 475-476.
    [29] Mott, N. F.; Davis, E. A. Electronic Processes in Non-Crystalline Materials; 2d ed.; Oxford University Press: Oxford, 1979.
    [30] Geoffrey R. Hutchison; Mark A. Ratner; Tobin J. Marks. Hopping transport in conductive heterocyclic oligomers: reorganization energies and substituent effects, J. Am. Chem. Soc. 2005, 127, 2339-2350.
    [31] Marcus, R. A. Electron transfer reactions in chemistry. Theory and experiment, Rev. Mod. Phys. 1993, 65, 599-610.
    [32] Marcus, R. A.; Eyring, H. Chemical and electrochemical electron- transfer theory, Annu. Rev. Phys. Chem. 1964, 15, 155-196.
    [33] Hush, N. S. Adiabatic rate processes at electrodes. I. energy-charge relationships, J. Chem. Phys. 1958, 28, 962-972.
    [34] Marcus, R. A. On the theory of oxidation-reduction reactions involving electron transfer. I, J. Chem. Phys. 1956, 24, 966-978.
    [1] Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bre′das, J. L.; Lo¨gdlund, M.; Salaneck, W. R. Electroluminescence in conjugated polymers, Nature, 1999, 397, 121-128.
    [2] Segura, J. L.; Martin, N. Functionalized oligoarylenes as building blocks for new organic materials, J. Mater. Chem. 2000, 10, 2403-2435.
    [3] Mitschke, U.; Ba¨uerle, P. The electroluminescence of organic materials, J. Mater. Chem. 2000, 10, 1471-1507.
    [4] Zhu, Y.; Abhishek, P.; Jenkehe, S. A. Phenoxazine-based emissive donor-acceptor materials for efficient organic light-emitting diodes, Chem. Mater. 2005; 17, 5225-5227.
    [5] Kulkarni, A. P.; Wu, P.-T.; Kwon, T. W.; Jenekhe, S. A. Phenothiazine-phenylquinoline donor-acceptor molecules: effects of structural isomerism on charge transfer photophysics and electroluminescence, J. Phys. Chem. B, 2005, 109, 19584-19594.
    [6] Liu, B.; Bazan, G. C. Optimization of the molecular orbital energies of conjugated polymers for optical amplification of fluorescent snsors, J. Am. Chem. Soc. 2006, 128, 1188-1196.
    [7] Oyaizu, K.; Iwasaki, T.; Tsukahara, Y.; Tsuchida, E. Linear ladder-type π-conjugated polymers composed of fused thiophene ring systems, Macromolecules, 2004, 37, 1257-1270.
    [8] Peng, Q.; Lu, Z. Y.; Huang, Y.; Xie, M. G.; Han, S. H.; Peng, J. B.; Cao, Y. Synthesis and characterization of new red-emitting polyfluorene derivatives containing electron-deficient 2-pyran-4-ylidene- malononitrile moieties, Macromolecules, 2004, 37, 260-266.
    [9] Yang, R. Q.; Tian, R. Y.; Yang, W.; Cao, Y. Synthesis and optical and electroluminescent properties of novel conjugated copolymers derived from fluorene and benzoselenadiazole, Macromolecules, 2003, 36, 7453-7460.
    [10] Yang, N. C.; Lee, S. M.; Yoo, Y. M.; Kim, J. K.; Suh, D. H. New blue electroluminescent n-type polyfluorene copolymers with a 1,3,4-oxadiazole unit in the main chain, J. Polym. Sci. A, 2004, 42, 1058-1068.
    [11] Yu, W.-L.; Meng, H.; Pei, J.; Huang, W. Tuning redox behavior and emissive wavelength of conjugated polymers by p-n diblock structures, J. Am. Chem. Soc. 1998, 120, 11808-11809.
    [12] Peng, Z.; Zhang, J. Using template-synthesized micro- and nanowires as building blocks for self-assembly of supramolecular architectures, Chem. Mater. 1999, 11, 1138-1143.
    [13] Lee, Y.-Z.; Chen, X.; Chen, S.-A.; Wei, P.-K.; Fann, W.-S. Soluble electroluminescent poly(phenylene vinylene)s with balanced electron- and hole injections, J. Am. Chem. Soc. 2001, 123, 2296-2307.
    [14] Jin, S.-H.; Kim, M.-Y.; Kim, J. Y., Lee, K.; Gal, Y.-S. High-efficiency poly(p-phenylenevinylene)-based copolymers containing an oxadiazole pendant group for light-emitting diodes, J. Am. Chem. Soc. 2004, 126, 2474-2480.
    [15] Kwok, C. C.; Wong, M. S. Synthesis and light-emitting properties of difunctional dendritic distyrylstilbenes, Macromolecules 2001, 34, 6821-6830.
    [16] Kwok, C. C.; Wong, M. S. Synthesis and luminescence of distyrylstilbenes with asymmetrically substituted functionalized dendrons, Chem. Mater. 2002, 14, 3158-3166.
    [17] Wong, K.-T.; Chien, Y.-Y.; Chen, R.-T.; Wang, C.-F.; Lin, Y.-T.; Chiang, H.-H.; Hsieh, P.-Y.; Wu, C.-C.; Chou, C. H.; Su, Y. O.; Lee, G.-H.; Peng, S.-M. Ter(9,9-diarylfluorene)s: highly efficient blue emitter with promising electrochemical and thermal stability, J. Am. Chem. Soc. 2002, 124, 11576-11577.
    [18] Katsis, D.; Geng, Y. H.; Ou, J. J.; Culligan, S. W.; Trajkovska, A.; Chen, S. H.; Rothberg, L. J. Spiro-linked ter-, penta-, and heptafluorenes as novel amorphous materials for blue light emission, Chem. Mater. 2002, 14, 1332-1339.
    [19] Geng, Y.; Culligan, S. W.; Trajkovska, A.; Wallace, J. U.; Chen, S. H. Monodisperse oligofluorenes forming glassy-nematic films for polarized blue emission, Chem. Mater. 2003, 15, 542-549.
    [20] Culligan, S. W.; Geng, Y.; Chen, S. H.; Klubek, K.; Vaeth, K. M.; Tang, C. W. Strongly polarized and efficient blue organic light-emitting diodes using monodisperse glassy nematic oligo(fluorene)s, Adv. Mater. 2003, 15, 1176-1180.
    [21] Wu, C.-C.; Lin, Y.-T.; Wong, K.-T.; Chen, R.-T.; Chien, Y.-Y. Efficient organic blue-light-emitting devices with double confinement on terfluorenes with ambipolar carrier transport properties, Adv. Mater. 2004, 16, 61-65.
    [22] Teetsov, J.; Fox, M. A. J. Surface functionalization of cadmium sulfide quantum-confined nanoclusters. 3. formation and derivatives of a surface phenolic quantum dot, Chem. Mater. 1999, 9, 2117-2122.
    [23] Jo, J.; Chi, C.; Hoger, S.; Wegner, G.; Yoon, D. Y. Synthesis and characterization of monodisperse oligofluorenes, Chem. Eur. J. 2004, 10, 2681-2688.
    [24] Belfield, K. D.; Morales, A. R.; Hales, J. M.; Hagan, D. J.; VanStryland, E. W.; Chapela, V. M.; Percino, J. Linear and two-photon photophysical properties of a series of symmetrical diphenylaminofluorenes, Chem. Mater. 2004, 16, 2267-2273.
    [25] Grell, M.; Bradley, D. D. C.; Inbasekaran, M.; Woo, E. P. A glass-forming conjugated main-chain liquid crystal polymer for polarized electroluminescence applications, Adv. Mater. 1997, 9, 798-802.
    [26] Kl?rner, G.; Lee, J.-Y.; Lee, V. Y.; Chan, E.; Chen, J.-P.; Nelson, A.; Markiewicz, D.; Siemens, R.; Scott, J. C.; Miller, R. D. Cross-linkable polymers based on dialkylfluorenes, Chem. Mater. 1999, 11, 1800-1805.
    [27] Donat-Bouillud, A.; Le′vesque, I.; Tao, Y.; D’Iorio, M.; Beaupre′, S.; Blondin, P.; Ranger, M.; Bouchard, J.; Leclerc, M. Light-emittingdiodes from fluorene-based π-conjugated polymers, Chem. Mater. 2000, 12, 1931-1936.
    [28] Ego, C.; Marsitzky, D.; Becker, S.; Zhang, J.; Grimsdale, A. C.; Mu¨llen, K.; Mackenzie, J. D.; Silva, C.; Friend, R. H. Attaching perylene dyes to polyfluorene: three simple, efficient methods for facile color tuning of light-emitting polymers, J. Am. Chem. Soc. 2003, 125, 437-443.
    [29] Li, Z. H.; Wong, M. S.; Tao, Y.; Lu, J. Diphenylamino end-capped oligofluorenes with enhanced functional properties for blue light emission: synthesis and structure-property relationships, Chem. Eur. J. 2005, 11, 3285-3293.
    [30] Li, Z. H.; Wong, M. S.; Fukutani, H.; Tao, Y. Full emission color tuning in bis-dipolar diphenylamino-endcapped oligoarylfluorenes, Chem. Mater. 2005, 17, 5032-5040.
    [31] Montes, V. A.; Li, G.; Radek, P.; Shinar, J.; Anzenbacher, P., Jr. Effective color tuning in organic light-emitting diodes based on aluminum tris(5-aryl-8-hydroxyquinoline) complexes, Adv. Mater. 2004, 16, 2001-2003.
    [32] Radek, P.; Montes, V. A.; Shinar, J.; Anzenbacher, P., Jr. Red-green-blue emission from tris(5-aryl-8-quinolinolate)Al(III) complexes, J. Org. Chem. 2004, 69, 1723-1725.
    [33] Wong, M. S.; Li, Z. H.; Shek, M. F.; Chow, K. H.; Tao, Y.; D’Iorio, M. Synthesis, structure–properties of planar, end-substituted, light-emitting oligophenylenevinylenes, J. Mater. Chem. 2000, 10, 1805-1810.
    [34] Wong, M. S.; Li, Z. H.; Tao, Y.; D’Iorio, M. Synthesis and functional properties of donor-acceptor π-conjugated oligomers, Chem. Mater. 2003, 15, 1198-1203.
    [35] Li, Z. H.; Wong, M. S.; Tao, Y.; D’Iorio, M. Synthesis and functionalproperties of strongly luminescent diphenylamino end-capped oligophenylenes, J. Org. Chem. 2004, 69, 921-927.
    [36] Wong, M. S.; Li, Z. H. Multifunctional properties of monodisperse end-functionalized oligophenylenevinylenes, Pure Appl. Chem. 2004, 76, 1409-1420.
    [37] Reinhardt, B. A.; Brott, L. L.; Clarson, S. J.; Dillard, A. G.; Bhatt, J. C.; Kannan, R.; Yan, L.; He, G. H.; Prasad, P. N. Highly active two-photon dyes: design, synthesis, and characterization toward application, Chem. Mater. 1998, 10, 1863-1874.
    [38] Albota, M.; Beljonne, D.; Bredas, J. L.; Ehrlich, J. E.; Fu, J. Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-Maughon, D.; Perry, J. W.; Rockel, H.; Rumi, M.; Subramanian, G.; Webb, W. W.; Wu, X. L.; Xu, C. Design of organic molecules with large two-photon absorption cross sections, Science, 1998, 281, 1653-1656.
    [39] Mongin, O.; Porres, L.; Moreaux, L.; Mertz, J.; Blanchard-Desce, M. Synthesis and photophysical properties of new conjugated fluorophores designed for two-photon-excited fluorescence, Org. Lett. 2002, 4, 719-722.
    [40] Li, Z. H.; Wong, M. S. Synthesis and functional properties of end-dendronized oligo(9,9-diphenyl)fluorenes, Org. Lett. 2006, 8, 1499-1502.
    [41] Lukes, V.; Aquino, A.; Lischka, H. Theoretical study of vibrational and optical spectra of methylene-bridged oligofluorenes, J. Phys. Chem. A 2005, 109, 10232-10238.
    [42] Yang, L.; Feng, J. K.; Liao, Y.; Ren, A. M. A theoretical investigation on the electronic and optical properties of p-conjugated copolymers with an efficient electron-accepting unit bithieno[3,2-b:2030-e]pyridine,Polymer, 2005, 46, 9955-9964.
    [43] Yang, L.; Feng, J. K.; Ren, A. M. Theoretical study on electronic structure and optical properties of phenothiazine-containing conjugated oligomers and polymers, J. Org. Chem. 2005, 70, 5987-5996.
    [44] Litani-Barzilai, I.; Bulatov, V.; Schechter, I. Detector based on time-resolved ion-induced voltage in laser multiphoton ionization and laser-induced fluorescence, Anal. Chim. Acta. 2004, 501, 151-156.
    [45] Vladimír Luke?; Adelia Aquino; Hans Lischka. Theoretical study of vibrational and optical spectra of methylene-bridged oligofluorenes, J. Phys. Chem. A. 2005, 109, 10232-10238.
    [46] Burns, D. M.; Iball, S. Proc. Roy. Soc. London Ser. A 1955; 227: 200.
    [47] Hay, P. J. Theoretical studies of the ground and excited electronic states in cyclometalated phenylpyridine Ir(III) complexes using density functional theory, J. Phys. Chem. A, 2002, 106, 1634-1641.
    [48] Curioni, A.; Andreoni, W.; Treusch, R.; Himpsel, F. J.; Haskal, E.; Seidler, P.; Heske, C.; Kakar, S.; van Buren, T.; Terminello, L. Atom-resolved electronic spectra for Alq3 from theory and experiment, J. Appl. Phys. Lett. 1998, 72, 1575-1577.
    [49] Hong, S. Y.; Kim, D.Y.; Kim, C.Y.; Hoffmann, R. Origin of the broken conjugation in m-phenylene linked conjugated polymers, Macromolecules, 2001, 34, 6474-6481.
    [50] Lin, B. C.; Cheng, C. P.; Lao, Z. P. M. Reorganization energies in the transports of holes and electrons in organic amines in organic electroluminescence studied by density functional theory, J. Phys. Chem. A 2003, 107, 5241-5251.
    [51] Curioni, A.; Boero, M.; Andreoni, W. Alq3: ab initio calculations of its structural and electronic properties in neutral and charged states, Chem. Phys. Lett. 1998, 294, 263-271.
    [52] Wang, I.; Estelle, B. A.; Olivier, S.; Alain, I.; Baldeck, P. L. Absorption and fluorescence properties of bifluorene crystal and microcrystals, J. Opt. A: Pure Appl. Opt. 2002; 4, S258–S260.
    [53] Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Electron transport materials for organic light-emitting diodes, Chem. Mater. 2004, 16, 4556-4573.
    [54] Zhu, Y.; Rabindranath, A. R.; Beyerlein, T.; Tieke, B. Highly luminescent 1,4-diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole-(DPP-) based conjugated polymers prepared upon suzuki coupling, Macromolecules, 2007, 40, 6981-6989.
    [55] Grimme, S.; Parac, M. Substantial errors from time-dependent density functional theory for the calculation of excited states of large π systems, Chem. Phys. Chem. 2003, 4, 292-295.
    [56] Ortiz, R. P.; Delgado, M. C. R.; Casado, J.; Herna’ndez, V.; Kim, O. K.; Woo, H. Y.; Navarrete, L. L. Electronic modulation of dithienothiophene (DTT) as π-center of D-π-D chromophores on optical and redox properties: analysis by UV-vis-NIR and raman spectroscopies combined with electrochemistry and quantum chemical DFT calculations, J. Am. Chem. Soc. 2004, 126, 13363-13376.
    [1] Alessandro Sergi; Myrta Gru1ning; Mauro Ferrario; Francesco Buda. Density functional study of the photoactive yellow protein’s chromophore, J. Phys. Chem. B 2001, 105, 4386-4391.
    [2] Fang-Iy Wu; D. Sahadeva Reddy; Ching-Fong Shu. Novel oxadiazole-containing polyfluorene with efficient blue electroluminescence, Chem. Mater. 2003, 15, 269-274.
    [3] Grozema, F. C.; van Duijnen, P. Th.; Siebbeles, L. D. A.; Goossens, A.; de Leeuw, S. W. Electronic structure of thienylene vinylene oligomers:Singlet excited states, triplet excited states, cations, and dications, J. Phys. Chem. B 2004, 108, 16139-16146.
    [4] Yang, L.; Feng, J.-K.; Ren, A.-M. Theoretical studies on the electronic and optical properties of two thiophene–fluorene based π-conjugated copolymers, Polymer 2005, 46, 10970-10981.
    [5] Yamaguchi, Y.; Kobayashi, S.; Wakamiya, T.; Matsubara, Y.; Yoshida, Z. Banana-shaped oligo(aryleneethynylene)s: synthesis and light- emitting characteristics, Angew. Chem. 2005, 117, 7202-7206.
    [6] Hai-Ching Su; Omrane Fadhel; Chih-Jen Yang; Ting-Yi Cho; Claire Fave; Muriel Hissler; Chung-Chih Wu; Re′gis Re′au. Toward functional π-conjugated organophosphorus materials: design of phosphole-based oligomers for electroluminescent devices, J. Am. Chem. Soc. 2006, 128, 983-995.
    [7] Jessica M. Hancock; Angela P. Gifford; Yan Zhu; Yun Lou; Samson A. Jenekhe. n-Type conjugated oligoquinoline and oligoquinoxaline with triphenylamine endgroups: efficient ambipolar light emitters for device applications, Chem. Mater. 2006, 18, 4924-4932.
    [8] Li Yang; Ji-Kang Feng; Ai-Min Ren; Jia-Zhong Sun. The electronic structure and optical properties of carbazole-based conjugated oligomers and polymers: a theoretical investigation, Polymer 2006, 47, 1397-1404.
    [9] Mutsumi Kimura; Motoki Sato; Naoya Adachi; Tadashi Fukawa; Emiko Kanbe; Hirofusa Shirai. Poly(p-phenylene vinylene)s wrapped with 1,3,5-phenylene-based rigid dendrons, Chem. Mater. 2007, 19, 2809-2815.
    [10] Zhong Hui Li; Man Shing Wong; Ye Tao; Hiroshi Fukutani. Ambipolar diphenylamino end-capped oligofluorenylthiophenes as excellent electron-transporting emitters, Organic Letters 2007, 9 (18), 3659-3662.
    [11] Scherf, U.; Müllen, K. Polyarylenes and poly(arylenevinylene)s: 8. The first soluble ladder polymer with 1,4-benzoquinone-bismethide subunits, Polymer, 1992, 33, 2443-2446.
    [12] Kreger, K.; Jandke, M.; Strohriegl, P. J. Novel starshaped molecules based on fluorene, Synth. Met. 2001, 119, 163-164.
    [13] Justin Thomas, K. R.; Jiann T. Lin; Yu-Tai Tao; Chung-Wen Ko. New star-shaped luminescent triarylamines: synthesis, thermal, photophysical, and electroluminescent characteristics, Chem. Mater. 2002, 14, 1354-1361.
    [14] Xin Zhou; Ai-Min Ren; Ji-Kang Feng; Xiao-Juan Liu; Jun-Xiang Zhang; Ju-Zheng Liu. One- and two-photon absorption properties of novel multi-branched molecules, Phys.Chem.Chem.Phys., 2002, 4, 4346-4352.
    [15] Ponomarenko, S. A.; Kirchneyer, S.; Elschner, A.; Huisman, B.-H.; Karbach, A.; Drechsler, D. Star-shaped oligothiophenes for solution-processible organic field-effect transistors, Adv. Funct. Mater. 2003, 13, 591-596.
    [16] Rodriguez, J. G.; Esquivias, J.; Lafuente, A.; Diaz, C. Synthesis of nanostructures based on 1,4- and 1,3,5-ethynylphenyl subunits with π-extended conjugation. carbon dendron units, J. Org. Chem. 2003, 68, 8120-8128.
    [17] Pieterse, K.; Lauritson, A.; Schenning, A. P. H. J.; Vekemans, J. A. J. M.; Meijer, E. W. Symmetrical electron-deficient materials incorporating azaheterocycles, Chem. Eur. J. 2003, 9, 5597-5604.
    [18] Xin Zhou; Ji-Kang Feng; Ai-Min Ren, Theoretical investigation on the one- and two-photon absorption properties of multi-branched oligomers with truxenone center and fluorene branches, Chem. Phys. Lett., 2004, 397, 500-509.
    [19] Kanibolotsky, A. L.; Berridge, R.; Skabara, P. J.; Perepichka, I. F.; Bradley, D. D. C.; Koeberg, M. Synthesis and properties of monodisperse oligofluorene-functionalized truxenes: highly fluorescent star-shaped architectures, J. Am. Chem. Soc. 2004, 126, 13695-13702.
    [20] Kannan, K.; He, G. S.; Lin, T.-C.; Prasad, P. N.; Vaia, R. A.; Tan, L.-S. Toward highly active two-photon absorbing liquids. synthesis and characterization of 1,3,5-triazine-based octupolar molecules, Chem. Mater. 2004, 16, 185-194.
    [21] Yamaguchi, Y.; Kobayashi, S.; Wakamiya, T.; Matsubara, Y.; Yoshida, Z. Banana-Shaped Oligo(aryleneethynylene)s: Synthesis and light- emitting characteristics, Angew. Chem., Int. Ed. 2005, 44, 7040-7044.
    [22] Yamaguchi, Y.; Tanaka, T.; Kobayashi, S.; Wakamiya, T.; Matsubara, Y.; Yoshida, Z. Light-emitting efficiency tuning of rod-shaped π conjugated systems by donor and acceptor groups, J. Am. Chem. Soc. 2005, 127, 9332-9333.
    [23] Cao, X.-Y.; Hong, Z.; Zhang, W.; Lu, H.; Pei, J. Star-shaped and linear nanosized molecules functionalized with hexa-peri-hexabenzocoronene: synthesis and optical properties, J. Org. Chem. 2005, 70, 3645-3653.
    [24] Yoshihiro Yamaguchi; Takanori Ochi; Satoshi Miyamura; Takahiro Tanaka; Shigeya Kobayashi; Tateaki Wakamiya; Yoshio Matsubara; Zen-ichi Yosh. Rigid molecular architectures that comprise a 1,3,5-trisubstituted benzene core and three oligoaryleneethynylene arms: Light-emitting characteristics and π conjugation between the arms, J. Am. Chem. Soc. 2006, 128, 4504-4505.
    [25] Chu, T.-Y.; Ho, M.-H.; Chen, J.-F.; Chen, C. H. Ab initio molecular orbital study of 1,3,5-triazine derivatives for phosphorescent organic light emitting devices, Chem. Phys. Lett. 2005, 415, 137-140.
    [26] Gierschner, J.; Cornil, J.; Egelhaaf, H.-J. Optical bandgaps ofπ-conjugated organic materials at the polymer limit: experiment and theory, Adv. Mater. 2007, 19, 173-191.
    [27] Andreas Dreuw; Martin Head-Gordon. Single-reference ab initio methods for the calculation of excited states of large molecules, Chem. Rev. 2005, 105, 4009-4037.
    [1] Tang, C. W.; Van Slyke, S. A. Organic electroluminescent diodes, Appl. Phys. Lett. 1987, 51, 913-915.
    [2] Van Slyke, S. A.; Chen, C. H.; Tang, C. W. Organic electroluminescent devices with improved stability, Appl. Phys. Lett. 1996, 69, 2160.
    [3] Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Light-emitting diodes based on conjugated polymers, Nature, 1990, 347, 539-541.
    [4] Freeman, A. W.; Koene, S. C.; Malenfant, P. R. L.; Thompson, M. E.; Fréchet, J. M. J. Dendrimer-containing light-emitting diodes: toward site-isolation of chromophores, J. Am. Chem. Soc. 2000, 122, 12385-12386.
    [5] Mullen, K.; Scherf, U.; Organic light-emitting devices. Synthesis, properties and applications; Wiley: Weinheim, Germany, 2006.
    [6] Shih, H.-T.; Lin, C.-H.; Shih, H.-H.; Cheng, C.-H. High-performance blue electroluminescent devices based on a biaryl, Adv. Mater. 2002, 14, 1409-1412.
    [7] Wu, C.-C.; Lin, Y.-T.; Chiang, H.-H.; Cho, T.-Y.; Chen, C.-W.; Wong, K.-T.; Liao, Y.-L.; Lee, G.-H.; Peng, S.-M. Highly bright blue organic light-emitting devices using spirobifluorene-cored conjugated compounds, Appl. Phys. Lett. 2002, 81, 577-579.
    [8] Tao, S.; Hong, Z.; Peng, Z.; Ju, W.; Zhang, X.; Wang, P.; Wu, S.; Lee, S. Anthracene derivative for a non-doped blue-emitting organicelectroluminescence device with both excellent color purity and high efficiency, Chem. Phys. Lett. 2004, 397, 1-4.
    [9] Gong, J.-R.; Wan, L.-J.; Lei, S.-B.; Bai, C.-L.; Zhang, X.-H.; Lee, S.-T. Direct evidence of molecular aggregation and degradation mechanism of organic light-emitting diodes under joule heating: an STM and photoluminescence study, J. Phys. Chem. B 2005, 109, 1675-1682.
    [10] Tao, S.; Peng, Z.; Zhang, X.; Wang, P.; Lee, C.-S.; Lee, S.-T. Highly efficient non-doped blue organic light-emitting diodes based on fluorene derivatives with high thermal stability , Adv. Funct. Mater. 2005, 15, 1716-1721.
    [11] Tang, C.; Liu, F.; Xia, Y.-J.; Lin, J.; Xie, L.-H.; Zhong, G.-Y.; Fan, Q.-L.; Huang, W. Fluorene-substituted pyrenes--novel pyrene derivatives as emitters in nondoped blue OLEDs, Org. Electron. 2006, 7, 155-162.
    [12] Rumi, M.; Ehrlich, J. E.; Heikal, A. A.; Perry, J. W.; Barlow, S.; Hu, Z.; McCord-Maughon, D.; Parker, T. C.; Ro¨ckel, H.; Thayumanavan, S.; Marder, S. R.; Beljonne, D.; Bre′das, J.-L. Structure-property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives, J. Am. Chem. Soc. 2000, 122, 9500-9510.
    [13] Yang, J.-S.; Liau, K.-L.; Wang, C.-M.; Hwang, C.-Y. Substituent- dependent photoinduced intramolecular charge transfer in N-aryl- substituted trans-4-aminostilbenes, J. Am. Chem. Soc. 2004, 126, 12325-12335.
    [14] Hosokawa, C.; Higashi, H.; Nakamura, H.; Kusumoto, T. Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant, Appl. Phys. Lett. 1995, 67, 3853-3855.
    [15] Woo, H. S.; Cho, S.; Kwon, T. W.; Park, D. K.; Kim, Y. B.; Czerw, R.;Carroll, D. L.; Park, J. W. Truely blue organic light-emitting diodes based on carbazole-doped 4,4'-Bis[carbazolyl-(9)]-stilbene, J. Korean Phys. Soc. 2005, 46, 981-984.
    [16] Wei, Y.; Chen, C.-T. Doubly ortho-linked cis-4,4-bis(diarylamino) stilbene/fluorene hybrids as efficient nondoped, sky-blue fluorescent materials for optoelectronic applications, J. Am. Chem. Soc. 2006, 128, 10992.
    [17] Chen, C.-T.; Chao, S.-D.; Yen, K.-C.; Chen, C.-H.; Chou, I.-C.; Hon, S.-W. Chiral triarylcarbenium ions in asymmetric mukaiyama aldol additions, J. Am. Chem. Soc. 1997, 119, 11341-11342.
    [18] Chen, C.-T.; Chou, Y.-C. C2-symmetric dibenzosuberane-based helicenes as potential chirochromic optical switches, J. Am. Chem. Soc. 2000, 122, 7662-7672.
    [19] Chen, C.-T.; Wei, Y.; Lin, J.-S.; Moturu, M. V. R. K.; Chao, W.-S.; Tao, Y.-T.; Chien, C.-H. Doubly ortho-linked quinoxaline/ diphenylfluorene hybrids as bipolar, fluorescent chameleons for optoelectronic applications, J. Am. Chem. Soc. 2006, 128, 10992-10993.
    [20] Ren, X.; Li, J.; Holmes, R. J.; Djurovich, P. I.; Forrest, S. R.; Thompson, M. E. Ultrahigh energy gap hosts in deep blue organic electrophosphorescent devices, Chem. Mater. 2004, 16, 4743-4747.
    [21] Yeh, S.-J.; Wu, M-F.; Chen, C.-T.; Song, Y.-H.; Chi, Y.; Ho, M.-H.; Hsu, S.-F.; Chen, C.-H. New dopant and host materials for blue-light-emitting phosphorescent organic electroluminescent devices, Adv. Mater. 2005, 17, 285-289.
    [22] Fu, W.; Feng, J.-K.; Pan, G.-B. Theoretical study on the third-order nonlinear optical properties of a series of derived 9,9′-spirobifluorenes, J. Mol. Struc. (Theochem), 2001, 545, 157-165.
    [23] Fu, W.; Feng, J.-K.; Pan, G.-B.; Zhang, X. Calculations of thegeometries, electronic structures and nonlinear second-order optical susceptibilities of spiroannelated quinone-type methanofullerenes, Theor. Chem. Acc. 2001, 106, 241-250.
    [24] Liu, X.-J.; Feng, J.-K.; Ren, A.-M.; Cheng, H.; Zhou, X. Calculations on the octupolar molecules with enhanced two-photon absorption cross sections based on the Zn (II) and Cu (I) as centers, J. Chem. Phys. 2004, 120, 11493-11499.
    [25] Yang, L.; Feng, J.-K.; Ren, A.-M. Theoretical investigations of the substituent effect on the absorption and emission properties for a series of platinum (II) complexes supported by tetradentate N2O2 chelates, Journal of Molecular Structure: THEOCHEM 2006, 60, 193-201.
    [26] Yang, L.; Feng, J.-K.; Ren, A.-M. Theoretical studies of ground and excited electronic states of complexes M(CO)4(phen)(M=Cr, Mo; W; phen = 1,10-phenanthroline), Synthetic Metals, 2005, 152, 265-268.
    [27] Wang, J.-F.; Feng, J.-K.; Ren, A.-M.; Yang, L. Theoretical studies of the structure, absorption and emission properties of terfluorene and ter(9,9-diarylfluorene) derivatives, Chinese Journal of Chemistry, 2005, 23, 1618-1624.
    [28] Yang, L.; Feng, J.-K.; Ren, A.-M. Theoretical studies on the electronic and optical properties of two new alternating fluorene/carbazole copolymers, J Comput Chem. 2005, 26, 969-979.
    [29] Yang, L.; Feng, J.-K.; Ren, A.-M.; Zhang, M.; Ma, Y.-G.; Liu, X.-D. Structures, electronic states and electroluminescent properties of a series of CuI complexes, Eur. J. Inorg. Chem. 2005, 1867-1879.
    [30] Yang, G. C.; Su, T.; Shi, S. Q.; Su, Z. M.; Zhang, H. Y.; Wang, Y. Theoretical study on photophysical properties of phenolpyridyl boron complexes, J. Phys. Chem. A. 2005, 111, 2739-2744.
    [31] Yang, L.; Feng, J.-K.; Ren, A.-M. Structural, electronic and opticalproperties of a series of oligofluorene–thiophene oligomers and polymers, Journal of Molecular Structure: THEOCHEM 2006, 758, 29-39.
    [32] Liu, Y.-L.; Feng, J.-K.; Ren, A.-M. Structural, electronic, and optical properties of phosphole-containing π-conjugated oligomers for light-emitting diodes, J. Comput. Chem. 2007, 28, 2500-2509.
    [33] Liu, Y.-L.; Feng, J.-K.; Ren, A.-M. Theoretical study of optical and electronic properties of the bis-dipolar diphenylamino-endcapped oligoarylfluorenes as promising light emitting materials, J. Phys. Org. Chem. 2007, 20, 600-609.
    [34] Li, H.-C.; Lin, Y.-P.; Chou, P.-T.; Cheng, Y.-M.; Liu, R.-S. Color tuning and highly efficient blue emitters of finite diphenylamino-containing oligo(arylenevinylene) derivatives using fluoro substituents, Adv. Funct. Mater. 2007, 17, 520-530.
    [35] Liu, T.; Xia, B.-H.; Zhou, X.; Zhang, H.-X.; Pan, Q.-J.; Gao, J.-S. Theoretical studies on structures and spectroscopic properties of bis-cyclometalated iridium complexes, Organometallics, 2007, 26, 143-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700