用户名: 密码: 验证码:
多参数在线水质传感器的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水质是指水和水中所含杂质共同构成水的物理、化学和生物学的综合性质。水质的特性决定了水质传感器区别于传统传感器,具有多样性、跨学科性等特点。随着人为污染日趋严重,工业生产释放的废水、废渣,农业生产使用的农药、化肥以及大量的生活污水和垃圾排入水中,水体特征更加复杂,导致水质传感器的研究更加复杂。随着微电子技术的迅猛发展,以及各种新材料、新元件、新工艺及新技术的引入,水质传感器技术得到了快速发展。针对目前水质传感器仍然存在的一些问题,本文研究和实现了一种新型多参数在线水质传感器。
     本文的主要研究内容概括如下:
     (1)研究了水质传感器系统的三个关键问题:可靠性、低功耗、自维护。从功能与系统角度分析水质传感器的可靠性问题,提出了硬件、软件设计以及系统构建的具体可靠性措施;在传统低功耗技术基础上,提出了“谁工作谁上电”的电源管理策略,进一步降低了设备功耗:针对水质传感器的使用环境,提出了微型增压泵与超声脉冲扫频相结合的方法,实现了水质传感器的自维护功能。
     (2)深入研究了pH、溶解氧、电导率、水位、水温五项水质参数测量原理,改进并创新了相关参数的测量方法。采用电位法测量pH,采用电流法测量溶解氧,采用对称脉冲法测量电导率,采用隔离膜片压力传感器测量水位,采用数字温度计测量水温。
     (3)实现了多参数水质传感器的结构设计与硬软件设计。根据水质传感器组成部件采用紧凑全密封的柱形分段壳体结构。硬件上采用模块化设计,根据功能划分为主控模块、pH测量模块、溶解氧测量模块、电导率测量模块、水位水温测量模块与自维护模块,各模块相互独立拥有自己的MCU,模块之间通过RS485总线连接。软件上实现了主MCU与分MCU的嵌入式软件设计以及传感器测量配置软件的设计。
     (4)设计了试验平台,模拟传感器工作的极端环境,对传感器电源、多个参数测量精度、温度稳定性等性能参数进行试验与论证,对试验过程中出现的问题进行了分析与处理。
     (5)分析了广州从化太平场水文站水质监测数据,并得出了相关结论。
     基于以上研究内容设计的多参数水质传感器已完成系统设计到原型河流试验,实践表明,达到了预期目标,实现了五参数的在线稳定测量。
Water quality refers to water and impurities in water together constitute water's physical, chemical biological and integrated nature. The water quality characteristics determine the difference of water quality sensor and conventional sensor. It has diversity and interdisciplinary. The man-made pollution is increasingly serious. Today, water and waste released by industrial production, pesticides and fertilizers used by agricultural production, a lot of sewage and garbage are drained into water. Water feature is much more complex than ever. Therefore, the water monitoring sensor is even more complex. In order to fit the increasing demands of the water rescource management, a new noval multi-parameter online water quality sensor is presented in this paper.
     In water quality sensor:three key issures are system reliability, low power consumption and self-maintenance. Perspectively, reliability problem of water quality sensor is closely relative to hardware, software, system structure design as well as its manufacture process. So perfect comes from detailed precision.
     The main contents and contributions are as follow:
     Firstly, To reduce energy consumption, a functional method, only working elements are power supplied, while turn off others which only work in cycle.
     Secondly, To realize self clean the sensors'ability, a pump driving recurrence washing structure is studied and implemented and a ultrasonic frequency pulse sweep is pretended against the microorganism hanging on the sensors.
     Thirdly, five of parameters of water quality sensors are studied in detail. They are pH, dissolved oxygen, conductivity,water level, water temperature. Creative measurement methods are studied, such as electronic potential is used for pH measurement, electronic current is used for dissolved oxygen measurement, symmetric pulse method is used for conductivity detecting, isolation diaphragm pressure sensor is used for water level measurement.
     With the achievement above, a systematically designed multi parameter sensor is developed and described in the paper. It is composed of amould shell in a compact, sealed, cylindrical, segmented shape in which five modules are integrated, they are main control module, pH measurement module, dissolved oxygen measurement module, conductivity measurement module, water level and temperature measuring module as well as the system designed for self maintenance. Each module has an independent MCU. All the modules are connected via RS485bus.
     It is known, the test and study of any sensor at the simulated extreme experimental environments are important, the test and demonstration of the sensor'power, accurancy, temperature stability for each integrated sensor are also described in chapter? A compact5parameter water quality transducer has been installed in Taiping Hydraulic Station, Chonghua City, Guangdong Province since July,2011. Analysis and observation of the transducer is indicated in chapter? The transducer works well until present time.
引文
[1]Hotlos, Halina. Quantity and availability of freshwater resources:The-world-Europe-Poland [J].Environment Protection Engineering,2008, Vol.34, No.2:67-77.
    [2]Alessa Lilian, Altaweel Mark, Kliskey Andrew, Bone Christopher, Schnabel William, Stevenson Kalb. Alaska's Freshwater Resources:Issues Affecting Local and International Interests [J]. Journal of the American Water Resources Association, 2011(2), Vol.47, No.1:143-157.
    [3]Akers, Randy. Ensuring freshwater resources for Southwest Florida [J]. Journal/ American Water Works Association,2009(5), Vol.101, No.5:24-28.
    [4]Kundzewicz Z.W., Mata L. J..Arnell N. W.,Doll P., Jimenez B.,Miller K., Oki T. The implications of projected climate change for freshwater resources and their management [J]. Hydrological Sciences Journal,2008(2), Vol.53, No.1:3-10.
    [5]Alessa Lilian, Kliskey Andrew, Lammers Richard, Arp Chris, White Dan, Hinzman Larry, Busey Robert. The arctic water resource vulnerability index:An integrated assessment tool for community resilience and vulnerability with respect to freshwater [J]. Environmental Management,2008(9), Vol.42, No.3:523-541.
    [6]Omer Abdeen Mustafa. Water resources and freshwater ecosystems in Sudan [J]. Renewable and Sustainable Energy Reviews,2008(10), Vol.12, No.8:2066-2091.
    [7]Jackson Robert. Articles make the case for coordinated water resources research and management that recognize the needs of freshwater ecosystems [J]. Water Resources Research Institute News of the University of North Carolina,2003(1), No.339:12-13.
    [8]Lahm Terry D., Bair E. Scott. Regional depressurization and its impact on the sustainability of freshwater resources in an extensive midcontinent variable-density aquifer [J].Water Resources Research,2000(11), Vol.36, No.11:3167-3177.
    [9]Pal Amrita, Lin Angela Yu-Chen, Reinhard Martin. Impacts of emerging organic contaminants on freshwater resources:Review of recent occurrences, sources, fate and effects [J]. Science of the Total Environment,2010.11 (15), Vol.408, No.24:6062-6069.
    [10]Satyanarayana Ch., Rao S. Ramakrishna, Hossain Kaizar. Assessment of water quality of freshwater resources along the coast of Andhra Pradesh [J]. Nature Environment and Pollution Technology,2010(3), Vol.9,No.1:19-23.
    [11]Cao Yong,Chen Ji-Yu. Analysis of the causes of freshwater resource in Nanhui east shoal in the Yangtze River estuary [J]. Shuikexue Jinzhan/Advances in Water Science,2007(5), Vol.18, No.3:410-414.
    [12]孙金华,水资源管理研究[M],2011,北京:中国水利水电出版社.
    [13]王式成,水文水资源技术与管理[M],2011,南京:东南大学出版社.
    [14]刘永懋,宿华,刘巍,中国水资源的现状与未来——21世纪水资源管理战略[J],水资源保护,2001(4):13-15.
    [15]杨开,城镇水资源利用与保护工程[M],2011,长沙:湖南大学出版社.
    [16]程伍群,张艳红,水资源危机产生与管理[M],2010,北京:中国水利水电出版社.
    [17]石虹,浅谈全球水资源态势和中国水资源环境问题[J],水土保持研究,2002(3),Vo1.9,No.1:145-150.
    [18]黄秉维,郑度,赵名茶,现代自然地理[M],北京:科学出版社.
    [19]吴以鳌,中国水资源利用[M],北京:水利电力出版社.
    [20]Vialle C., Sablayrolles C., Lovera M., Huau M.-C., Jacob S., Montrejaud-Vignoles M.. Water Quality Monitoring and Hydraulic Evaluation of a Household Roof Runoff Harvesting System in France. Water Resources Management,2012:1-9.
    [21]Wei Dehua, Liu Pan, Lu Bo, Guo Zeng. Water quality automatic monitoring system based on GPRS data communications [J].2012 International Conference on Modern Hydraulic Engineering,2012, Vol.28:840-843.
    [22]Zhuiykov Serge. Solid-state sensors monitoring parameters of water quality for the next generation of wireless sensor networks [J]. Sensors and Actuators, B:Chemical, 2012(3), Vol.161, No.1:1-20.
    [23]洪林,水质监测与评价[M],2010,北京:中国水利水电出版社.
    [24]曾永,水质监测新技术与实践[M],2006,郑州:黄河水利出版社.
    [25]费学宁,现代水质监测分析技术[M],2005,北京:化学工业出版社.
    [26]鲁光四,水质分析方法[M],1989,北京:学术期刊出版社.
    [27]周怀东,彭文启杜霞等.中国地表水水质评价.中国水利水电科学研究院学报[J],2004,Vo12,NO.4:120-125.
    [28]孟伟苏,郑丙辉.中国流域水污染现状与控制策略的探讨.中国水利水电科学研究院学报[J],2004,V01.2,No.4:78-80.
    [29]赵宝吉.我国水质自动监测的发展与应用.黑龙江环境通报[J],2000(12):10-14.
    [30]王海.地表水水质自动监测站建设与运行管理.环境监测管理与技术[J],2002,Vol.14,No.1:69-72.
    [31]周怀东彭文启杜霞等.中国地表水水质评价.中国水利水电科学研究院学报[J],2004,Vo12,N0.4:20-23.
    [32]禹冬明、王详明.污水处理计算机监控系统的研究[J].工业计量,2002(2):5-9.
    [33]李怡庭.全国水质监测规划概述[J].中国水利.2003(14):11-13
    [34]雒文生,宋星原.水环境分析及预测[M].2004,武汉:武汉水利电力大学出版社.
    [35]陈家军,杨卫国.水质在线监测系统及其应用[J].现代仪器,2007(6):62-67
    [36]高俊杰.水质站网与监测技术发展[J].水文,2006,26(3):67-68
    [37]李欣,齐晶瑶.多参量水质检测虚拟仪器系统的构建与应用[J].工业水处理.2002,22(11):5-6.
    [38]国家环保局.水和废水监测分析.第4版.2002,北京:中国环境科学出版社.
    [39]Louise Heathwaite, Norman E. Peters. Trends in nutrients. Hydrological Processes.1996, 10(2):263-293.
    [40]Charef A. Water quality monitoring using a smart sensing system. Measurement.2006, (28):219-224.
    [41]Azedine Charef, Antoine Ghzuch. Water quality monitoring using a amart sensing system. Measurement.2000(28):219-224.
    [42]龙德浩,陈志清.抗干扰理论与方法[M].1989,成都:四川科学技术出版社.
    [43]李海泉,李刚.系统可靠性分析与设计[M].2003,北京:科学出版社.
    [44]平静CHMOS型单片机抗干扰电源的设计[J].电子技术应用,1992(5):12-15.
    [45]王幸之,王雷,瞿成,王闪.单片机应用系统抗干扰技术[M].1999,北京:北京航空航天大学出版社.
    [46]徐义亨.工业控制工程中的抗干扰技术[M].2010,上海:上海科学技术出版社.
    [47]葛长虹.工业测控系统的抗干扰技术[M].2006,北京:冶金工业出版社.
    [48]张艳,陈任文.电磁流量计中的抗干扰技术[J].2010(5),Vo1.20,No.5:242-245.
    [49]滕旭,胡志昂.电子系统抗干扰实用技术[M].2004,北京:国防工业出版社.
    [50]毛楠,孙瑛.电子电路抗干扰实用技术[M].1996北京:国防工业出版社.
    [51]盛法生.低功耗集成电路原理与应用[M].2011,杭州:浙江大学出版社.
    [52]李林功.嵌入式系统的低功耗设计[J].计算机应用研究,2004(2):177-180.
    [53]黄智伟.低功耗系统设计:原理、器件与电路[M].2011北京:电子工业出版社.
    [54]何为民.低功耗单片微机系统设计[M].1994,北京:北京航空航天大学出版社.
    [55]Takanori Okuma. Tohru Ishihara, Hiroto Yasuura. Software Energy Reduction Technigues for Variable-Voltage Processors [J]. Design & Test of Computer,2001,18 (2):31-41.
    [56]Yung-Hsiang Lu. Computing System-level Power Management Policies [J]. Design & Test of Computer,2001,18(2):10-19.
    [57]Steve B Furber, et al. Power Management in the Amulet Microprocessor [J].Design & Test of Computer,2001,18(2):42-52.
    [58]张立军,封壮,郭彬.pH电极的清洗方法[J].氯碱工业,2001(8):36-37.
    [59]樊尚春.现代传感技术[M].2011,北京:北京航空航天大学出版社.
    [60]穆雷,王学智.温度测量及故障诊断系统的设计[J].计算机测量与控制,2000,10(10):643-644.
    [61]黄文虎.设备故障诊断原理技术及应用[M].1997,北京:科学出版社.
    [62]方原柏.日本横河TM20BG型pH分析仪功能介绍[J].分析仪器,1990(3):56-58.
    [63]王刚等.电化学传感器的进展[J].分析科学学报,1999,16(6):246-251.
    [64]高立平等,一种新型pH变送器的设计,传感器技术,1997,16(4):26-28.
    [65]杨华庭.具有自动温度补偿的pH测量装置[J].仪器仪表学报,1997,18(4):P426-427.
    [66]张伟.分析化学与水质分析[M].郑州:黄河水利出版社,2000.10.
    [67]承慰才.电厂化学仪表[M].北京:中国电力出版社,1998.
    [68]化学工业部人事教育司.化工分析仪表(一)[M].北京:化学工业出版社,1997.12.
    [69]吴维昌.标准电极电位手册[M].北京:科学出版社,1991.8.
    [70]Ainhoa Gaston, Ibon Lozano, Fa tima Pere. Evanescent Wave Optical-Fiber Sensing (Temperature, Relative Humidity, and pH Sensors) [J]. IEEE Sensors Journal, 2003,3(6):806-811.
    [71]Richard G J Bellerby, Are Olsen, Truls Johannessen. A high precision spectrophotometric method for on-line shipboard seawater pH measurements:the automated marine pH sensor (AMpS)[J]. Elsevier Science B V,2002(56):61-66.
    [72]Sherlan G Lemos, Aan Rita A Nogueira, Andrea Torre-Ne-to. Soil calcium and pH monitoring sensor system[J]. J Agric Food Chem,2007,55(5):4658-4663.
    [73]Kay L. Robinson, Nathan S. Lawrence. Redox-sensitive copolymer:A single-component pH sensor [J]. Anal Chem,2006,78:2450-2455.
    [74]Wang J. Analytical Electrochemistry [M]. New York:A John Wiley & Sons Inc, Publication,2001.
    [75]郭和平,蔡萍.高精度酸度计制作过程中的质量控制技术[J].计量技术,2006,(3):69-72.
    [76]张广辉,邵惠鹤.溶氧传感器的温度特性研究及其补偿[J].传感技术学报,2006,19(2):323-327.
    [77]王玉田,刘蕊,侯培国.一种新型溶解氧浓度测量仪的设计[J].仪表技术与传感器,2003(9):18-19.
    [78]王永,司炜,孙德敏,等.膜式溶氧电极在线测量数学模型的建立与应用[J].自动化仪表,2003,24(2):8-11.
    [79]秦文正,吴亚英.高精度数字式溶氧仪[J].分析仪器,1998(1):28-31.
    [80]宋寿祥.一种水中溶解氧浓度传感器及其应用[J].自动化与仪表,1994,9(6):7-8.
    [81]赵馨惠,俞秀生.极谱式在线溶解氧分析仪有关问题探讨[J].化工自动化及仪表,2007(01):94-96.
    [82]雷杰,朱骥,马学宗.智能溶解氧传感器的设计与开发[J].仪器仪表与分析监测,2007,(02):28-30
    [83]刘君华.智能传感器系统[M].2004,西安:电子科技大学出版社.
    [84]朱国武.工业用pH计温度补偿特性的校正[J].石油化工自动化,1997(2):72-73.
    [85]郭敦斌,李文英.非电量测量与传感器应用[M].2005,北京:国防工业出版社.
    [86]陈怡,李平,梅基强.电磁式电导浓度仪[J].化工自动化及仪表.1997,24(1):56-58.
    [87]张发亮,郭茂林等.电导率测量中应注意的几个问题[J].山西化工,1995,(4):41-44.
    [88]N. Pabitra, A. Peter. Influence of temperature on electrical conductivity on liquid [J]. Geophysics,1992,57(1):89-96.
    [89]K. A. Sudduth, N. R. Kitchen, G. A. Bollero. Comparison of electromagnetic induction and direct sensing of electrical conductivity [J]. Agronomy Journal.2003,95(3): 472-482.
    [90]A. Skumiel, M. Labowski. Ultrasonic wave propagation in liquid electrically conducting media in a constant external magnetic field [J]. Acustica.1995,81(2): 117-128.
    [91]U.K. Basak,G.. Nevzat. Electrical conductivity imaging via comractless measurements:An experimental study [J]. IEEE Transactions on Medical Imaging.2003, 22(5):627-635.
    [92]郑金美,吴永昌.电导率测量中温度的影响与补偿方法[J].分析仪器,1990,(3):62-65.
    [93]俞宏波.以电导率测量为核心的多参数水质检测系统的研究[D].哈尔滨:哈尔滨工业大学.2006.
    [94]李民.工业电导仪的现状及其在化学工业中的应用[J].化工自动化及仪表,1992,20(2):5-9.
    [95]P. Hua, E. J. Woo, J. G. Webster. Iterative reconstruction methods using regularization and optimal current patters in electrical impedance tomography [J]. IEEE Transaction on Medical Imaging,1991,10(4):621-628.
    [96]张敏.一种新型工业电导信号测量仪的研制[D].杭州:浙江大学硕士论文,2005.
    [97]赵学增,赵立新等.DD-1型电导测量仪的研制[J].东北林业大学学报.1997,25(1):78-80.
    [98]刘继勇.扩散硅压力传感器及变送器参数测试系统[J].西安工业学院学报,2002,22(3):225.
    [99]丁振生.传感器及传感技术应用[M].北京:电子工业出版社,1998.
    [100]李振刚.多功能、多参数水质监测仪研究及应用[J].青岛大学学报,2007(6):88-92.
    [101]NEC. Preliminary User's Manual of 78K0/FC2 (8-Bit Single-Chip Micro-controllers) [Z]. NEC Electronics Corporation, Japan,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700