用户名: 密码: 验证码:
利用唾液链球菌嗜热亚种(Streptococcus salivarius subsp. thermophilus)Y-2生产γ-氨基丁酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对利用唾液链球菌嗜热亚种生产γ-氨基丁酸(γ-aminobutyric acid,GABA)进行了系统研究,主要在高活力谷氨酸脱羧酶(glutamate decarboxylase,GAD)[EC4.1.1.15]菌株的筛选和鉴定、GAD的纯化和酶学特性、产酶条件的优化、细胞转化法生产GABA的条件优化、深层发酵生产GABA的条件优化以及GABA的纯化等方面进行了深入探讨,并建立了GAD产生菌快速筛选的pH指示剂法、高效液相色谱测定发酵醪中GABA的方法和GAD活力测定的Berthelot比色法,结果如下:
     1.通过已知种属的Streptococcus salivarius subsp.thermophilus STX2,Eccherichia coli As1.487和Micrococcus luteus cMCC28001建立了GAD产生菌快速筛选的pH指示剂法,并利用该方法成功从84株不同微生物菌株中筛选到了25株GAD产生菌,其中以菌株Y-2的GAD活性最高,当菌体(按干重计)与1%谷氨酸一钠(monosodium glutamate,MSG)溶液按1:10混合,于37℃反应12 h,转化液中GABA浓度为14.52±0.93 mmol·L~(-1)。通过形态特征、生理生化特征和16s rDNA序列分析,将菌株Y-2鉴定为唾液链球菌嗜热亚种(Streptococcus salivarius subsp.thermophilus)。S.salivarius subsp.thermophilus Y-2粗GAD的最适反应温度和pH分别为45℃和5.0,在4~40℃和pH 4.75~5.25范围内较稳定,在0~6 h呈现一级反应。
     2.建立了高效液相色谱测定发酵醪中GABA的方法。采用7%(V/V)乙酸水溶液对发酵醪进行预处理,以异硫氰酸苯酯作为衍生剂,用反相C_(18)柱为分离柱,柱温为27℃,阶段洗脱,在254nm下进行检测。结果发酵醪中的GABA获得了很好分离,GABA在0~1.5 mmol·L~(-1)范围内线性相关性好,其线性方程为y=14106.5713 x-258.24926(r=0.99928)。最小检测浓度为0.5μmol·L~(-1)(相对标准偏差≤10%)。组间样品测定相对误差为3.571%,加样平均回收率达到了99.038%。结果表明,所建方法稳定,灵敏,重现性好,可用于测定发酵醪中的GABA。
     3.基于Berthelot反应的原理,建立了测定GAD活力的Berthelot比色法。通过对影响Berthelot比色法主要因素—次氯酸钠溶液的使用量进行详细研究,并模拟GAD催化反应体系中底物和产物变化过程,以L-Glu和GABA的混合溶液建立工作曲线,GABA在0~10 mmol·L~(-1)的范围内具有良好的线性,线性方程为:y=0.0893x+0.0158(R~2=0.9992);精密度分析结果表明,测定相对误差和变异系数都<5%;平均回收率为99.64%。Berthelot比色法测定操作程序为:取酶反应液0.4 mL,加入Na_2Co_3(1mol·L~(-1))0.1 mL、pH10.0硼酸盐缓冲液(0.2 mol·L~(-1))0.5 mL、6%苯酚1 mL,混匀,于室温下(20℃)在5 min内加入5.2%NaClO溶液1 mL,混匀后放置4~8 min,然后沸水浴10 min,立即冰浴20 min,待溶液出现蓝绿色后,加入2.0 mL 60%乙醇溶液,混匀后于20℃水浴中放置30 min,测定640 nm处的吸收值。
     分别采用Berthelot比色法和高效液相色谱法对GAD活力进行测定,两种方法的测定结果相对误差为4.35%。
     4.首次通过(NH_4)_2SO_4分级沉淀、等电点沉淀、DEAE-Sephadex A-50离子交换层析、HiPrep16/10 Phenyl FF疏水层析和Sephadex G-100凝胶层析对S.salivarius subsp。thermophilus Y-2 GAD进行了纯化,获得了电泳纯GAD,较粗酶液纯化了21.97倍,比酶活为103.92 U·mg~(-1),酶活力回收率为7.84%。GAD的亚基和全酶相对分子量分别为46.85 kDa和103.57 kDa,表明GAD由2个大小相等的亚基组成的二聚体。GAD等电点为pH 4.2,最适反应温度和pH分别为55℃和pH 4.0,在4~60℃和pH3.75~4.5范围内稳定。在测试的19种氨基酸中只以L-Glu为底物,而对D-Glu等18种氨基酸没有催化作用,具有很强的底物特异性和立体结构选择性,对L-Glu的K_m和V_(max)分别为2.348 mmol·L~(-1)和4.627 mmol·L~(-1)·h~(-1)。GAD的N-末端氨基酸序列为NH_2-Met-Asn-GlU-Lvs-Leu-Phe-Arg-Glu-Ile-。该序列与报道的其他蛋白质序列均不一致,结果显示该GAD为新的GAD。
     表面活性剂十二烷基硫酸钠、Tween 20、Tween 40、Tween 80和Triton X-100对GAD都有不同程度的抑制作用,分别抑制了91.61%,11.32%、13.28%、16.21%和15.86%的GAD活力。当终浓度为5 mmol·L~(-1)时,BaCl_2对GAD活性具有显著的促进作用,酶活力提高了22.53%,但是当终浓度为50 mmol·L~(-1)时,却对GAD活性具有抑制作用;低浓度和高浓度的FeSO_4、FeCl_3、ZnSO_4、MnSO_4、Pb(Ac)_2、AgNO_3、CoCl_2、和CuSO_4对GAD活性都有强烈的抑制作用;5 mmol·L~(-1)CaCl_2对GAD的活性影响不大,但50 mmol·L~(-1)CaCl_2却抑制了18.74%GAD活性;5 mmol·L~(-1)和50 mmol·L~(-1)MgCl_2对GAD均没有影响。低浓度(5 mmol·L~(-1))NaCl、KCl和LiCl对GAD活性有轻微的抑制作用或没有影响,但在高浓度(50 mmol·L~(-1))时却对GAD活性呈现促进作用,其机制主要是通过弱抑制作用、降低CO_2溶解度和增加酶蛋白的溶解性共同作用而影响GAD活性。
     5.通过单次单因子实验法、Plackett-Burman设计法和Box-Behnken响应曲面法对S.salivarius subsp.thermophilus Y-2产GAD的适宜条件进行考察,结果表明最适产GAD的培养基组成为:蛋白胨15 g·L~(-1),牛肉膏12.5 g·L~(-1),蔗糖12.5 g·L~(-1),柠檬酸二铵2.0 g·L~(-1),乙酸钠5.0 g·L~(-1),K_2HPO_4 1.03 g·L~(-1),CaCl_2 2.12 g·L~(-1),Tween 80 1.0mL·L~(-1),pH 6.79;最适发酵条件为:接种量2%,发酵温度37℃,发酵时间12 h。在该优化条件下,200 mL发酵醪的菌体总GAD活力达到了257.46±5.12 U,较优化前(MRS培养基,177.31±9.33 U)提高了1.45倍。
     6.通过对反应pH、反应温度、重金属盐、表面活性剂、底物浓度、菌体浓度和磷酸吡哆醛(pyrodoxal-5′-phosphate,PLP)等因素对S.salivarius subsp.thermophilus Y-2细胞转化法生产GABA的影响进行考察和分析,获得了反应体系的最佳组成为:湿菌体25 g·L~(-1)、BaCl_2 40 mmol·L~(-1)、Triton X-100 0.02%(V/V)、MSG 47.5 g·L~(-1)和L-Glu90.0 g·L~(-1)。当该体系在40℃、pH 4.5和搅拌速度100 rpm的最适转化条件下进行反应72 h,转化液GABA浓度达到了87.16±4.33 g·L~(-1),细胞平均生产力为48.42±2.41mg_(GABA)·h~(-1)·g_(cells)~(-1),摩尔转化率为97.60±4.71%。
     7.通过对一步法发酵中S.salivarius subsp.thermophilus Y-2的生长情况、pH变化和细胞内外GABA的变化情况进行考察,首次发现S.salivarius subsp.thermophilus合成GABA的过程与GAD的生物化学性质有密切关系。基于GAD的性质,将S.salivarius subsp.thermophilus Y-2的最适产GAD条件与GABA的合成条件进行有机分离,建立了二步法发酵生产GABA,并对MSG的添加时间、MSG添加量、PLP的添加时间和不同中和剂对二步法发酵生产GABA的影响进行了考察,结果表明,S.salivarius subsp.thermophilus合成GABA的最适培养基为:MSG 12 g·L~(-1),蛋白胨15g·L~(-1),牛肉膏12.5 g·L~(-1),蔗糖12.5 g·L~(-1),柠檬酸二铵2.0 g·L~(-1),乙酸钠5.0 g·L~(-1),K_2HPO_41.03 g·L~(-1),CaCl_2 2.12 g·L~(-1),Tween 80 1.0 mL·L~(-1),pH 6.79。最适发酵条件为:接种量2%(V/V),在100 rpm搅拌和不通气的条件下于37℃发酵24 h,然后于40℃和pH4.5继续发酵48 h。在该条件下,通过75 L发酵罐进行发酵,发酵醪中GABA浓度达到了6271.79 mg·L~(-1),较一步法(4534.03 mg·L~(-1),84 h)提高了1.38倍,发酵时间缩短了12 h,摩尔转化率为85.75%。
     8.通过等电点沉淀和732强酸阳离子交换树脂对S.salivarius subsp.thermophilus Y-2细胞转化液中的GABA进行纯化,GABA的总回收率达到了84.13%。纯化的GABA产品质量较好,GABA的外观为白色粉末状固体,GABA含量为97.81±0.67%,灰分为0.449±0.002%,干燥失重为1.79±0.06%,铅、砷和汞分别为0.4093±0.0001、0.0511±0.0001和0.0950±0.0000 mg·kg~(-1),因此在食品行业中具有极好的应用前景。
In this paper, the production ofγ-aminobutyric acid (GABA) by Streptococcussalivarius subsp, thermophilus Y-2 was investigated systemically respect to the screeningand identification of glutamate decarboxylase (GAD) [EC 4.1.1.15] producing strain,purification and characterization of novel GAD, culture conditions for GAD production,biotransformation conditions for GABA production using cells, preparation of GABA bysubmerged fermentation and the purification of GABA. Three methods, i.e., the pHindicator method for rapid screening of bacteria with GAD activities, the improved methodfor determination of GABA in the broth of fermentation by high-performance liquidchromatography and the colorimetric method for determination of GAD activity, were alsoestablished. The main results are as following:
     1. A pH indicator method for rapid screening of strains with GAD was established viaS. salivarius subsp, thermophilus STX2, Eccherichia coli As1.487 and Micrococcus luteusCMCC28001. Twenty-five strains with GAD activities were screened form eighty-fourdifferent strains by the pH indicator method, in which the strain Y-2 showed the highestGAD activity. When the biotransformation was conducted with the ratio of wet cells and1% of monosodium glutamate (MSG) at 1:10 under 37℃for 12 h, the GABA ofbiotransformation solution of strain Y-2 was 14.52±0.93mmol.L~(-1). Based on morphological,physiological and biochemical characteristics, 16S rDNA and phylogenic analysis, thestrain Y-2 was classified to Streptococcus salivarius subsp, thermophilus. The properties ofits crude GAD were also examined, and the optimal temperature and pH value for GADactivity was 45℃and pH 5.0, respectively. The crude GAD activity was stable at 4~40℃and pH 4.75~5.25. The crude GAD activity was kept linear in 6 h.
     2. A method for the determination of GABA in the broth of fermentation by HPLC wasdescribed. The GABA formed was derivatized to PTC-GABA; the latter was subsequentlyseparated and assay by HPLC (Agilent:ZORBAX.Eclips XDB-C_(18) column; elution with pH5.8 acetate buffer in acetonitrile-water) with UV absorbance detection at 254 nm. Under theconditions described above, HPLC separation gave a well-resolved and symmetricalPTC-GABA peak, the retention times (18.3 min) was reproducible when temperature variations were≤1℃. Peak area values showed good reproducibility with relative standarddeviation (R.S.D) values at 1.019%. The calibration curve for PTC-GABA was calculatedby linear least-squares regression. The regression equation was y=14106.5713 x-258.24926 (r=0.99928) when the initial GABA concentration in the range 0~1.5mmol·L~(-1). The limit of quantitation was 0.5μmol·L~(-1) (R.S.D.≤10%). The result indicatesthe method described is a sensitive, reproducible and specific assay useful for thedetermination of GABA in the broth of fermentation.
     3. A colorimetric method of determining GAD activity assay with high sensitivity,accuracy and reproducibility was proposed, and the standard procedure leading to theestablishment of the method was described. The reaction mixture (0.4 mL) of GAD andL-Glu was mixed with 1 mol·L~(-1) Na_2CO_3 (0.1 mL), 0.2 mol·L~(-1) borate buffer (0.5 mL) and6% phenol (1.0 mL), then adding 1 mL of 5.2% sodium hypochlorite solution at 20℃within 5 min. After kept at 20℃for 4~8 min, the mixture was heated by boiling water bathfor 10 min and promptly cooled in ice bath for 20 min, then' adding 2 mL of 60% ethanol,and kept at 20℃for 30 min.The optical density of the mixture was measured by theabsorbance at 640 nm. The accuracy and sensitivity of the determination method were alsodiscussed, indicating that the relative error was 4.35% in comparison with the results ofHPLC.
     4. GAD was firstly purified to homogeneity from a cell-free extract of S. salivariussubsp, thermophilus Y-2 by ammonium sulfate fraction, isoelectric precipitation, DEAE-Sephadex A-50 column chromatography, HiPrepl6/10 Phenyl FF column chromatography,and Sephadex G-100 column chromatography. GAD was purified 21.97-fold from crudeprotein extracts with a yield of 7.84% and specific activity of 103.92 U·mg~(-1). The finalpreparation gave a single band on sodium dodecyl sulfate polyacrylamide gels. The subunitand native molecular weights of purified GADwas 46.85 kDa and 103.57 kDa respectively,indicating that GAD from S. salivarius subsp, thermophilus Y-2 exists as a dimmer as adimmer of homological subunits. The isoelectric point of GAD was pH 4.2 tested byDEAE-Sephadex A-50 and N-Methyl piperazine buffer at various pHs. The optimumtemperature and pH of the purified GAD was at 55℃and pH 4.0 respectively. The purifiedGAD activity was stable at 4~60℃and pH 3.75~4.5. The enzyme was reacted only withL-glutamate among 19α-amino acids with apparent K_m and V_(max) at 2.348mmol·L~(-1) and4.627 mmol·L~(-1)·h~(-1) respectively, and couldn't react with D-glutamic acid. The resultsindicated the enzyme has high substrate specificity and stereospecificity. The N-terminal amino acid sequence of the purified GAD was NH_2-Met-Asn-Glu-Lys-Leu-Phe-Arg-Glu-Ile-. This sequence had no close similarity with any other proteins reported so far, whichshown it was a novel GAD.
     SDS, Tween 20, Tween 40, Tween 80 and Triton X-100, inhibited the purified GADactivity at 91.61%, 11.32%, 13.28%,16.21% and 15.86% respectively. 5 mmol·L~(-1) of BaCl_2significantly increased the GAD activity, which promoted 22.53% of the activity, but 50mmol·L~(-1) of BaCl_2 inhibited the GAD activity. However, both 5 mmol.L~(-1) and 50 mmol·L~(-1)of FeSO_4, FeCl_3, ZnSO_4, MnSO_4, Pb(Ac)_2, AgNO_3, COCl_2 and CuSO_4, strongly inhibitedthe GAD activity. 50 mmol·L~(-1) of CaCl_2 inhibited 18.74% of GAD activity, but 5 mmol·L~(-1)of CaCl_2 hardly affected GAD activity. It was interesting that NaCl, KCl and LiCl, slightlyaffect the GAD activity at 5 mmol·L~(-1), but significantly increased the GAD activity at 50mmol·L~(-1). It was found that the results of the effects of salts on GAD activity was caused bythe coaction of weak inhibition, reducing the dissolving of CO_2 and increasing thesolubility of GAD protein.
     5. The culture medium and conditions of S. salivarius subsp, thermophilus Y-2 for theGAD-production were investigated through one-factor-at-a-time experimental design,Plackett-Burman experimental design and Box-Behnken design. The results indicated thatthe optimal components of medium for GAD-production by S. salivarius subsp.thermophilus Y-2 was as following: peptone, 15 g·L~(-1); beef extract, 12.5 g·L~(-1); sucrose,12.5 g·L~(-1); ammonium dibasic citrate, 2.0 g·L~(-1); sodium acetate, 5.0 g·L~(-1); K_2HPO_4, 1.03g·L~(-1); CaCl_2, 2.12 g·L~(-1), Tween 80, 1.0 mL·L~(-1) and initial pH, 6.79. The optimal inoculationpercentage, temperature and time for the fermentation were 2% (V/V), 37℃and 12 h,respectively. Under the optimal culture medium and conditions, the total GAD activity ofthe cells from 200 mL of cultures was 257.46±5.12 U, which was 1.45-fold than that ofnon-optimization (MRS, 177.31±9.33 U).
     6. The technology of GABA synthesis by treated L-Glu or MSG with the cells of S.salivarius subsp, thermophilus Y-2 was developed. The effects of pH, temperature, time,salts, supernatants, pyrodoxal-5'-phosphate (PLP), and the concentrations of MSG andcells on the biotransformation were systemically investigated. As a result, the optimal pH,temperature and time for the biotransformation was 4.5, 40℃and 72 h respectively under100 rpm, and the optimal reaction system was composed as following: wet cells, 25 g·L~(-1);BaCl_2, 40 mmol·L~(-1); Triton X-100, 0.02% (V/V); MSG, 47.5 g·L~(-1) and L-Glu, 90.0 g·L~(-1).Under above conditions, 97.60±4.71% (mole rate) of L-GIu were converted to GABA, and the final concentration of GABA in the reaction medium was 87.16±4.33 g·L~(-1). The totalproductivity of the cells was 48.42±2.41 mg_(GABA)·h~(-1)·g_(cells)~(-1).
     7. Through the investigation of the growth of cells, changes of pH of the culture broth,intracellular and extracellular GABA content in the submerged fermentation, it was foundthat the GABA synthesis was closely related to the biochemical characteristics of GAD.Therefore, two-steps fermentation strategy, i.e., the culture conditions were firstly adjustedto the condition suitable for GAD-production and then turned to the optimal conditions ofbiotransformation reaction of cells, was proposed. It was investigated systematically on theeffect of different neutralizers, the MSG and PLP additions at different time and amount forthe GABA production by two-steps fermentation. The results indicated the optimal mediumfor the GABA production was: MSG, 12 g·L~(-1); peptone, 15 g·L~(-1); beef extract, 12.5 g·L~(-1);sucrose, 12.5 g·L~(-1); ammonium dibasic citrate, 2.0 g·L~(-1); sodium acetate, 5.0 g·L~(-1); K_2HPO_4,1.03 g·L~(-1); CaCl_2, 2.12 g·L~(-1); Tween 80, 1.0 mL·L~(-1) and initial pH, 6.79. The optimalconditions for the two-steps fermentation were: After 2% (V/V) of seminal broth of S.salivarius subsp, thermophilus Y-2 were inoculated to the fermentation medium, thefermentation was firstly conducted at 37℃for 24 h, then the fermentation was furtherconducted with pH and temperature regulation at 40℃and 4.5 respectively for 48 h. Whenthe fermentation was conducted in 75 L of fermentor with agitation at 100 rpm and withoutair addition under above conditions for 72 h, 85.75% (mole rate) of MSG were converted toGABA, and the final concentration of GABA in the broth was 6271.79 mg·L~(-1), which was1.38-fold than that of one-step fermentation (4534.03 g·L~(-1), 84 h) and saved 12 h.
     8. GABA was purified from the biotransformation medium of S. salivarius subsp.thermophilus Y-2 cells by isoelectric precipitation and type 732 cation-exchanged resinscolumn chromatography with a final yield of 84.13%. The purified preparation was whitepowder with the quality as following: GABA, 97.81±0.67%; ash, 0.449+0.002%; loss ofweight in drying, 1.79±0.06%; Pb, 0.4093±0.0001 mg·kg~(-1); As, 0.0511±0.0001 mg·kg~(-1); Hg,0.0950±0.0000 mg·kg~(-1). The results indicated that the preparation could be use as foodadditive.
引文
[1] 北京医学基础部.中枢神经介质概论[M].北京:科学出版社,1977:210-221
    [2] 吕辉,徐天乐.兴奋性氨基酸转运体研究进展[J].中国药理学通报,2000,16(1):22
    [3] 万选才,杨天祝,徐永焘.现代神经生物学[M].北京:北京医科大学中国协和医科大学联合出版社.1999:158
    [4] Magoul R, Onteniente B, Geffard M, et al. Anatomical distribution and ultra-structural organization of the GABAergic system in the rat spinal cord. An immunocytochemical study using anti-GABA antibodies [J]. Neurosci,1987,20:1001-1009
    [5] Todd A J, McKenzie J. GABA-immunoreactive neurons in the dorsal horn of the rat spinal cord [J]. Neurosci, 1989, 31:799-806
    [6] Todd A J, Lochhead V. GABA-like immunoreactivity in type Ⅰ glomeruli of rat substantia gelatinosa [J]. Brain Res, 1990,514:171-174
    [7] Hayes E S, Carlton S M. Primary afferent interactions: analysis of calcitonin gene-related peptide-immunoreactive terminals in contact with unlabelled and GABA-immunoreactive profiles in the monkey dorsal horn [J]. Neurosci,1992, 47:873-896
    [8] Olsen R W. GABA and inhibitory synaptic transmission in the brain [J]. Semin Neurosci,1991, 3(1):175-182
    [9] Defeudis F V. γ-aminobutyric acid and cardiovascular function [J]. Experientia,1983,39:845-848
    [10] Kohama Y, Matsumoto S, Mimura T, et al. Isolation and identification of hypotensive principles in red-mold rice [J]. Chem Pharm Bull, 1987,35(6):2484-2489
    [11] Tsuji K, lchikawa T, Tanabe N, et al. Antihypertensive activities of Beni-Koji extracts and γ-aminobutyric acid in spontaneously hypertensive rats [J]. Jpn. J Nutr, 1992, 50:285-291
    [12] R.hyu M R, Kim D K, Kim H Y, et al. Nitric oxide-mediated endothelium-dependent relaxation of rat thoracic aorta induced by aqueous extract of red rice fermented with Monascus rubber [J]. J Ethnopharmacoi, 2000, 70:29-34
    [13] Omori M, Yano T, Okamoto J, et al. Effect of anaerobically treated tea(gabaron tea) on blood pressure of spontaneously hypertensive rats[J]. Nippon Nogeikagaku Kaishi, 1987,61: 1449-1451
    [14] Kazami D, Ogura N, Fukushi T, et al. Antihypertensive effect of Japanese taste seasoning containing γ-aminobutyric acid on mildly hypertensive and high-normal blood pressure subjects and normal subjects [J]. Nippon Shokuhin Kagaku Kaishi,2002,49(6):409-415
    [15] Hayakawa K, Kimura M, Kasaha K, et al. Effect of a γ-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats [J]. Brit J Nutr, 2004,92(3): 411-417
    [16] 赵长琦,李广民,王军.中药红芪中降压有效成分γ-氨基丁酸的薄层扫描测定[J].西北大学学报(自然科学版),1995,25(3):277-278
    [17] 孙宁玲.朱继红。张瑞军,等.高胰岛素血症的高血压患者肾素-血管紧张素-醛固酮系统的变化[J].中国循环杂志,1995,10:587-590
    [18] Ondetti M A, Gushman D W. Inhibitors of angiotensin converting enzyme in biochemical regulation of blood pressure [M]. New York: Wiley, 1981:165-204
    [19] Hata A, Namikawa C, Sasaki M, et at. Angiotensinogen as a risk factor for essential hypertension in Japan [J]. Clin Invest, 1994, 93:1285-1287
    [20] 林智,大森正司.γ-氨基丁酸茶成分对大鼠血管紧张素Ⅰ转换酶(ACE)活性的影响[J].茶叶科学,2002,22(1):43-46
    [21] 林智,大森正司.γ-氨基丁酸茶(Gabaron Tea)降血压机理的研究[J].茶叶科学,2001,21(2):153-156
    [22] Hagiwara Y, Kubo T. Anterior hypothalamic neurons respond to blood pressure changes via γ-aminobutyric acid and angiotensins in rats [J]. Neurosci Lett, 2005, 384:250-253
    [23] Hayakawa K, Kimura M, Yamori Y. Role of the renal nerves in γ-aminobutyric acid-induced antihypertensive effect in spontaneously hypertensive rats [J]. Eur J Pharmacol, 2005,524:120-125
    [24] 王德贵,张福康,张维胜.慢波睡眠相关化学物质[J].兰州医学院学报,2002,28(1):68-69
    [25] 孙兵,郝洪谦,郑开俊,等.γ-氨基丁酸对猫睡眠时相的影响[J].天津医科大学学报,1996,2(4):34-35,38
    [26] 林华锦.氨酪酸治疗婴幼儿夜间惊啼综合症20例疗效观察[J].肇庆医药,1989,1:63-65
    [27] Okada T, Sugishita T, Murakami T, et al. Effect of the defatted rice germ enriched with GABA for sleeplessness, depression, autonomic disorder by oral administration [J]. Nippon Shokuhin Kagaku Kaishi,2000,47(8):596-603
    [28] 茅原,杉浦友美.今年GABA生理机能研究—脑机能改善作用、高血压作用中心[J].食品开发,2001,36(6):9-13
    [29] 郭晓娜,朱永义,朱科学.生物体内GABA的研究[J].氨基酸和生物资源,2003,25(2):70-72
    [30] 杨藻宸.药理学和药物治疗学(上册)[M].北京:人民卫生出版社,2000:487-503
    [31] 李锡明,张筠田.抗癫痛药物作用机理研究进展[J].中国药理学通报,1991,7(4):241
    [32] Perry T L. Amino acid abnormalities in epileptogenic foci [J]. Neurology, 1981,31:872
    [33] 岡田忠司.GABA富化胚芽生理機能[J].食品开发,2001,36(6):7-9
    [34] Sutch R J, Davies C C, Bowery N G. GABA release and uptake measured in crude synaptosomes from Genetic Absence Epilepsy Rats from Strasbourg (GAERS) [J]. Neurochem Int, 1999,34: 415-425
    [35] Amabeoku G J, Farmer C C. Gamma-aminobutyric acid and mefloquine-induced seizures in mice [J]. Prog Neuro-Psychoph Biol Psychiat, 2005,29:917-921
    [36] 马玉卓,刘鹰翔.γ-氨基丁酸类抗癫痫药[J].国外医药-合成药、生化药、制剂分册,1995,16(3):135-138
    [37] Leventhal A G, Wang Y, Pu M, et al. GABA and its agonists improved visual cortical function in senescent monkey [J]. Science, 2003,300:812-815
    [38] Murashima Y L, Koto T. Distribution of gamma-aminobutyric acid and glutamate decarboxylase in the layers of rat oviduct [J]. J Neurochem, 1986,46:166-172
    [39] Roldan E R S, Murase T, Shi Q X. Exocytosis in spermatozoa in response to progestorene zona pellueida [J]. Science, 1994, 266:1578-1581
    [40] Shi Q X, Roldan E R S. Evidance that a GABA^-Iike receptor is involved in progesterone-induced acrosomal exocytosis in mouse spermatozoa [J]. Biol Reprod, 1995, 52:373-381
    [41] 王春年,刘海卫,袁玉英,等.γ-氨基丁酸诱发人精子项体反应及其对若干离子转运影响的研究[J].生殖与避孕,1995,16(2):118-121
    [42] Wistron C A, Meizel S. Evidence suggesting involvement of a unique human sperm steroid receptor/Cl~- channel complex in the progesterone-initiated acrosome reaction [J]. Dev Riol, 1993,159:679-690
    [43] 袁玉英,何春娜,石其贤.γ-氨基丁酸诱发人精子顶体反应及其受精能力[J].生理学报,1998,50(3):326-332
    [44] 边淑玲,张纬,朱辉,等.γ-氨基丁酸对精子顶体酶活性的影响[J].中华男科学,2002,8(5):326-328.
    [45] 边淑玲,张纬,朱辉,等.γ-氨基丁酸对抗精子抗体阳性患者精子顶体反应的影响及机制探讨[J].中华男科学杂志,2002,16(5):355-357
    [46] 赵健.中国化学药品大全[M].北京:科学出版社,1992.
    [47] Paul V. Inhibition of acute hyperammonemia-induced convulsions by systemically administered gamma aminobutyric acid in rats [J]. Pharmacology, Biochemistry and Behavior, 2003,74:523-528
    [48] Kentroti S, Vernadakis A. Correlation between morphological and biochemical effects of ethanol in neuroblast-enriehed cultures derived from three-day old chick embryos [J]. J Neurosci Res, 1991, 30:484-492
    [49] Spoerri P E, Srivastava N, Vernadakis A. Ethanol neurotoxicity on neuroblast-enriched cultures from three-day-old chick embryo is attenuated by the neuronotrophic action of GABA [J]. Int J Dev Neurosci, 1995, 13(6):539-544
    [50] 陈忠,王婷,黄丽明,等.γ-氨基丁酸对热应激仔鸡生产性能影响的研究(快报)[J].海南师范学院学报(自然科学版),2002,15(1):82-83
    [51] 韦习会,漆兴桂,夏东,等.日粮添加γ-氨基丁酸对育肥猪生长和饲料利用的影响[J].家畜生态,2004,25(2):10-12
    [52] 赵炳超,石波,李秀波,梁平,等.新型饲料添加剂—γ-氨基丁酸的制备及其应用研究进展[J].中国畜牧兽医,2004,31(12):13-14
    [53] Shelp B J, Bown A W, Mclean M D. Metabolism and functions of gamrna-aminobutyric acid [J]. Trends Plant Sci, 1999,4(1):446-452
    [54] Kinnersley A M, Furano F J. Gamma-aminobutyric acid (GABA) and plant responses to stress [J]. Crit Rev Plant Sci, 2000,19(6):479-509
    [55] 泽井祐典,许斐健一,小高保喜,等.嫌气-好气交互处理茶叶酪酸量增加[J].Nippon Shokuhin Kagaku Kogaku Kaishi,1999,46(7):462-466
    [56] 津志田藤二郎,村井敏信,大森正司,等.γ-酪酸蓄积茶制造特征[J].日本农芸化学会誌,1987,61(7):817-822
    [57] 大森正司,津志田藤二郎,村井敏信,等.嫌气处理绿茶(茶)高血压自然发症血压上升抑制作用[J].日本农芸化学会誌,1987,61:1449-1451
    [58] 泽井祐典,小高保喜,许斐健一,等.茶叶酪酸高位生产技术 [J].茶叶研究报告,1997,85(增刊):178-179
    [59] Sawai Y, Yamaguchi Y, Miyama D, et al. Cycling treatment of anaerobic and aerobic incubation increase the content of γ-aminobutyric acid in tea shoot [J]. Amino Acids, 2001,20:331-334
    [60] 白木与志也.波照射GABA含量高茶[J].茶叶研究报告,1998,87(增刊):126-127
    [61] 廖明星.茶叶中γ-氨基丁酸(GABA)富集技术研究[D].南京:南京农业大学,2004
    [62] Wang F W, Tsai Y S, Lin M L, et al. Comparison of bioactive components in GABA tea and green tea produced in Taiwan [J]. Food Chem, 2006, 96:648-53
    [63] 横田哲治.米(发芽玄米)时代[J].食科学,2000,10:34-37
    [64] 郭晓娜,朱永义.响应面法在发芽糙米研究中的应用[J].粮食与饲料工业,2003,(11):11-12
    [65] 顾振新,陈志刚,汪志君,等.糙米与稻谷的发芽活力及发芽期间主要物质含量比较[J].中国粮油学报,2004,19(2):8-10
    [66] 陈志刚,顾振新.温度处理对发芽糙米中淀粉酶活力的影响[J].食品与发酵工业,2003,32(3):12-15
    [67] 顾振新,陈志刚,岳建华,等.发芽糙米制备工艺研究[J].食品工业科技,2004,25(1):70-72
    [68] 杨明毅,袁红奇,杨春华,等.发芽糙米的生理活性化工艺研究与控制[J].粮油食品科技,2003,11(5):24-25
    [69] 大久长范,菅原真理,阿部雪子,等.胚芽米鸡一酪酸生成[J].Nippon Shokuhin Kagaku Kogaku Kaishi, 2000,47(6):452-454
    [70] Saikusa T, Horino T, Mori Y. Accumulation of γ-aminobutyric acid in the rice germ during water soaking [J]. Biosci Biotech Biochem, 1994,58(12):2291-2292
    [71] 三枝贵代,岡田忠司,村井弘道,等.胚芽中4-酪酸(GABA)蓄横及有機溶媒脱脂影響[J].Nippon shakuhin Kagaku Kaishi,2001,48(3):196-201
    [72] 张晖,姚惠源,姜元荣.富含γ-氨基丁酸保健食品的研究与开发[J].食品与发酵工业,2002,28(9):69-72
    [73] 黄美娥,于华忠,曹庸.蕨菜叶、茎中γ-氨基丁酸的提取分离及含量测定[J].氨基酸利生物资源,2004,27(1):77-78
    [74] Oh S H, Choi W G. Changes in the levels of γ-aminobutyric acid and glutamate decarboxylase in developing soybean seedlings [J]. J Plant Res, 2001, 114:309-313
    [75] 杨海霞,朱祥瑞,陆洪省.桑叶保健制品开发利用研究进展[J].科技通报,2003,19(1):72-76
    [76] 金丰秋,金其荣.富含γ-氨基丁酸的桑茶的生理功能[J].中国食品添加剂,2002,(1):42-43,47
    [77] Nomura M, Kimoto H, Someya Y, et al. Production of γ-aminobutyric acid by cheese starters during cheese ripening [J]. J Dairy Sci, 1998, 81:1486-1491
    [78] Ijsseldijk, Yvon M, Lanting-Marijs, et al. Cheese product and method of preparing [P]. United States patent, USA5472718, 1995
    [79] 江南大学.生物合成γ-氨基丁酸的技术方法[P].中国专利,专利公开号:02113146.6
    [80] 谢广发,戴军,赵光鳌,等.科学认识黄酒的保健养生功能[J].中国酿造,2004,(1):30-31
    [81] Shukuya R, Schwert G W. Glutamic acid decarboxylase Ⅰ. Isolation procedures and properties of the enzyme [J]. J Biol Chem,1960, 235(6):1649-1652
    [82] Shukuya R, Schwert G W. Glutamic acid decarboxylase Ⅱ. The spectrum of the enzyme [J]. J Biol Chem, 1960, 235(6): 1653-1657
    [83] Shukuya R, Schwert G W. Glutamic acid decarboxylase Ⅲ. The inactivation of the enzyme at low temperatures [J]. J Biol Chem, 1960,235(6): 1658-1661
    [84] 赵景联.固定化大肠杆菌细胞生产γ-氨基丁酸的研究[J].生物工程学报,1989,5(2):124-128
    [85] 章汝平,何立芳.用后道味精母液提取谷氨酸后的废液生产γ-氨基丁酸[J].长沙电力学院学报(自然科学版),1998,13(4):433-435
    [86] 余敦寿,崔俊鑫.在γ-氨酪酸生产中提高谷氨酸脱羧酶活力的研究[J].氨基酸杂志,1991,4:9-11
    [87] Kono I, Himeno K. Changes in gamma-aminobutyric acid content during beni-koji making [J].Biosci Biotechnol Biochem,2000,64(3):617-619
    [88] Wang J J, Lee C L, Pan T M. Improvement of monacolin K, γ-aminobutyric acid and citrinin production ratio as a function of environmental conditions ofMonascus purpureus NTU 601 [J]. J Ind Microbiol Biotechnol, 2003,30:669-676
    [89] Su Y C, Wang J J, Lin T T, et al. Production of the secondary metabolites gamma-aminobutyric acid and monacolin K by Monascuspurpureus [J]. J Ind Microbiol Biotechnol, 2003,30(1):41-46
    [90] Nomura M, Kimoto H, Someya Y, et al. Production of gamma-aminobutyric acid by cheese starters during cheese ripening [J]. J Dairy Sci, 1998,81:1486-1491
    [91] 许建军.Lactococcus lactis生物合成γ-氨基丁酸及谷氨酸脱羧酶的性质研究[D].无锡:江南大学,2004.
    [92] 刘清,姚惠源,张晖.生产γ-氨基丁酸乳酸菌的选育及发酵条件优化[J].氨基酸和生物资源,2004,26(1):40-43
    [93] Yokoyama S, Hiramatsu J I, Hayakawa K. Production of γ-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005 [J]. J Biosci Bioeng, 2002, 93(1):95-97
    [94] 爱宕世高,户田登智也,奥平武则.含有米发酵开发[J].食品科学,2001,(8):81-85
    [95] Komatsuzaki N, Shima J, Kawamoto S, et al. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods [J]. Food Microbiol, 2005, 22: 497-504
    [96] Takahashi T, Furukawa A, Hara S, et al. Isolation and characterization of sake yeast mutants deficient in γ-aminobutyric acid utilization in sake brewing [J]. J Biosci Bioeng, 2004, 97(6): 412-418
    [97] Ueno H. Enzymatic and structural aspects on glutamate decarboxylase [J]. J Mol Catal B: Enzym, 2000, 10:67-79
    [98] Strigacova J, Chovanec P, Liptaj T, et al. Glutamate deearboxylase activity in Trichoderma virid conidia and developing mycedia [J]. Arch Microbiol, 2001, 175:32-40
    [99] Hao R, Schmit J C. Purification and characterization of glutamate decarboxylase from Neurospora crassa conidia [J]. J Biol Chem, 1991, 266(8):5135-5139
    [100] Krishnaswamy P R, Giri K V. Glutamate decarboxylase in Rhodotorula glutinis [J]. Biochem J, 1956, 62(2):301-303
    [101] Ueno Y, Hayakawa K, Takahash S, et al. Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO12005 [J]. Biosci Biotech Biochem, 1997, 61(7): 1168-1171
    [102] Christensen R L, Schmit J C. Regulation and glutamic acid decarboxylase during Neurospora crassa conidial germination [J]. J Bacteriol, 1980, 144:983-990
    [103] Capitani G, De Biase D, Aurizi C, et al. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase [J]. EMBO J, 2003, 22(16): 4027-4037
    [104] Kumar S, Punekar N S. The metabolism of 4-aminobutyrate (GABA) in fungi [J]. Mycol Res, 1997, 101: 403-409
    [105] Kumar S, Punekar N S, SatyaNarayan V, et al. Metabolic fate of glutamate and the evaluation of flux through the 4-aminobutyrate (GABA) shunt in Aspergillus niger [J]. Biotechnol Bioeng, 2000, 67:575-584
    [106] Schmit J C, Brody S. Neurospora crassa conidial germination: role of endogenous amino acid pools [J]. J Bacteriol, 1975, 124(1): 232-242
    [107] Hao R, Schmit J C. Cloning of the gene for glutamate decarboxylase and its expression during conidiation in Neurospora crassa [J]. Biochem J, 1993, 293:735-738
    [108] Christensen J E, Dudley E G, Pedersen J A, et al. Peptidases and amino acid catabolism in lactic acid bacteria [J]. Anton Leeuw lnt J G, 1999, 76:217-246
    [109] De Blase D, Tramonti A, Bossa F, et al. The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system[J]. Mol Microbiol, 1999, 32: 1198-1211.
    [110] Lin J, Lee I S, Frey J, et al. Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigellaflexneri, and Escherichia coli [J]. J Bacteriol, 1995, 14:4097-4104
    [111] Lin J, Smith M P, Chapin K C, et al. Mechanisms of acid resistance in enterohemorrhagic Escherichia coli [J]. Appl Environ Microbiol, 1996, 62:3094-3100
    [112] Castanie-Cornet M P, Penfound T A, Smith D, et al. Control of acid resistance in Escherichia coli [J]. J Bacteriol, 1999, 181:3525-3535
    [113] Sanders J W, Leenhouts K, Burghoorn J, et al. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation [J]. Mol Microbiol, 1998, 27:299-310
    [114] Cotter P D, Gahan C G M, Hill C. A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid [J]. Mol Microbiol, 2001, 40:465-475
    [115] Shin S, Castanie-Comet M P, Foster J A, et al. An activator of glutamate decarboxylase genes regulates the expression of enteropathogenic Escherichia coli virulence genes through control of the plasmid-encode regulator, Per [J]. Mol Microbiol, 2001, 41:1133-1150
    [116] Tramonti A, Visca P, De Canio M, et al. Functional characterization and regulation of gadX, a gene encoding an AraC/XylS-like transcriptional activator of the Escherichia coli glutamic acid decarboxylase system [J]. J Bacteriol, 2002, 184:2601-2613
    [117] Tramonti A, De Canio M, De Biase D. Stability and oligomerization of recombinant GadX, a transcriptional activator of the Escherichia coli glutamate decarboxylase system [J]. Biochim Biophysic Acta, 2003, 1647:376-380
    [118] Smith D K, Kassam T, Singh B, et al. Escherichia coli has two homologous glutamate decarboxylase genes that map to distint loci [J]. J Bacteriol, 1992, 174(18): 5820-5826
    [119] Park G W, Gonzalez F D. A novel glutamate-dependent acid resistance among strains belonging to the Proreeae tribe ofEnterobacteriaceae [J]. FEMS Microbiol Lett, 2004, 237:303-309
    [120] Foerster C W, Foerster H F. Glutamic acid decarboxylase in spores of Bacillus megaterium and its possible involvement in spore germination [J]. J Bacteriol, 1973, 114:1090-1098
    [121] Foerster H F. Spore pool glutamic acid as a metabolite in germination [J]. J Bacteriol, 1972, 111:437-442
    [122] Foerster H F. γ-Aminobutyric acid as a required germinant for mutant spores of Bacillus megaterium [J]. J Bacterioi, 1971, 108:817-823
    [123] Shukuya R, Schwert G W. Giutamic acid decarboxylase I. Isolation procedures and properties of the enzyme [J]. J Biol Chem, 1960, 235(6): 1649-1652
    [124] Fonda M L. Glutamate decarboxylase. Substrate specificity and inhibition by carboxylic acids [J]. Biochemistry, 1972, 11 (7): 1304-1309
    [125] O'Leary M H, Richards D T, Hendrichson D W. Carbon isotope effects on the enzymatic decarboxylation of glutamic acid [J]. J Am Chem Soc, 1970, 92(14): 4435-4440
    [126] Garcia E, Lopez R. Streptococcus pneumoniae type 3 encodes a protein highly similar to the human glutamate decarboxylase (GAD65) [J]. FEMS Microbiol Lett, 1995, 133(1-2): 113-138
    [127] Nomura M, Nakajima I, Fujita Y, et al. Lactococcus lactis conteins only one glutamate decarboxylase gene [J]. Microbiol, 1999, 145:1375-1380
    [128] Cozzani I, Misuri A, Santonic C. Purification and general properties of glutamate decarboxylase from Clostridium perfringens [J]. Bioehem J, 1970, 118:135-141
    [129] Strausbauch P H, Fischer E H. Chemical and physical properties of Escherichia coli glutamate decarboxylase [J]. Biochemistry, 1970, 9(2): 226-232
    [130] Homola A D, Dekker E E. Decarboxylation of γ-hydroxyglutamate by glutamate decarboxylase of Escherichia coli (ATCC 11246) [J]. Biochemistry, 1967, 6:2626-2634
    [131] Jolles-Bergeret B, Charton M. Bacterial L-glutamate decarboxylases: their action on L-homocysteinesulfinic acid and L-homoeysteic acid [J].Bioehimie, 1971, 53(4): 553-562
    [132] O'Leary M H. Coenzyme analog inhibitors of apoglutamate decarboxylase [J]. Biochemistry, 1969, 8(3): 1117-1122
    [133] Kou D, Rando R R. Irreversible inhibition of glutamate decarboxylase by alpha-(fluoromethyl) glutamic acid [J]. Biochemistry, 1981, 20(3):506-511
    [134] Jung M J, Metcalf B W, Lippert B, et al. Mechanism of the stereospectific irreversible inhibition of bacterial glutamic acid decarboxylase by (R)-(-)-4-aminohex-5-ynoic acid, an analogue of 4-aminobutyric acid [J]. Biochemistry, 1978, 17(13):2628-2632
    [135] Sukhareva V S, Braunshtein A E. Investigation of the nature of the interactions of glutamate decarboxylase from Escherichia coli with the substrate and its analogs [J]. Mol Biol, 1971, 5(2): 241-252
    [136] Likos J J, Ueno H, Feldhaus R W, et al. A novel reaction of the coenzyme of glutamate decarboxylase with serine O-sulfate [J].Biochemistry, 1982, 21:4377-4386
    [137] Ueno H, Likos J J, Metzler D E. Chemistry of the inactivation of cytosolic aspartate aminotransferase by serine O-sulfate [J]. Biochemistry, 1982, 21:4387-4393
    [138] Strausbauch P H, Fisher E H. Structure of the binding site of pyridoxal 5'-phosphate to Escherichia coli glutamate decarboxylase [J]. Biochemistry, 1970, 9(2):233-238
    [139] Maras B, Sweeney G, Barra D, et al. The amino acid sequence of glutamate decarboxylase from Escherichia coli [J]. Eur J Biochem, 1992, 204:93-98
    [140] De Biase D, Tramonti A, John R A, et al. Isolation, overexpression, and biochemical characterization of the two isoforms of glutamic acid decarboxylase from Escherichia coli [J]. Protein Expres Purif, 1996, 8(4): 430-438
    [141] Malashkevich V N, De Biase D, Markovic-Housley Z, et al. Crystallization and preliminary X-ray analysis of the beta-isoform of glutamate decarboxylase from Escherichia coli [J]. Acta Crystallogr D Biol Crystallogr, 1998, 54(5): 1020-1022
    [142] Alexander F W, Sandmeier E, Metha P K, et al. Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes [J]. Eur J Biochem, 1994, 219:953-960
    [143] Toney M D, Kirsch J F. Lysine 258 in aspartate aminotransferase. Enforcer of the Circe effect for amino acid substrate and general-base catalyst for the 1, 3-prototropic shift [J]. Biochemistry, 1993, 30:4072-4077
    [144] Lu Z, Nagata S, McPhie P, et al. Lysine 87 in the β-subunit of tryptophan synthase that forms an internal aldimine with pyridoxal phosphate serves critical roles in transamination catalysis and product release [J]. J Biol Chem, 1993, 268:8727-8734
    [145] Nishimura K, Tanizawa K, Yoshimura T, et al. Effect of substitution of a lysyl residue that binds pyridoxal phosphate in thermostable D-amino acid aminotransferase by arginine and alanine [J]. Biochemistry, 1991, 30:4072-4077
    [146] Rege V D, Kredich N M, Tai C H, et al. A change in the internal aldimine lysine (K42) in O-acetylserine sulfhydrylase to alanine indicates its importance in transamination and as a general base catalyst [J]. Biochemistry, 1996, 35:13485-13493
    [147] Anderson J A, Chang H F W. Borohydride reduction of L-glutamate decarboxylase [J]. Arch Biochem Biophys, 1965, 110:346-349
    [148] Tramonti A, John R A, Bossa F, et al. Contribution of Lys276 to the conformational flexibility of the active site of glutamate decarboxylase from Escherichia coli [J]. Eur J Biochem, 2002, 269: 4913-4920
    [149] Plokhov A Y, Gusyatiner M M, Yampolskaya T A, et al. Preparation of γ-aminobutyric acid using E. coli cells with high activity of glutamate decarboxylase [J]. Appl Biochem Biotech, 2000, 88: 257-265
    [150] Nomura M, Kabayashi M, Ohmomo S, et al. Inactivation of the glutamate decarboxylase gene in Lactococcus lactis subsp, cremoris [J]. Appl Environ Microb, 2000, 66(5): 2235-2237
    [151] Park K B, Oh S H. Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3 [J]. Bioresource Technol, 2007, 98(2): 312-319
    [1] Stanton H C. Mode of action of gamma aminobutyric acid on the cardiovascular system [J]. Arch Int Pharmacodyn, 1963,143:195-200
    [2] Omori M, Yano T, Okamoto J, et al. Effect of anaerobically treated tea (gabaron tea) on blood pressure of spontaneously hypertensive rats [J]. Nippon Nogeikagaku Kaishi, 1987, 61: 1449-1451
    [3] Okada T, Sugishita T, Murakami T, et al. Effect of the defatted rice germ enriched with GABA for sleeplessness, depression, autonomic disorder by oral administration [J]. Nippon Shokuhin Kagaku Kaishi,2000,47:596-603
    [4] Defeudis F V. γ-aminobutyric acid and cardiovascular function [J]. Experientia, 1983,39:845-848
    [5] 林智,大森正司.γ-氨基丁酸茶成分对大鼠血管紧张素Ⅰ转换酶(ACE)活性的影响[J].茶叶科学,2002,22(1):43-46
    [6] 茅原,杉浦友美.今年GABA生理机能研究—脑机能改善作用、高血压作用中心[J].食品开发,2001,36(6):9-13
    [7] Leventhal A G, Wang Y, Pu M, et al. GABA and its agonists improved visual cortical function in senescent monkey [J]. Science,2003,300:812-815
    [8] 袁玉英,何春娜,石其贤.γ-氨基丁酸诱发人精子顶体反应及其受精能力[J].生理学报,1998,50(3):326-332
    [9] 韦习会,漆兴桂,夏东等.日粮添加γ-氨基丁酸对育肥猪生长和饲料利用的影响[J].家畜生态,2004,25(2):10-12
    [10] 楼书聪.化学试剂配制手册[M].南京:江苏科学技术出版社,1993:394
    [11] Scarpellini M, Mora D, Colombo S, et al. Development of genus/species-specific PCR analysis for indentification of Carnobacterium strains [J]. Curr Microbiol, 2002,45:24-29
    [12] 张晖,徐永,姚惠源.纸层析法定量测定米胚芽中的γ-氨基丁酸[J].无锡轻工大学学报,2004,23(2):101-103
    [13] 凌代文,东秀珠.乳酸细菌分类鉴定及实验方法[M].北京:中国轻工业出版社,19991:33-65,117-129
    [14] 乳酸菌饮料中乳酸菌的微生物学检验[S].中华人民共和国国家标准,GB/T 16347-1996
    [15] Altschui, Stephen F, Thomase L, et al. Gapped BLAST and PSI-BLAST: a new generation of protein darabase search programs [J]. Nucleic Acids Res, 1997, 25:3389-3402
    [16] Strigacova J, Chovanec P, Liptaj T, et al. Glutamate decarboxylase activity in Trichoderma virid conidia and developing mycedia [J]. Arch Microbiol, 2001,175:32-40
    [17] Castanie-Cornet M P, Penfound T A, Smith D, et al. Control of acid resistance in Escherichia coli [J]. J Bacteriol, 1999,181:3525-3535
    [18] Shukuya R, Schwert G W. Glutamic acid decarboxylase 1. Isolation procedures and properties of the enzyme [J]. The Journal of Biological Chemistry, 1960, 235(6): 1649-1652
    [19] O'Leary M H, Richards D T, Hendrichson D W. Carbon isotope effects on the enzymatic decarboxvlation of glutamic acid [J]. J Am Chem Soc. 1970.92(14): 4435-4440
    [20] 许建军,江波,许时婴.Lactococcus lactis谷氨酸脱羧酶的分离纯化及部分酶学性质[J].无锡轻工大学学报,2004,23(3):79-84
    [21] Nomura M, Nakajima I, Fujita Y, et al. Lactococcus lactis conteins only one glutamate decarboxylase gene [J]. Microbiol, 1999, 145:1375-1380
    [22] Ueno Y, Hayakawa K, Takahash S, et al. Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO12005 [J]. Biosci Biotech Biochem, 1997, 61(7):1168-1171
    [23] Cozzani I, Misuri A, Santonic C. Purification and general properties of glutamate decarboxylase from Clostridium perfringens [J]. Biochem J, 1970,118:135-141
    [24] Krishnaswamy P R, Giri K V. Glutamate decarboxylase in Rhodotorula glutinis[J]. Biochem J, 1956,62(2): 301-303
    [25] Hao R, Schmit J C. Purification and characterization of glutamate decarboxylase from Neurospora crassa conidia [J]. J Biol Chem, 1991,266(8): 5135-5139
    [26] Strigacova J, Chovanec P, Liptaj T, et al. Glutamate decarboxylase activity in Trichoderma virid conidia and developing mycedia [J]. Arch Microbiol, 2001,175:32-40
    [27] Komatsuzaki N, Shima J, Kawamoto S, et al. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol, 2005,22: 497-504
    [28] Ueno Y, Hayakawa K, Takahash S, et al. Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005 [J]. Biosci Biotech Bioch, 1997,61:1168-1171
    [29] 许建军.Lactococcus lactis生物合成γ-氨基丁酸及谷氨酸脱羧酶的性质研究[D].江苏:江南大学,2004
    [30] Nomura M, Kimoto H, Someya Y, et al. Production of γ-aminobutyric acid by cheese starters during cheese ripening [J]. J Dairy Sci, 1998, 81:1486-1491
    [31] Foster J W. When protons attack: microbial strategies of acid adaptation [J]. Curr Opin Microbiol, 1999,2:170-174
    [32] Waterman S R, Small P L C. Identification of σ~S-dependent genes associated with the stationary-phase acid-resistence phenotype of Shigella flexneri [J]. Mol Microbiol, 1996,21: 925-940
    [33] Sanders J W, Leenhouts K, Burghoom J, et al. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation [J]. Mol Microbiol, 1998,27:299-310
    [34] De Biase D, Tramonti A, Bossa F, et al. The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid deearboxylase system[J]. Mol Microbiol, 1999,32:1198-1211
    [35] Cotter P D, Gahan C G M, Hill C. A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid [J]. Mol Microbiol, 2001,40:465-475
    [36] Castanie-Cornet M P, Penfound T A, Smith D, et al. Control of acid resistance in Escherichia coli [J]. J Bacteriol, 1999,181:3525-3535
    [37] Nomura M, Kabayashi M, Ohmomo S, et al. Inactivation of the glutamate decarboxylase gene in Lactococcus lactis subsp, cremoris [J]. Appl Environ Microb, 2000, 66(5):2235-2237
    [38] 东秀珠,蔡妙瑛.常见细菌系统鉴定手册[M].北京:科学出版社,2001:381
    [39] 穆小民,沈黎明,吴显荣.高等植物体内γ-氨基丁酸代谢的酶学研究进展[J].中国农业大学学报,1996,1(1):29-33
    [1] 张晖,徐永,姚惠源.纸层析法定量测定米胚芽中的γ-氨基丁酸[J].无锡轻工大学学报,2004,23(2):101-103
    [2] 赵长琦,李广民,王军.中药红芪中降压有效成分γ-氨基丁酸的薄层扫描测定[J].西北大学学报(自然科学版),1995,25(3):277-278
    [3] Tsukatani T, Higuchi T, Matsumoto. Enzyme-based microtiter plate assay for γ-aminobutyric acid: Application to the screening of γ-aminobutyric acid-producing lactic acid bacteria [J]. Anal Chim Acta, 2005, 540: 293-297
    [4] Kitaoka S, Nakano Y. Colorimetric determination of ω-amino acids [J]. J Biochem, 1969,66(1): 87-94
    [5] Komatsuzaki N, Shima J, Kawamoto S, et al. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods [J]. Food Microbiol, 2005, 22: 497-504
    [6] 任红波.氨基酸分析仪快速测定糙米中的γ-氨基丁酸[J].杂粮作物,2003,23(4):246-247
    [7] Champney T H, Hanneman W H, Nichols M A. Gamma-aminobutyric acid, catecholamine and indoleamine determinations from the same brain region by high-performance liquid chromatography with electrochemical detection [J]. J Chromatogr B, 1992,579:334-339
    [8] 刘建芳,侯艳宁,刘会臣.柱前衍生-电化学检测HPLC法测定大鼠脑内的谷氨酸和γ-氨基丁酸[J].解放军医药学报,2000,16(6):299-302
    [9] Kamisaki Y, Takao Y, Itoh T, et al. Determination of gamma-aminobutyric acid in human cerebrospinal fluid by isocratic high-performance liquid chromatography [J]. J Chromatogr B, 1990, 529:417-423
    [10] Piepponen T P, Skujins A. Rapid and sensitive step gradient assays of glutamate, glycine,taurine and gamma-aminobutyric acid by high-performance liquid chromatography-fluorescence detection with o-phthalaldehyde-mercaptoethanol derivatization with an emphasis on microdialysis samples [J]. J Chromatogr B, 2001,757:277-283
    [11] 陈希贤,李东,吕建新,等.高效液相色谱法测定人脑脊液中γ-氨基丁酸和谷氨酸[J].色谱,1997,15(3):237-239
    [12] Abe T, Kurozumi Y, Yao WB, et al. High-performance liquid chromatographic determination of β-alanine, β-aminoisobutyric acid and γ-aminobutyric acid in tissue extracts and urine of normal and (aminooxy)acetate-treated rats [J]. J Chromatogr B, 1998, 712: 43-49
    [13] 谭力,刘放南,张旭松.人胃黏液中γ-氨基丁酸和谷氨酸含量的高效液相色谱法测定[J].色谱,2004,22(2):131-133
    [14] 范军,李纯,朱苏文,等.小麦谷氨酸脱羧酶的纯化及部分性质研究[J].中国生物化学与分子生物学报,1998,14(5):641-644
    [15] 许建军,江波,许时婴.比色法快速测定乳酸菌谷氨酸脱羧酶活力及应用[J].微生物学通报,2004,31(2):66-71
    [16] Tsushida T, Murai T. Conversion of glutamic acid to γ-aminobutyric acid in tea leaves under anaerobic conditions [J]. Agric Biol Chem, 1987, 51 (11): 2865-2871
    [17] Johnson BS, Singh NK, Cherry JH, et al. Purification and characterization of glutamate decarboxylase from cowpea [J]. Phytochemistry,1997, 46(1): 39-44
    [1] Sandmeier E, Hale T I, Christen P. Multiple evolutionary origin of pyridoxal 5'-phosphatedependent amino acid decarboxylase [J]. Eur J Biochem, 1994, 221:997-1002
    [2] Erlander M J, Tobin A J. The structural and functional heterogeneity of glutamic acid decarboxylase [J]. Neurochem Res, 1991, 16:215-226
    [3] Guin Ting Wong C, Bottiglieri T, Caner Snead III O. GABA, γ-hydroxybutyric acid, and neurological disease [J]. Ann Neurol, 2003, 6:3-12
    [4] Jakobs C, Jaeken J, Gibson K M. Inherited disorders of GABA metabolism [J]. J Inherit Metab Dis, 1993, 16:704-715
    [5] Foerster C W, Foerster H F. Glutamic acid decarboxylase in spores of Bacillus megaterium and its possible involvement in spore germination [J]. J Bacteriol, 1973,114:1090-1098
    [6] Strigacova J, Chovanec P, Liptaj T, et al. Glutamate decarboxylase activity in Trichoderma virid conidia and developing mycedia [J]. Arch Microbiol, 2001,175:32-40
    [7] Castanie-Cornet M P, Penfound T A, Smith D, et al. Control of acid resistance in Eccherichia coli [J]. J Bacteriol, 1999,181:3525-3535
    [8] Sanders J W, Leehouts K, Burghoorn J, et al. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation [J]. Mol Microbiol, 1998, 27:299-310
    [9] Warnecke T, Gill Y T. Organic acid toxicity, tolerance, and production in Eccherichia coli biorefining applications [J]. Microb Cell Factor, 2005, 4(25): 1-8
    [10] Cozzani I, Misuri A, Santonic C. Purification and general properties of glutamate decarboxylase from Clostridium perfringens [J]. Biochem J, 1970, 118: 135-141
    [11] Hao R, Schmit J C. Purification and characterization of glutamate decarboxylase from Neurospora crassa conidia [J]. J Biol Chem, 1991, 266: 5135-5139
    [12] Komatsuzaki N, Shima J, Kawamoto S, et al. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods [J]. Food Microbiol, 2005, 22:497-504
    [13] Krishnaswamy P R, Giri K V. Glutamate decarboxylase in Rhodotorula glutinis [J]. Biochem J, 1956, 62:301-303
    [14] Nomura M, Nakajima I, Fujita Y, et al. Lactococcus lactis conteins only one glutamate decarboxylase gene [J]. Microbiol, 1999,145:1375-1380
    [15] Shukuya R, Schwert G W. Glutamic acid decarboxylase I. Isolation procedures and properties of the enzyme [J]. J Biol Chem, 1960, 235:1649-1652
    [16] Ueno Y, Hayakawa K, Takahash S, et al. Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO12005 [J]. Biosci Biotechnol Biochem, 1997, 61: 1168-1171
    [17] Wang J J, Lee C L, Pan T M. Improvement of monacolin K, γ-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU601 [J]. J Ind Microbiol Biot, 2003, 30:669-676
    [18] Fonda M L. L-Glutamate decarboxylase from bacteria [J]. Methods Enzymol, 1985, 113:11-16
    [19] Ijsseldijk, Yvon M, Lanting-Marijs, et al. Cheese product and method of preparing [P]. United States,5472718,1995
    [20] 李建武,萧能庚,余瑞元,等.生物化学实验原理和方法[M].北京:北京大学出版社,2000,174-176
    [21] Laemmli U K. Cleavage of structural protein during the assembly of the head of bacteriophage T4 [J]. Nature, 1970, 227:680-686
    [22] 许建军.Lactococcus lactis生物合成γ-氨基丁酸及谷氨酸脱羧酶的性质研究[D].无锡:江南大学,2004
    [23] 赵永芳.生物化学技术原理及应用[M].北京:科学出版社(第三版),2002,64-69
    [24] HiPreP 16/10 Phenyl FF (high sub), HiPreP 16/10 Phenyl FF (low sub), HiPreP 16/10 Butyl FF and HiPreP 16/10 Octyl FF instruction. Amersham Biosciences
    [25] 付晓泰,王振平,卢双舫.气体在水中的溶解机理及溶解方程[J].中国科学(B辑),1996,26(2):124-130
    [26] Gale E F. The bacterial amino acid decarboxylases [j]. Adv Enzymol, 1946, 6:1-32
    [27] Blethen S L, Boeker E A, Snell E E. Arginine decarboxylase from Escherichia coli [J]. J Biol Chem, 1968, 243:1671-1677
    [28] Sabo D L, Boeker E A, Byers B, et al. Purification and physical properties of inducible Escherichia coli lysine decarboxylase [J]. Biochem, 1974, 13:662-670
    [29] Foerster C W, Foerster H F. Glutamic acid decarboxylase in spores of Bacillus megaterium and its possible involvement in spore germination [J]. J Bacteriol, 1973,114:1090-1098
    [30] Foerster H F. Spore pool glutamic acid as a metabolite in germination [J]. J Bacteriol, 1972,111: 437-442
    [31] Foerster H F. γ-Aminobutyric acid as a required germinant for mutant spores of Bacillus megaterium [J]. J Bacteriol, 1971,108:817-823
    [1] 黄丽金.浓缩型冷冻干燥酸奶发酵剂的研制[D].南京:南京农业大学,2005
    [2] 田洪涛,贾英民,马雯,等.嗜热链球菌促生长物质研究及增殖培养基的优化筛选[J].食品科学,2002,23(5):60-62
    [3] Beal C, Corrien G Influence of pH, temperature and inoculun composition on mixed cultures of Streptococcus thermophilus 404 and Lactobacillus bulgaricus 398 [J]. Biotechnoi Bioeng, 1991, 38: 90-98
    [4] 凌代文,东秀珠.乳酸细菌分类鉴定及实验方法[M].北京:中国轻工业出版社,19991:33-129
    [5] 乳酸菌饮料中乳酸菌的微生物学检验[S].中华人民共和国国家标准,GB/T 16347-1996
    [6] Strigacova J, Chovanec P, Liptaj T, et al. Glutamate decarboxylase activity in Trichoderma virid conidia and developing mycedia [J]. Arch Microbiol, 2001,175:32-40
    [7] Capitani G, De Biase D, Aurizi C, et al. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase [J]. EMBO J, 2003, 22(16): 4027-4037
    [8] Higuchi T, Hayashi H, Abe K. Exchange of glutamate and γ-aminobutyrate in a Lactobacillus strain [J]. J Bacteriol, 1997, 179:3362-3364
    [9] Nomura M, Nakajima I, Fujita Y, et al. Lactococcus lactis conteins only one glutamate decarboxylase gene [J]. Microbiol, 1999,145:1375-1380
    [10] 李影林,王冰梅.培养基手册[M].吉林:吉林科学技术出版社,1991:475-476
    [11] Garrote G L, Abraham A G, De Antoni G L. Chemical and microbiological characterization of kefir grains [J]. J Dairy Res, 2001,68:639-652
    [12] GB/T16347-1996.乳酸菌饮料中乳酸菌的微生物学检验[S].中华人民共和国国家标准,1996:730-736
    [13] 郭勇.酶工程[M].北京:中国轻工业出版社,1994:35-37
    [14] 江汉湖.食品微生物[M].北京:中国农业出版社,2002:108-111
    [15] Oh S, Rheem S, Sim J, et al. Optimizing conditions for the growth of Lactobacillus casei YIT9018 in tryptone-glucose medium by using response surface methodology [J]. Appl Environ Microbiol, 1995,61:3809-3814
    [16] 刘建忠,熊亚红,翁丽萍,等.生物过程的优化[J].中山大学学报(自然科学版),2002,41(增刊):132-137
    [17] Li C, Bai J, Cai Z. Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology [J]. J Biotechnol, 2002, 93: 27-34
    [18] 何桢,潘越,刘子先,等.因子实验、RSM与田口方法的比较[J].机械设计,1999,10:1-4
    [19] DeMeo M, Laget M, Phan-Tan-Luu R, et at. Application of experimental designs for optimisation of medium and culture conditions in fermentation [J]. Biosci, 1985, 4:99-102
    [20] Pleckett R L, Burman J P. The design of optimum multifactodal experiments [J]. Biometrika, 1946, 33:305-325
    [21] Annadurai G. Design of optimum response surface experiments for adsorption of direct dye on chitosan [J]. Bioproc Eng, 2000, 23:451-455
    [22] Reddy P R M, Reddy G, Seenayya G. Production of thermostable pullulanase by Clostridium thermosulfurogenes SV2 in solid-state fermentation: optimisation of nutrient levels using response surface methodology [J]. Bioproc Eng, 1999, 21:497-503
    [23] Rastogi N K, Rashmi K R. Optimisation of enzymatic liquefaction of mango pulp by response surface methodology [J]. Eur Food Res Technol, 1999.209:57-62
    [24] Gouvevia E R, Baptista-Neto A. Optimisation of medium composition for clavuanic acid production by Streptomyces clavulgerus [J]. Biotechnol Lett, 2001,23:157-161
    [25] Ambati P, Ayyanna C. Optimizing medium constituents and fermentation conditions for citric acid production from palmyra jaggery using response surface method [J]. World J Microbiol Bioiotechnol, 2001, 17:331-335
    [26] Chen Q H, He G Q, Ali M A M. Optimization of medium composition for the production of elastase by Bacillus sp. EL31410 with response surface methodology [J]. Enzyme Microbial Technol, 2002,30:667-672
    [27] 苏秀荣,王汉忠,李全阳,等.微量量热法研究酸奶菌种的适宜生长温度及最佳生长温度[J].微生物学杂志,2003,23(5):15-17
    [28] Castanie-Cornet M P, Penfound T A, Smith D, et al. Control of acid resistance in Escherichia coli [J]. J Bacteriol, 1999,181:3525-3535
    [29] De Biase D, Tramonti A, Bossa F, et al. The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system [J]. Mol Microbiol, 1999, 32:1198-1211.
    [30] Sanders J W, Leenhouts K, Burghoorn J, et al. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation [J]. Mol Microbiol, 1998, 27:299-310
    [31] Cotter P D, Gahan C G M, Hill C. A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid [J]. Mol Microbiol, 2001, 40:465-475
    [32] Shin S, Castanie-Comet M P, Foster J A, et al. An activator of glutamate decarboxylase genes regulates the expression of enteropathogenic Escherichia coli virulence genes through control of the plasmid-encode regulator, Per [J]. Mol Microbiol, 2001, 41:1133-1150
    [33] Tramonti A, Visca P, De Canio M, et al. Functional characterization and regulation ofgadX, a gene encoding an AraC/XylS-like transcriptional activator of the Escherichia coil glutamic acid decarboxylase system [J]. J Bacteriol, 2002, 184:2601-2613
    [34] Tramonti A, De Canio M, De Biase D. Stability and oligomerization of recombinant GadX, a transcriptional activator of the Escherichia coli glutamate decarboxylase system [J]. Biochim Biophysic Acta, 2003, 1647:376-380
    [35] Ueno H. Enzymatic and structural aspects on glutamate decarboxylase [J]. J Mol Catal B: Enzym, 2000, 10:67-79
    [36] Christensen J E, Dudley E G, Pedersen J A, et al. Peptidases and amino acid catabolism in lactic acid bacteria [J]. Anton Leeuw Int J G, 1999, 76:217-246
    [1] Higuchi T, Hayashi H, Abe K. Exchange of glutamate and γ-aminobutyrate in a Lactobacillus strain [J]. J Baeteriol, 1997, 179: 3362-3364
    [2] Plokhov A Y, Gusyatiner M M, Yampolskaya T A, et al. Preparation of γ-aminobutyric acid using E. Coli cells with high activity of glutamate decarboxylase [J]. Appl Biochem Biotech, 2000, 88: 257-265
    [3] 余敦寿,崔俊鑫.在γ-氨酪酸生产中,提高谷氨酸脱羧酶活力的研究[J].氨基酸杂志,1991,4:9-11
    [4] 赵景联.固定化大肠杆菌细胞生产γ-氨基丁酸的研究[J].生物工程学报,1989,5(2):124-128
    [5] 章汝平,何立芳.用后道味精母液提取谷氨酸后的废液生产γ-氨基丁酸[J].长沙电力学院学报(自然科学版),1998,13(4):433-435
    [6] 吴荣荣,张柏林.直投式酸奶发酵剂的发酵工艺及其优化[J].食品科学,2006,27(2):178-181
    [7] Ijsseldijk, Yvon M, Lanting-Marijs, et al. Cheese product and method of preparing [P]. United States,5472718,1995
    [8] 郭勇.酶工程[M].北京:中国轻工业出版社,2000:183-225
    [9] 李建武,萧能庚,余瑞元,等.生物化学实验原理和方法[M].北京:北京大学出版社,1994:431
    [10] 李文宾,杨涛,刘光烨.一株食用菌生物转化富集γ-氨基丁酸条件研究[J].天然产物研究与开发,2004,16(4):340-342
    [11] 吴晓燕,钱绍松,李加友,等.酶法制备D-谷氨酸和γ-氨基丁酸的研究[J].化工进展,2005,24(8):889-892
    [1] Yokoyama S, Hiramatsu J I, Hayakawa K. Production of γ-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005 [J]. J Biosci Bioeng, 2002, 93: 95-97
    [2] Nomura M, Kimoto H, Someya Y, et al. Production of γ-aminobutyric acid by cheese starters during cheese ripening [J]. Dairy Foods, 1998, 81: 1486-1491
    [3] 许建军.Lactococcus lactis生物合成γ-氨基丁酸及谷氨酸脱羧酶的性质研究[D].无锡:江南大学,2004
    [4] Komatsuzaki N, Shima J, Kawamoto S, et al. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods [J]. Food Microbiol, 2005,22: 497-504
    [5] Wang J J, Lee C L, Pan T M. Improvement of monacolin K, γ-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU601 [J]. J Ind Microbiol Biot, 2003,30:669-676
    [6] GB/T16347-1996.乳酸菌饮料中乳酸菌的微生物学检验[S].中华人民共和国国家标准,1996:730-736
    [7] Higuchi T, Hayashi H, Abe K. Exchange of glutamate and γ-aminobutyrate in a Lactobacillus strain [J]. J Bacteriol, 1997, 179: 3362-3364
    [8] 宁正祥.食品成分分析手册[M].北京:中国轻工业出版社,1998:9
    [9] 黄丽金.浓缩型冷冻干燥酸奶发酵剂的研制[D].南京:南京农业大学,2005
    [10] 田洪涛,贾英民,马雯,等.嗜热链球菌促生长物质研究及增殖培养基的优化筛选[J].食品科学,2002,23(5):60-62
    [11] Beal C, Corrien G. Influence of pH, temperature and inoculun composition on mixed cultures of Streptococcus thermophilus 404 and Lactobacillus bulgaricus 398 [J]. Biotechnol Bioeng, 1991, 38: 90-98
    [12] 刘志皋.食品营养学[M].北京:轻工业出版社,1991:166-169
    [1] L-天门冬氨酸[S].中华人民共和国行业标准,QB1118-91
    [2] AA7000系列原子吸收光谱仪分析方法.北京市东西电子技术研究所、北京三雄科技公司,11-35
    [3] 天津轻工业学院,无锡轻工业学院,大连轻工业学院.工业发酵分析(续编)[M].北京:中国轻工业出版社,1997:29-91
    [4] 天津轻工业学院,大连轻工业学院,无锡轻工业学院,等.氨基酸工艺学[M].北京:中国轻工业出版社,1991:284-307
    [5] 陈武领,胡永红,欧阳平凯,等.离子交换法提取D-对羟基苯甘氨酸[J].南京化工大学学报,2000,22(1):51-53
    [6] 张义萍,张伟国,郝刚.离子交换法从发酵液中提取L-精氨酸[J].食品与发酵工业,2005,31(9):63-65
    [7] 林少琴,吴若红,邹开煌,等.米胚芽中γ-氨基丁酸的分离提取及鉴定[J].食品科学,2004,25(1):76-78
    [8] 黄美娥,于华忠,曹庸.蕨菜叶、茎中γ-氨基丁酸的提取分离及含量测定[J].氨基酸和生物资源,2004,27(1):77-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700