用户名: 密码: 验证码:
新型主链二茂铁基聚合物的合成、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管二茂铁基聚合物在几十年前就已经被发现,对于它的研究仍然快速地进行着,这是因为它们在当今的生活中仍然具有很宽广的应用。这些应用都是基于二茂铁基聚合物的一些特殊性质,例如液晶性质、电化学性质、热稳定性以及良好的溶解性。这些应用具体主要有结晶聚合物的构建、燃料电池、电流型生物传感器、DNA和蛋白质传感器、乙肝表面抗原的免疫传感器(HBsAg)、CO传感器以及阴离子传感器等。另外,二茂铁基聚合物可以被用在光逻辑器件的创建、表面凹凸光栅以及光电二极管器件的制造等。因此,有关二茂铁和二茂铁基聚合物合成和应用的文章数量在过去的二十年中呈指数增长。
     热致液晶材料(包括液晶化合物和聚合物)是一种软材料,它们的分子自组装成各向异性的宏观有序结构。另外,这种液晶材料在光学、化学以及生物学等不同领域中的各种功能强大的技术应用中都具有重要作用,在学术和工业层面都创造出新的途径。关于热致液晶的主要应用之一就是液晶显示器的制造,这已经很普遍并且有可能在将来成为平板显示器的主流,因此通过开发和合成新型热致液晶结构和聚合物来提升它们的性能还存在很大的努力空间。
     另外,在过去的几十年里,金属配位聚合物引起了很大的关注。其中,二茂铁基液晶聚合物(例如二茂铁基聚酯、有机磷聚合物、聚硅氧烷以及聚(二茂铁硅烷)代表了最有价值的介晶材料之一。对这类聚合物的研究兴趣主要集中在它们在甲醇燃料电池中作为聚合物膜中的潜在应用。该应用主要是因为这类聚合物具有潜在的形成有序质子通道的能力,从而不受溶剂的影响,进而促进燃料电池中质子的传递,并有可能减少甲醇渗透过聚合物膜而降低燃料电池效率的问题。二茂铁基团的氧化态(二茂铁鎓离子)和还原态均被证明具有化学稳定性。
     尽管过去的的几十年世界各地的研究小组对于二茂铁基液晶聚合物的合成、性质及应用进行了大量的研究,合成新型液晶二茂铁基聚合物并研究它们的性质仍然是用来预测它们潜在应用的热点主题。在二茂铁基液晶聚合物领域,从它们的合成、性质到应用仍然存在着很多挑战。
     在本文中,一些新型主链二茂铁基聚合物利用1,1’-二茂铁二羧酸酰氯和不同单体进行溶液缩聚反应被成功合成。一般来说合成方法分为两类,即溶液缩聚和界面缩聚。接下来,所合成的二茂铁基聚合物的主链化学结构利用诸如’H核磁共振(1H NMR)光谱、紫外-可见分光光谱(UV-VIS)及红外光谱(FTIR)进行表征。另外.所合成聚合物的结晶度利用X-射线衍射进行确定。结构表征过后,又利用循环伏安法研究了合成聚合物的电化学性质,同时研究了不同参数(包括有机溶剂、扫描速率、电解液浓度的影响及具有电活性的二茂铁单体浓度)对所合成聚合物循环伏安行为的影响。其次,所合成聚合物的热学性质利用热重分析(TGA)及差热分析(DTA)进行研究。最后,利用差示扫描量热法(DSC)和偏光显微镜技术(POM)研究了聚合物的液晶性质。
     (1)通过溶液缩聚反应合成了液晶(PDEFD)和(PHOSFD)。HOS通过双酚S以8-氯代-1-正辛醇作为反应物,DMF作为溶剂合成。对PDEFD和PHOSFD利用1H NMR光谱、UV-VIS分光光谱及FTIR光谱进行结构表征。PDEFD和PHOSFD的分子量分别为11587和6155。XRD测试结果表明PDEFD和PHOSFD几乎都是无定型的聚合物。这种无定型特性证明了所合成聚合物的热致液晶特性。另外,分别对PDEFD和PHOSFD的电化学行为以及多种参数,包括溶剂、扫描速率以及电解质浓度进行了研究。PDEFD和PHOSFD这两种聚合物的CV曲线的形状均受到溶剂极性的影响。这两种聚合物的CV曲线显示出它们的共平面结构,该结构使聚合物与电极表面紧密接触。另外,PDEFD和PHOSFD的溶液的峰电流值随扫描速率增加,且与扫描速率的平方根呈直线关系。更进一步,PDEFD和PHOSFD溶液的电化学过程既不是可逆的,也不是完全不可逆的。大体上说,PDEFD和PHOSFD的电化学性质比较接近。此外,TGA及DTA测试结果表明了它们具有相对的热稳定性。尽管PHOSFD的聚合物主链上有两个苯环,但具有脂肪族主链的PDEFD被发现具有更高的热稳定性,此外,PDEFD的玻璃化转变温度也比PHOSFD要高。所合成聚合物的液晶性质通过DSC和POM技术来检测。两种所合成的聚合物在加热及冷却时都具有向列相结构出现,并显示出相错的纹理。
     (2)三种新型主链二茂铁基聚酯:PPFD、PHDFD和PMFD分别通过1,1’-二茂铁二甲酰氯和苯基二乙醇胺(PDE)、双酚-P (bisphenol-P)与N-甲基二乙醇胺(MDE)的溶液缩聚法合成。第一种聚合物(PPFD)在两种不同条件下制得,并对所得的两种产物(PPFD1and PPFD2)进行了比较。所合成聚合物的结构通过1H NMR光谱进行表征。利用凝胶渗透色谱(GPC)技术确定了聚合物的分子质量。GPC结果显示,所合成聚合物更准确的来说应该是低聚物而不是高分子聚合物。产物高分子的特性利用FTIR和UV-VIS分光光谱来检测。XRD结果显示四种合成的主链二茂铁基聚合物基本上是无定型的,但有些结晶度。这种无定型性质表现在聚合物在许多不同极性的溶剂中都具有良好的溶解性。更进一步,聚合物的化学结构及合成条件都会影响其结晶度。我们利用循环伏安法研究了聚合物分别在CH2C12、CHC13、THF、DMF和DMSO中的电化学性质,结果发现在高极性溶剂如DMF和DMSO中循环伏安曲线的峰型更为紧凑。这说明在高极性溶剂中聚合物的极化过程的可逆性更好。聚合物在CH2C12中在不同扫描速率下的电化学行为显示所合成的聚合物的电化学过程既不是完全不可逆,但其可逆性也不是很好。另外,对电解质浓度及[Fe]单元浓度对聚合物电化学行为的影响也进行了研究。随着电解质浓度的提高,聚合物CV曲线上氧化还原峰值间的间隔△Ep在大体上有所减小,这说明在聚合物在高电解质浓度下极化过程的可逆性更好。随着[Fe]单元浓度的提高,峰值电流大体上也有所增加。所有所合成的聚合物在加热与冷却的过程中都具有向列相,并且显示出相错的纹理。聚合物在冷却及加热扫描过程中一直保持着有序结构。
     (3)三种新型偶氮苯侧链主链二茂铁基聚酯(MFPAS):硝基偶氮苯性能化的PPFD (PPFD-NT)、4-羧基偶氮苯功能化的PPFD (PPFD-CA)和4-氰基偶氮苯功能化的PPFD(PPFD-CN)通过利用PPFD分别与4-硝基苯胺、4-氨基苯甲酸及氨基苄腈的后聚合偶氮偶联反应成功制得。所合成聚合物的结构通过1H NMR光谱确定。MFPAS的功能化程度通过1H NMR光谱确定,结果分别为66%(PPFD-NT)、34%(PPFD-CA)和54%(PPFD-CN)。所合成聚合物的特性利用FTIR和UV-VIS分光光谱进行探讨。XRD结果显示三种合成的MFPAS均为无定型结构。这种无定型性质表现在MFPAS在许多不同极性的溶剂中都具有良好的溶解性。MFPAS在其DMF溶剂中在紫外光的照射下展示出顺式到反式的光学异构。这种主链含偶氮苯的二茂铁基聚酯同时被发现显示出在HCl的存在下出现红移,这是因为在盐酸的存在下形成了离子,这种现象使这种聚合物有可能成为pH指示剂很好的候选材料。所合成聚酯的热学性质显示出PPFD-CA和PPFD-CN在热力学上比PPFD-NT更稳定。PPFD的玻璃化转变温度被发现比MFPAS的要低,这是由于MFPAS中的偶氮苯基团的存在。所有所合成的聚合物在加热与冷却的过程中都具有向列相,并且显示出相错的纹理。聚合物在冷却及加热扫描过程中一直保持着有序结构。
     (4)四种新型以脂肪族单元为骨架,主链二茂铁基聚合物被成功合成,包括PSPUFD、 PDAFD、PDMFD和PHPFD。PSPUFD和PDAFD分别利用1,1’-二茂铁二羧酸酰氯和3,9-二(1,1-二甲基-2-羟乙基)-2,4,8,10-四环氧基-[5,5]-十一碳烷(SPU)及二异丙醇胺(DA)进行溶液缩聚反应制得。PSPUFD与PDAFD分子质量分别为4107和1338。为了提高分子量,另两种聚合物PDMFD和PHPFD通过1,1’-二茂铁二羧酸酰氯分别和二乙基双(羟甲基)丙二酸酯(DM)及2,2-二(羟甲基)丙酸(HP)进行界面缩聚反应制得。所合成聚合物的结构通过诸如1H NMR光谱、UV-VIS吸收光谱和FTIR光谱等手段进行说明。所合成聚合物的X-射线衍射图样显示出聚合物的无定型特征,这表现为聚合物在很多溶剂中都具有良好的溶解性。所合成聚合物的电化学性质利用循环伏安法进行测定。更进一步,对于有机溶剂、扫描速率、电解质浓度及[Fe]浓度对所合成聚合物的氧化还原行为的影响也进行了研究。所合成聚合物的氧化还原行为被发现既不是可逆也不是完全不可逆。另外,这些聚合物的热力学性质利用TGA和DTA进行研究,其结果显示出它们的相对热稳定性。最后,通过偏光显微镜(POM)观察聚合物的液晶性质,结果显示出所合成的聚合物具有向列相及交错纹理,且其在加热和冷却过程中有很长的相持续时间。
     (5)四种以新型芳香单元为骨架,主链二茂铁基聚合物:PCPFD、PCRFD、PQDFD和PSOFD被成功合成。前两种聚合物PCPFD和PCRFD通过1,1’-二茂铁二羧酸酰氯分别与o-甲酚肽(CP)和甲酚红(CR)利用溶液缩聚反应制得。PCPFD和PCRFD被发现分子量很小,分别只有2398和1727。为了获得具有更高分子量的聚合物,利用1,1-二茂铁二甲酰氯分别与2,4二羟基喹啉(QD)和苏丹橙G(SO)通过界面缩聚制得PQDFD和PSOFD。所合成聚合物的化学结构通过诸如1H NMR光谱、UV-VIS吸收光谱和FTIR光谱等手段进行说明。所合成聚合物的X-射线衍射图样显示出聚合物的无定型特征,这表现为所合成聚合物在很多溶剂中都具有良好的溶解性。所合成聚合物的电化学性质利用循环伏安法进行测定。更进一步,对有机溶剂、扫描速率、电解质浓度及[Fe]浓度对于所合成聚合物的氧化还原行为的影响也进行了研究。所合成聚合物的氧化还原行为被发现既不是可逆也不是完全不可逆。另外,这些聚合物的热力学性质利用TGA和DTA进行研究,其结果显示出它们的相对热稳定性。同时,POM观察结果显示出所合成的聚合物具有向列相结构且其相结构在加热及冷却过程中都很能稳定地保持。
Even though ferrocene-based polymers have been discovered from many decades, the research into ferrocene-based polymers continues apace, due to their incorporation into a wide variety of applications in the modern life. These applications have been based on the properties of the ferrocene-based polymers like the liquid-crystalline properties, the electrochemical properties, the thermal stability and the good solubility.
     Thermotropic liquid crystals (including liquid crystalline compounds and polymers) are soft materials in which their molecules self-assemble into macroscopically ordered structures with anisotropic properties. In addition, this type of liquid crystals has assumed great importance in many powerful technological applications in different fields like optics, chemistry and biology, which has created new avenues in academic and industrial research. Therefore, there exist many efforts to improve the properties of liquid crystals via developing and synthesizing of novel thermotropic liquid crystalline compounds and polymers.
     In the past few decades, metallomesogenic polymers have attracted much attention. Among them, ferrocene-based liquid crystalline polymers represent one of the most valuable mesomorphic materials.
     Several novel main-chain ferrocene-based polymers were synthesized employing the solution polycondensation of1,1'-ferrocenedicarbonyl chloride with different monomers. Two different routes were exploited for the synthesis of the polymers including the solution polycondensation route and the interfacial polycondensation route. Afterwards, the chemical structure of the synthesized main-chain ferrocene-based polymers was elucidated using many techniques involving1H NMR spectra, UV-VIS absorption spectra and the FTIR spectra. In addition, the X-ray diffractograms of the synthesized polymers were measured to determine their crystallinity degree. Following the characterization, the electrochemical properties of the synthesized polymers were studied using the technique of cyclic voltammetry and the effect of many parameters (involving the effect of organic solvents, the effect of scan rate, the effect of the electrolyte's concentration and the effect of the concentration of the electroactive ferrocene moiety) on the cyclic voltammetric behavior of the synthesized polymers was investigated. The thermal properties of the synthesized polymers were examined employing the TGA and DTGA techniques. Finally, the liquid crystalline properties of the synthesized polymers were explored via the DSC and the POM techniques.
     (1) Liquid crystalline poly(diethyleneglycol1,1'-ferrocene dicarboxylate)(PDEFD) and poly(bis(4-hydroxyoctoxyphenyl)sulfone1,1'-ferrocene dicarboxylate)(PHOSFD) were synthesized successfully by solution polycondensation reaction of1,1'-ferrocenyl chloride with diethylene glycol and bis(4-hydroxyoctoxyphenyl)sulfone (HOS), respectively. HOS was synthesized from bisphenol S using8-chloro-l-octanol as a reagent in DMF. PDEFD and PHOSFD were characterized via the measurement of their1H NMR spectra, UV-VIS absorption spectra and FTIR spectra. PDEFD and PHOSFD possessed a molecular weight of11587and6155, respectively. The XRD measurements showed that PDEFD and PHOSFD are almost amorphous polymers. The electrochemical behaviors of PDEFD and PHOSFD were investigated and the influence of many parameters, including the solvent, the scan rate and the electrolyte concentration, was studied. The shape of the CV peaks, of both polymers, was affected by the polarity of the solvents. The CV of PDEFD and PHOSFD indicate their coplanar structures that make the polymers tightly contacted with the surface of the electrode. In addition, the peak current values of PDEFD and PHOSFD solutions increased with increasing the scan rate and had a linear relationship with the square root of scan rate. Furthermore, the electrochemical processes of PDEFD and PHOSFD solutions are neither reversible nor totally irreversible. Generally, the electrochemical properties of PHOSFD and PDEFD are similar to each other. Moreover, the measurement of TGA and DTGA of PDEFD and PHOSFD indicated their relative thermal stability. In spite of the presence of two phenyl rings in the polymer backbone of PHOSFD, PDEFD with aliphatic backbone was found to be more thermally stable than PHOSFD and the Tg value of PDEFD were higher than that of PHOSFD. The liquid crystalline properties of the synthesized polymers were examined exploiting the DSC and the POM techniques. Both of the polymers possessed nematic phases during heating and cooling and they exhibited textures with schlieren disclinations. The synthesized polymers possessed high phase duration and the clearing point is above the decomposition temperature of the polymers.
     (2) Three novel main-chain ferrocene-based liquid-crystalline polyesters poly (N-phenyldiethanolamine1,1'-ferrocene dicarboxylate)(PPFD), poly(α,α'-bis(4-hydroxyphenyl)-1,4-diisopropylbenzene1,1'-ferrocene dicarboxylate)(PHDFD), and poly(methyldiethanol amine1,1'-ferrocene dicarboxylate)(PMFD) were synthesized successfully using the solution polycondensation method of1,1'-ferrocenyl chloride with phenyldiethanolamine (PDE), α,α'-bis(4-hydroxyphenyl)-1,4-diisopropyl benzene (bisphenol-P), and N-methyldiethanolamine (MDE), respectively. The first polymer (PPFD) was synthesized in two different conditions and the properties of the two products (PPFD1and PPFD2) were compared. The structure of the synthesized polymers was characterized by'H NMR spectroscopy. The molecular weight of the polymers was determined via the GPC technique. The GPC results showed that they are mostly oligomers rather than polymers. The polymers were also characterized via the measurement of their FTIR and UV-VIS spectroscopy and the properties were structurally dependent. The XRD results showed that the four synthesized main-chain ferrocene-based polymers are mostly amorphous but have some degree of crystallinity. This amorphous nature was reflected in the polymers'good solubility in many solvents with different polarities. Furthermore, both of the chemical structure and the synthesis conditions affect the crystallinity degree of the polymers. The cyclic voltammetry was employed to study the electrochemical properties of the polymers in CH2Cl2, CHCl3, THF, DMF and DMSO. The shape of the peaks was found to be compact in high polar solvents including DMF and DMSO. The electrochemical behavior of the polymers was investigated in CH2Cl2at different potential scan rates and the results indicated that the electrochemical processes of the synthesized polymers were neither totally irreversible nor perfectly reversible. The influence of the concentration of the electrolyte and the concentration of [Fe] unit was also studied. With increasing the concentration of the electrolyte, the peak-to-peak potential separation decreased in a general trend, which indicates that the reversibility of the electrode process becomes better at high electrolyte concentrations. With increasing the concentration of the [Fe] unit, the peak currents increased generally. All the synthesized polymers possessed nematic phases during heating and cooling and they exhibited textures with schlieren disclinations. The ordered structures were permanently retained in the cooling and the heating scan cycles.
     (3) Three novel main-chain ferrocene-based polyesters with azobenzene in the side-chain (MFPAS):4-nitrophenylazo-functionalized-PPFD (PPFD-NT),4-carboxyphenylazo-functionalized-PPFD (PPFD-CA), and4-cyanophenylazo-functionalized-PPFD (PPFD-CN) were synthesized successfully using the post-polymerization azo-coupling reaction of PPFD with4-nitroaniline,4-aminobenzoic acid and4-aminobenzonitrile, respectively. The synthesized polymers were characterized by'H NMR spectroscopy. The degrees of functionalization of the MFPAS were determined from the1H NMR analysis and they were found to be66%,34%and54%for PPFD-NT, PPFD-CA and PPFD-CN, respectively. The synthesized polymers were also characterized via the measurement of their FTIR and UV-VIS spectroscopy. The XRD results showed that the three synthesized MFPAS were amorphous. This amorphous nature was reflected in the MFPAS'good solubility in many solvents with different polarities. The MFPAS exhibited trans to cis photoisomerization upon the irradiation of their DMF solutions with UV light. The azobenzene-containing main-chain ferrocene-based polyesters were also found to display bathochromic shifts upon the addition of HCl due to the formation of the azonium ions that make these polymeric species good candidates as pH indicators. The thermal properties of the synthesized polyesters showed that PPFD-CA and PPFD-CN were thermally more stable than PPFD-NT. The Tg of PPFD was found to be lower than those of the MFPAS due to the presence of the azo phenyl group in the MFPAS. All the synthesized polymers possessed nematic phases during heating and cooling and they exhibited textures with schlieren disclinations. The ordered structures were permanently retained in the cooling and the heating scans.
     (4) Four novel main-chain ferrocene-based polymers, including poly(3,9-bis(1,1-dimethyl-2-hydroxyethyl)-2,4,8,10-tetraoxospiro-[5.5]-undecane1,1'-ferrocene dicarboxylate)(PSPUFD), poly(diisopropanolamine1,1'-ferrocene dicarboxylate)(PDAFD), poly(diethyl bis(hydroxymethyl)malonate1,1'-ferrocene dicarboxylate)(PDMFD), and poly(2,2-bis(hydroxymethyl) propionic acid1,1'-ferrocene dicarboxylate)(PHPFD), were successfully synthesized with aliphatic units. PSPUFD and PDAFD were synthesized using the solution polycondensation reaction of1,1'-ferrocenedicarbonyl chloride with3,9-bis(1,1-dimethyl-2-hydroxyethyl)-2,4,8,10-tetraoxospiro-[5.5]-undecane (SPU) and diisopropanol amine (DA), respectively. PSPUFD and PDAFD were found to possess molecular weights of4107and 1338, respectively. To increase the molecular weight, the polymers PDMFD and PHPFD were synthesized via the interfacial polycondensation reaction of1,1'-ferrocenedicarbonyl chloride with diethyl bis(hydroxymethyl) malonate (DM) and2,2-bis(hydroxymethyl)propionic acid (HP), respectively. PDMFD and PHPFD were found to possess molecular weights of4456and6916, respectively. The structure of the synthesized polymers was elucidated by many techniques such as1H NMR, UV-VIS and the FTIR spectroscopy. The X-ray diffractograms of the synthesized polymers indicate the amorphous nature of these polymers, which was reflected in their good solubility in many solvents. The electrochemical properties of the synthesized polymers were investigated employing the cyclic voltammetry technique. In addition, the effect of the organic solvents, the scan rate, the electrolyte concentration and the effect of [Fe] concentration on the redox behavior of the synthesized polymers were examined. The electrochemical redox processes of the synthesized polymers were found neither reversible nor totally irreversible. The thermal properties of the synthesized polymers were studied via the TGA and DTGA techniques and the results indicated their relative thermal stability. The investigation of the liquid crystalline properties with the POM technique revealed that the synthesized polymers exhibited nematic phases with schlieren desclination during the heating and the cooling processes with high phase duration.
     (5) Four novel main-chain ferrocene-based polymers, including poly(o-Cresolphthalein1,1'-ferrocene dicarboxylate)(PCPFD), poly(Cresol Red1,1'-ferrocene dicarboxylate)(PCRFD), poly(2,4-quinolinediol1,1'-ferrocene dicarboxylate)(PQDFD), and poly(Sudan Orange G1,1'-ferrocene dicarboxylate)(PSOFD), were successfully synthesized with aromatic units. The first two polymers PCPFD and PCRFD were synthesized via the solution polycondensation reaction of1,1'-ferrocenedicarbonyl chloride with o-Cresolphthalein (CP) and Cresol Red (CR), respectively. PCPFD and PCRFD possessed low molecular weights of2398and1727, respectively. To obtain the other polymers with higher molecular weight, PQDFD and PSOFD were synthesized employing the interfacial polycondensation reaction of1,1'-ferrocenedicarbonyl chloride with2,4-quinolinediol (QD) and Sudan Orange G (SO), respectively. The molecular weights of PQDFD and PSOFD were determined to be8379and21576, respectively. The chemical structure was elucidated via the measurement of1H NMR spectra, UV-VIS absorption spectra and the FTIR spectra for the synthesized polymers. The X-ray diffractograms of indicate the amorphous nature of the synthesized polymers, which is reflected in their good solubility in many solvents. The electrochemical properties of the synthesized polymers were examined using the cyclic voltammetry technique. In addition, the effect of the organic solvents, the scan rate, the electrolyte concentration and the effect of [Fe] concentration on the redox behavior of the synthesized polymers were investigated. The electrochemical redox processes of the synthesized polymers were found neither reversible nor totally irreversible. The thermal properties of the synthesized polymers were studied using the TGA and DTGA techniques and the results indicated their relative thermal stability. The POM technique indicated that the synthesized polymers exhibited nematic phases during the heating and the cooling processes with high phase duration.
引文
[1]Woodward RB, Rosenblum M, Whiting MC. A new aromatic system. J Am Chem Soc. 1952;74(13):3458-3459.
    [2]Pauson PL. Ferrocene and related compounds. Q Rev Chem Soc.1955;9(4):391.
    [3]Zhang W, Chen M, Diao G. Preparation and electrochemical behavior of water-soluble inclusion complex of ferrocene with β-cyclodextrin polymer. Electrochim Acta. 2011;56(14):5129-5136.
    [4]Nadherna M, Reiter J. The electrochemical redox processes in methacrylate-based polymer electrolytes Ⅱ.-Study on microelectrodes. Electrochim Acta.2010;55(20):5911-5916.
    [5]Nesmeyanov AN, Kochetkova NS. Principal practical applications of ferrocene and its derivatives. Russ Chem Rev.1974;43(9):710-715.
    [6]Kochetkova NS, Krynkina YK. Practical applications of cyclopentadienyl complexes of transition metals. Russ Chem Rev.1978;47(5):486-494.
    [7]Fouda MFR, Abd-Elzaher MM, Abdelsamaia RA, Labib AA. On the medicinal chemistry of ferrocene. Appl Organomet Chem.2007;21(8):613-625.
    [8]Dombrowski KE, Baldwin W, Sheats JE. Metallocenes in biochemistry, microbiology & medicine. J Organomet Chem.1986;302(3):281-306.
    [9]van Staveren DR, Metzler-Nolte N. Bioorganometallic chemistry of ferrocene. Chem Rev. 2004; 104(12):5931-5986.
    [10]Wang J. Glucose biosensors:40 years of advances and challenges. Electroanalysis. 2001;13(12):983-988.
    [11]Willner I, Katz E. Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew Chem Int Ed.2000;39(7):1180-1218.
    [12]Zatsepin TS, Andreev SY, Hianik T, Oretskaya TyS. Ferrocene-containing nucleic acids. Synthesis and electrochemical properties. Russ Chem Rev.2003;72(6):537-554.
    [13]Abd-El-Aziz AS, Todd EK. Organoiron polymers. Coord Chem Rev.2003;246(1-2):3-52.
    [14]Gao Y, Shreeve JnM. Ferrocene-containing liquid crystalline polymers. J Inorg Organomet Polym Mater.2007; 17(1):19-36.
    [15]Kadkin ON, Galyametdinov YG. Ferrocene-containing liquid crystals. Russ Chem Rev. 2012;81(8):675-699.
    [16]Wolf MO. Transition-metal-polythiophene hybrid materials. Adv Mater.2001;13(8):545-553.
    [17]Zotti G, Zecchin S, Schiavon G, Berlin A, Pagani G, Canavesi A. Conductivity in redox modified conducting polymers.2. Enhanced redox conductivity in ferrocene-substituted polypyrroles and polythiophenes. Chem Mater.1995;7(12):2309-2315.
    [18]Zhu Y, Wolf MO. Electropolymerization of oligothienylferrocene complexes: Spectroscopic and electrochemical characterization. Chem Mater.1999; 11(10):2995-3001.
    [19]Amer WA, Wang L, Amin AM, Ma L, Yu H. Recent progress in the synthesis and applications of some ferrocene derivatives and ferrocene-based polymers. J Inorg Organomet Polym Mater.2010;20(4):605-615.
    [20]Matsui J, Abe K, Mitsuishi M, Aoki A, Miyashita T. Quasi-solid-state optical logic devices based on redox polymer nanosheet assembly. Langmuir.2009;25(18):11061-11066.
    [21]Ahmed R, Priimagi A, Faul CFJ, Manners I. Redox-active, organometallic surface-relief gratings from azobenzene-containing polyferrocenylsilane block copolymers. Adv Mater. 2012;24(7):926-931.
    [22]Nanjo M, Cyr PW, Liu K, Sargent EH, Manners I. Donor-acceptor C60-containing polyferrocenylsilanes:Synthesis, characterization, and applications in photodiode devices. Adv Funct Mater.2008;18(3):470-477.
    [23]Yatabe T, Kawanishi Y. Liquid crystalline alkyl-substituted oligo(p-phenyleneethynylene)s synthesis and structure-property relationships. Liq Cryst. 2012;39(3):269-284.
    [24]Jiang Y, An Z, Chen P, Chen X, Zheng M. Synthesis and mesomorphic properties of but-3-enyl-based fluorinated biphenyl liquid crystals. Liq Cryst.2012;39(4):457-465.
    [25]Darla MR, Varghese S. Synthesis and characterisation of azomethine class thermotropic liquid crystals and their application in nonlinear optics. Liq Cryst.2012;39(1):63-70.
    [26]Yamamoto S-I, Iwata T, Haseba Y, Cho D-U, Choi S-W, Higuchi H, et al. Improvement of electro-optical properties on polymer-stabilised optically isotropic liquid crystals. Liq Cryst. 2012;39(4):487-491.
    [27]Kannan P, Senthil S, Vijayakumar R, Marimuthu R. Synthesis and characterization of liquid crystalline polymers containing aromatic ester mesogen and a nonmesogenic ferrocene unit in the spacer. J Appl Polym Sci.2002;86(14):3494-3501.
    [28]Senthil S, Kannan P. Thermotropic main chain liquid crystalline polyesters containing ferrocene and phosphate units:Synthesis and characterization. Liq Cryst.2002;29(10):1297-1303.
    [29]Senthil S, Kannan P. Ferrocene-based organophosphorus liquid-crystalline polymers: Synthesis and characterization. J Polym Sci, Part A:Polym Chem.2001;39(14):2396-2403.
    [30]Masson P, Guillon D. Molecular design of thermotropic ionic side-chain liquid crystalline polymers. Mol Cryst Liq Cryst.2001;362(1):313-346.
    [31]Senthil S, Kannan P. Synthesis and characterization of liquid-crystalline polyphosphonates containing disubstituted ferrocene esters as mesogens. J Polym Sci, Part A: Polym Chem.2002;40(14):2256-2263.
    [32]Gao Y, Shreeve JnM. Main chain 1,1'-ferrocene-containing polyelectrolytes exhibiting thermotropic liquid-crystalline and fluorescent properties. J Polym Sci, Part A:Polym Chem. 2005;43(5):974-983.
    [33]Cazacu M, Vlad A, Marcu M, Racles C, Airinei A, Munteanu G. New organometallic polymers by polycondensation of ferrocene and siloxane derivatives. Macromolecules. 2006;39(11):3786-3793.
    [34]Turpin F, Guillon D, Deschenaux R. Switchable liquid-crystalline polymers based on the ferrocene-ferrocenium redox system. Mol Cryst Liq Cryst.2001;362(1):171-175.
    [35]Hussein MA, Asiri AM. Organometallic ferrocene-and phosphorus-containing polymers: Synthesis and characterization. Des Monomers Polym.2012; 15(3):207-251.
    [36]Martinez-Felipe A. Liquid crystal polymers and ionomers for membrane applications. Liq Cryst.2011;38(11-12):1607-1626.
    [37]Oriol L, Serrano JL. Metallomesogenic polymers. Adv Mater.1995;7(4):348-369.
    [38]Wiesemann A, Zentel R, Pakula T. Redox-active liquid-crystalline ionomers:1. Synthesis and rheology. Polymer.1992;33(24):5315-5320.
    [39]Chuard T, Deschenaux R. Ferrocene-and fullerene[60]-containing liquid-crystalline materials. Chimia.1998;52(10):547-550.
    [40]Lisa G, Wilson DA, Scutaru D, Tudorachi N, Hurduc N. Investigation of thermal degradation of some ferrocene liquid crystals. Thermochim Acta.2010;507-508:49-59.
    [41]Hudson RDA. Ferrocene polymers:Current architectures, syntheses and utility. J Organomet Chem.2001;637-639:47-69.
    [42]Akhter Z, Khan M, Bashir M. Novel organometallic aromatic azo polyesters based on ferrocene. J Inorg Organomet Polym.2004;14(4):253-267.
    [43]Akhter Z, Bashir MA, Khan MS. Synthesis, characterization and thermal degradation kinetics of ferrocene-containing aramids. Appl Organomet Chem.2005;19(7):848-853.
    [44]Cazacu M, Munteanu G, Racles C, Vlad A, Marcu M. New ferrocene-containing structures:Poly(silyl ester)s. J Organomet Chem.2006;691(17):3700-3707.
    [45]Yu H, Wang L, Huo J, Li C, Tan Q. Synthesis of glycidyl ether of poly(bisphenol-A 1,1'-ferrocene dicarboxylate) and its electrochemical behavior. Des Monomers Polym. 2009;12(4):305-313.
    [46]Kishore K, Kannan P, lyanar K. Synthesis, characterization, and fire retardancy of ferrocene containing polyphosphate esters. J Polym Sci, Part A:Polym Chem. 1991;29(7):1039-1044.
    [47]Abd-Alla MM, El-Zohry MF, Aly KI, Abd-El-Wahab MMM. Arylidene polymers. XVIII. Synthesis and thermal behavior of organometallic arylidene polyesters containing ferrocene derivatives in the main chain. J Appl Polym Sci. 1993;47(2):323-329.
    [48]Kannan P, Umadevi S, Krishnasamy V, Swaminathan CS. Synthesis, spectral and thermal studies of ferrocenylenearyl polyesters. Iran J Polym Sci Technol.1994;3(1):13-19.
    [49]Carraher CE, Morie K. Organotin polyesters from 1,1'-ferrocenedicarboxylic acid. J Inorg Organomet Polym Mater.2007; 17(1):127-133.
    [50]He W, Deng F, Jiang YY, Wu D, Fan HL, Jian XG. Novel organometallic aromatic polyester based on ferrocene. Chin Chem Lett.2010;21(6):748-752.
    [51]Mehdipour-Ataei S, Babanzadeh S. New types of heat-resistant, flame-retardant ferrocene-based polyamides with improved solubility. React Funct Polym.2007;67(10):883-892.
    [52]Mehdipour-Ataei S, Babanzadeh S. Synthesis, characterization and properties of novel polyamides containing ferrocene unit and flexible spacers. Appl Organomet Chem. 2007;21(5):360-367.
    [53]Mehdipour-Ataei S, Tadjarodi A, Babanzadeh S. Novel ferrocene modified poly(amide ether amide)s and investigation of physical and thermal properties. Eur Polym J. 2007;43(2):498-506.
    [54]Zhang G, Zhao T-P, Wang Y-L, Liu S-L, Long S-R, Yang J. Synthesis and characterization of novel polyamide containing ferrocene and thio-ether units. J Macromol Sci, Part A:Pure Appl Chem.2010;47(3):291-301.
    [55]Neuse EW. Ferrocene-containing polymers:Polycondensation of ferrocene with aldehydes. Nature.1964;204(4954):179-180.
    [56]Neuse EW, Quo E. Ferrocene-containing polymers V. Polycondensation of N,N-dimethylaminomethylferrocene. J Polym Sci, Part A:Polym Chem.1965;3(4):1499-1514.
    [57]Neuse EW, Koda K, Carter E. Ferrocene-containing polymers VII. Polycondensation of ferrocene with furfural. Makromol Chem.1965;84(1):213-224.
    [58]Neuse EW, Koda K. Ferrocene-containing polymers XI. Polycondensation of ferrocene with o-anisaldehyde. J Organomet Chem.1965;4(6):475-483.
    [59]Neuse EW, Quo E. Ferrocene-containing polymers. IX. Polycondensation of ferrocene with formaldehyde. Bull Chem Soc Jpn.1966;39(7):1508-1514.
    [60]Asahara T, Seno M, Mitsuhashi K, Ichikawa Y. Ferrocene polymers obtained by the polycondensation of ferrocene with dicarboxylic acid chlorides. Bull Chem Soc Jpn. 1971;44(l):207-210.
    [61]Aly KI, Abdel Monem MI. New polymer synthesis. XXX. Synthesis and thermal behavior of new organometallic polyketones and copolyketones based on diferrocenylidenecycloheptanone. J Appl Polym Sci.2005;98(6):2394-2401.
    [62]Knapp R, Velten U, Rehahn M. Synthesis and material properties of soluble poly(1,1'-ferrocenylene-alt-p-oligophenylenes). Polymer.1997;39(23):5827-5838.
    [63]Yamamoto T, Morikita T, Maruyama T, Kubota K, Katada M. Poly(aryleneethynylene) type polymers containing a ferrocene unit in the π-conjugated main chain. Preparation, optical properties, redox behavior, and M6ssbauer spectroscopic analysis. Macromolecules. 1997;30(18):5390-5396.
    [64]Yamaguchi I, Ishii H, Sakano T, Osakada K, Yamamoto T. Rhodium-and ruthenium-complex-catalyzed condensation of ferrocene-containing dithiols and diols with diarylsilanes to give silaferrocenophanes and ferrocene polymers. Appl Organomet Chem.2001;15(3):197- 203.
    [65]Tang H, Liu Y, Chen X, Qin J, Inokuchi M, Kinoshita M, et al. Synthesis and characterization of poly(ferrocenylsilane)s and their charge transfer salts. Macromolecules. 2004;37(26):9785-9792.
    [66]Zhao D, Ren B, Liu S, Liu X, Tong Z. A novel photoreversible poly(ferrocenylsilane) with coumarin side group:Synthesis, characterization, and electrochemical activities. Chem Commun.2006(7):779-781.
    [67]Masson G, Lough AJ, Manners I. Soluble poly(ferrocenylenevinylene) with t-butyl substituents on the cyclopentadienyl ligands via ring-opening metathesis polymerization. Macromolecules.2008;41(3):539-547.
    [68]Wang J-J, Wang L, Wang X-J, Chen T, Yu H-J, Wang W, et al. Preparation of poly ferrocenylsilane via thermal ROP, synthesis of polyferrocenylsilane with methacrylate side chain and its photochemical cross-linking properties. Mater Lett.2006;60(11):1416-1419.
    [69]Zechel DL, Hultzsch KC, Rulkens R, Balaishis D, Ni Y, Pudelski JK, et al. Thermal and transition-metal-catalyzed ring-opening polymerization (ROP) of [1]silaferrocenophanes with chlorine substituents at silicon:A route to tunable poly(ferrocenylsilanes). Organometallics. 1996; 15(8):1972-1978.
    [70]Temple K, Massey JA, Chen Z, Vaidya N, Berenbaum A, Foster MD, et al. Living anionic ring-opening polymerization of unsymmetrically substituted silicon-bridged [l]ferrocenophanes; A route to organometallic block copolymers with amorphous poly(ferrocenylsilane) blocks. J Inorg Organomet Polym.1999;9(4):189-198.
    [71]Rider DA, Cavicchi KA, Power-Billard K.N, Russel TP, Manners 1. Diblock copolymers with amorphous atactic poly ferrocenylsilane blocks:Synthesis, characterization, and self-Assembly of polystyrene-block-poly(ferrocenylethylmethylsilane) in the bulk state. Macromolecules.2005;38(16):6931-6938.
    [72]Pittman CU, Surynarayanan B. Synthesis and polymerization of 3-vinylbisfulvalenediiron. Preparation and conductivity of its polymeric [FeⅡFeⅢ](TCNQ)2- salts. J Am Chem Soc.1974;96(26):7916-7919.
    [73]Michinobu T, Kumazawa H, Noguchi K, Shigehara K. One-step synthesis of donor-acceptor type conjugated polymers from ferrocene-containing poly(aryleneethynylene)s. Macromolecules.2009;42(16):5903-5905.
    [74]Kivala M, Diederich Fo. Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores. Ace Chem Res.2009;42(2):235-248.
    [75]Chao D, Lu X, Chen J, Liu X, Zhang W, Wei Y. Synthesis and characterization of electroactive polyamide with amine-capped aniline pentamer and ferrocene in the main chain by oxidative coupling polymerization. Polymer.2006;47(8):2643-2648.
    [76]Scheirs J, Long TE. Modern polyesters:Chemistry and technology of polyesters and copolyesters. Chichester:John Wiley & Sons, Ltd; 2003.
    [77]Abd-El-Aziz AS, Todd EK, Okasha RM, Wood TE. Novel approach to oligomers and polymers containing neutral and cationic iron moieties within and pendent to their backbones. Macromol Rapid Commun.2002;23(13):743-748.
    [78]Wilbert G, Zentel R. Liquid crystalline main-chain polymers containing the ferrocene unit as a side group. Macromol Chem Phys.1996; 197(10):3259-3268.
    [79]Wilbert G, Traud S, Zentel R. Liquid crystalline main chain polymers containing the ferrocene unit as a side group. Macromol Chem Phys.1997;198(12):3769-3785.
    [80]Combs Jr CS, Ashmore CI. Solid propellant having a ferrocene containing polyester fuel binder. US Patents 1975,3886007.
    [81]Combs CS, Ashmore CI. Ferrocene polyesters. US Patents1975,3898254.
    [82]McAdam CJ, Moratti SC, Robinson BH, Simpson J. A neo-pentyl-ferrocene motif for the synthesis of electroactive polyesters. J Organomet Chem.2008;693(16):2715-2722.
    [83]Moore JS, Stupp SI. Room temperature polyesterification. Macromolecules. 1990;23(1):65-70.
    [84]McAdam CJ, Nafady A, Bond AM, Moratti SC, Simpson J. Neo-pentyl-ferrocene based electroactive polyesters. J Inorg Organomet Polym Mater.2008;18(4):485-490.
    [85]Nagarale RK, Lee JM, Shin W. Electrochemical properties of ferrocene modified polysiloxane/chitosan nanocomposite and its application to glucose sensor. Electrochim Acta. 2009;54(26):6508-6514.
    [86]Pittman CU, Lai JC, Vanderpool DP, Good M, Prado R. Polymerization of ferrocenylmethyl acrylate and ferrocenylmethyl methacrylate. Characterization of their polymers and their polymeric ferricinium salts. Extension to poly (ferrocenylethylene). Macromolecules.1970;3(6):746-754.
    [87]Pittman CU, Voges RL, Jones WB. Organometallic polymers. ⅩⅠ. Copolymerization of 2-ferrocenylethy] acrylate and methacrylate with styrene, vinyl acetate, methyl acrylate, and methyl methacrylate. Macromolecules.1971;4(3):298-302.
    [88]Ritter H, Mondrzik BE, Rehahn M, Gallei M. Free radical homopolymerization of a vinylferrocene/cyclodextrin complex in water. Beilstein J Org Chem.2010;6(60):1-5.
    [89]Xu J, Tian Y, Peng R, Xian Y, Ran Q. Jin L. Ferrocene clicked poly(3,4-ethylenedioxythiophene) conducting polymer:Characterization, electrochemical and electrochromic properties. Electrochem Commun.2009; 11(10):1972-1975.
    [90]Hardy CG, Ren L, Tamboue TC, Tang C. Side-chain ferrocene-containing (meth)acrylate polymers synthesis and properties. J Polym Sci, Part A:Polym Chem.2011;49(6):1409-1420.
    [91]Xu LQ, Wan D, Gong HF, Neoh K-G, Kang E-T, Fu GD. One-pot preparation of ferrocene-functionalized polymer brushes on gold substrates by combined surface-initiated atom transfer radical polymerization and "Click Chemistry". Langmuir.2010;26(19):15376-15382.
    [92]Shi M, Li A-L, Liang H, Lu J. Reversible addition-fragmentation transfer polymerization of a novel monomer containing both aldehyde and ferrocene functional groups. Macromolecules.2007;40(6):1891-1896.
    [93]Xiao Z-P, Cai Z-H, Liang H, Lu J. Amphiphilic block copolymers with aldehyde and ferrocene-functionalized hydrophobic block and their redox-responsive micelles. J Mater Chem.2010;20(38):8375.
    [94]Herfurth C, Voll D, Buller J, Weiss J, Barner-Kowollik C, Laschewsky A. Radical addition fragmentation chain transfer (RAFT) polymerization of ferrocenyl (Meth)acrylates. J Polym Sci, Part A:Polym Chem.2012;50(1):108-118.
    [95]Zhang Q, Jiao L, Shan C, Yang G, Xu X, Niu L. Synthesis and properties of ferrocene-functionalised polythiophene derivatives. Synth Met.2009;159(14):1422-1426.
    [96]Naji A, Cretin M, Persin M, Sarrazin J. Preparation of membranes by electropolymerization of pyrrole functionalized by a ferrocene group. J Appl Polym Sci. 2004;91(6):3947-3958.
    [97]Camurlu P, Bicil Z, Giiltekin C, Karagoren N. Novel ferrocene derivatized poly(2,5- dithienylpyrrole)s:Optoelectronic properties, electrochemical copolymerization. Electrochim Acta.2012;63:245-250.
    [98]Heilmann JB, Scheibitz M, Qin Y, Sundararaman A, Jakle F, Kretz T, et al. A synthetic route to borylene-bridged poly(ferrocenylene)s. Angew Chem Int Ed.2006;45(6):920-925.
    [99]Parab K, Jakle F. Synthesis, characterization, and anion binding of redox-active triarylborane polymers. Macromolecules.2009;42(12):4002-4007.
    [100]Singh P, Rausch MD, Lenz RW. Ferrocene containing liquid crystalline copolyesters. PolymBull.1989;22:247-252.
    [101]Neuse EW, Woodhouse JR, Montaudo G, Puglisi C. An iron-organic polymeric smoke suppressant for poly(vinyl chloride). Appl Organomet Chem.1988;2(1):53-57.
    [102]Deschenaux R, Goodby JW. Ferrocenes. In:Togni A, Hayashi T, editors. Weinheim: VCH; 1995. [103] Wang X-J, Zhou Q-F. Liquid crystalline polymers. Singapore:World Scientific; 2004.
    [104]Deschenaux R, Kosztics I, Scholten U, Guillon D, Ibn-Elhaj M. First ferrocene-containing side-chain liquid-crystalline polymers. J Mater Chem.1994;4(8):1351-1352.
    [105]Wiesemann A, Zentel R, Lieser G. Redox active LC ionomers:LC ionomers as materials for compatible blends with amorphous ionomers. Acta Polym.1995;46(1):25-36.
    [106]Wilbert G, Wiesemann A, Zentel R. New ferrocene-containing copolyesters. Macromol Chem Phys.1995; 196(11):3771-3788.
    [107]Deschenaux R, Izvolenski V, Turpin F, Guillon D, Heinrich B. Ferrocene-containing thermotropic side-chain liquid-crystalline polymethacrylates. Chem Commun.1996(3):439-440.
    [108]Liu X-H, Bruce DW, Manners I. Novel calamitic side-chain metallomesogenic polymers with ferrocene in the backbone:Synthesis and properties of thermotropic liquid-crystalline poly(ferrocenylsilanes). Chem Commun.1997(3):289-290.
    [109]Brettar J, Burgi T, Donnio B, Guillon D, Klappert R, Scharf T, et al. Ferrocene-containing optically active liquid-crystalline side-chain polysiloxanes with planar chirality. Adv Funct Mater.2006;16(2):260-267.
    [110]Ahmed R, Hsiao M-S, Matsuura Y, Houbenov N, Faul CFJ, Manners I. Redox-active mesomorphic complexes from the ionic self-assembly of cationic polyferrocenylsilane polyelectrolytes and anionic surfactants. Soft Matter.2011;7(21):10462.
    [111]Partridge AC, Jansen ML, Arnold WM. Conducting polymer-based sensors. Mater Sci Eng, C.2000; 12(1-2):37-42.
    [112]Ayad MM, Torad NL. Alcohol vapours sensor based on thin polyaniline salt film and quartz crystal microbalance. Talanta.2009;78(4-5):1280-1285.
    [113]Ayad MM, El-Hefnawey G, Torad NL. A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance. J Hazard Mater.2009;168(1):85-88.
    [114]Ayad MM, El-Hefnawey G, Torad NL. Quartz crystal microbalance sensor coated with polyaniline emeraldine base for determination of chlorinated aliphatic hydrocarbons. Sens Actuators, B.2008;134(2):887-894. [115] Ayad MM, Prastomo N, Matsuda A, Stejskal J. Sensing of silver ions by nanotubular
    polyaniline film deposited on quartz-crystal in a microbalance. Synth Met.2010; 160(1-2):42-46.
    [116]Al-Mashat L, Tran HD, Wlodarski W, Kaner RB, Kalantar-zadeh K. Polypyrrole nanofiber surface acoustic wave gas sensors. Sens Actuators, B.2008;134(2):826-831.
    [117]Meixner H, Gerblinger J, Lampe U, Fleischer M. Thin-film gas sensors based on semiconducting metal oxides. Sens Actuators, B.1995;23(2-3):119-125.
    [118]Casey V, Cleary J, D'Arcy G, McMonagle JB. Calorimetric combustible gas sensor based on a planar thermopile array:Fabrication, characterisation, and gas response. Sens Actuators, B.2003;96(1-2):114-123.
    [119]Paul S, Chavan NN, Radhakrishnan S. Polypyrrole functionalized with ferrocenyl derivative as a rapid carbon monoxide sensor. Synth Met.2009;159(5-6):415-418.
    [120]Ion A, Ion I, Popescu A, Ungureanu M, Moutet J-C, Saint-Aman E. A ferrocene crown ether-functionalized polypyrrole film electrode for the electrochemical recognition of barium and calcium cations. Adv Mater.1997;9(9):711-713.
    [121]Reynes O, Royal G, Chainet E, Moutet J-C, Saint-Aman E. Poly(ferrocenylalkylammonium):A molecular electrode material for dihydrogenphosphate sensing. Electroanalysis.2003;15(1):65-69.
    [122]Szacilowski K. Digital information processing in molecular systems. Chem Rev. 2008; 108(9):3481-3548.
    [123]Ubukata T, Isoshima T, Hara M. Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system. Adv Mater.2005; 17(13):1630-1633.
    [124]Bian S, He J, Schesing KB, Braunschweig AB. Polymer pen lithography (PPL)-induced site-specific click chemistry for the formation of functional glycan arrays. Small. 2012;8(13):2000-2005.
    [125]Smolander M, Gorton L, Lee HS, Skotheim T, Lan H-L. Ferrocene-containing polymers as electron transfer mediators in carbon paste electrodes modified with PQQ-dependent aldose dehydrogenase. Electroanalysis.1995;7(10):941-946.
    [126]Kandimalla V, Tripathi V, Ju H. A conductive ormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application. Biomaterials. 2006;27(7):1167-1174.
    [127]Wang X, Gu H, Yin F, Tu Y. A glucose biosensor based on Prussian blue/chitosan hybrid film. Biosens Bioelectron.2009;24(5):1527-1530.
    [128]Chen M, Diao G. Electrochemical study of mono-6-thio-β-cyclodextrin/ferrocene capped on gold nanoparticles:characterization and application to the design of glucose amperometric biosensor. Talanta.2009;80(2):815-820.
    [129]Garcia Armada MP, Losada J, Lopez-Villanueva FJ, Frey H, Alonso B, Casado CM. Electrochemical and bioelectrocatalytical properties of novel block-copolymers containing interacting ferrocenyl units. J Electroanal Chem.2008;693(16):2803-2811.
    [130]Wu S, Chen Y, Zeng F, Gong S, Tong Z. Electron transfer in ferrocene-containing functionalized chitosan and its electrocatalytic decomposition of peroxide. Macromolecules. 2006;39(20):6796-6799.
    [131]Yang W, Zhou H, Sun C. Synthesis of ferrocene-branched chitosan derivatives:Redox polysaccharides and their application to reagentless enzyme-based biosensors. Macromol Rapid Commun.2007;28(3):265-270.
    [132]Merchant SA, Glatzhofer DT, Schmidtke DW. Effects of electrolyte and pH on the behavior of cross-linked films of ferrocene-modified poly(ethylenimine). Langmuir. 2007;23(22):11295-11302.
    [133]Merchant SA, Tran TO, Meredith MT, Cline TC, Glatzhofer DT, Schmidtke DW. High-sensitivity amperometric biosensors based on ferrocene-modified linear poly(ethylenimine). Langmuir.2009;25(13):7736-7742.
    [134]Lorenzo E, Pariente F, Hernandez L, Tobalina F, Darder M, Wu Q, et al. Analytical strategies for amperometric biosensors based on chemically modified electrodes. Biosens Bioelectron.1998; 13(3-4):319-332.
    [135]Zheng H, Zhou J, Zhang J, Huang R, Jia H, Suye S-i. Electrical communication between electrode and dehydrogenase by a ferrocene-labeled high molecular-weight cofactor derivative:application to a reagentless biosensor. Microchim Acta.2009; 165(1-2):109-115.
    [136]Suye S-i, Zheng H, Okada H, Hori T. Assembly of alternating polymerized mediator, polymerized coenzyme, and enzyme modified electrode by layer-by-layer adsorption technique. Sens Actuators, B.2005;108(1-2):671-675.
    [137]Suye S-i, Aramoto Y, Nakamura M, Tabata I, Sakakibara M. Electrochemical reduction of immobilized NADP+ on a polymer modified electrode with a co-polymerized mediator. Enzyme MicrobTechnol.2002;30(2):139-144.
    [138]Abastyanik MF,$enel M. Immobilization of glucose oxidase on reagentless ferrocene-containing polythiophene derivative and its glucose sensing application. J Electroanal Chem. 2010;639(1-2):21-26.
    [139]Ho H-A, Najari A, Leclerc M. Optical detection of DNA and proteins with cationic polythiophenes. Acc Chem Res.2008;41 (2):168-178.
    [140]Zhang L, Sun H, Li D, Song S, Fan C, Wang S. A conjugated polymer-based electrochemical DNA sensor:Design and application of a multi-functional and water-soluble conjugated polymer. Macromol Rapid Commun.2008;29(17):1489-1494.
    [141]Wu Y, Liu S, He L. Electrochemical biosensing using amplification-by-polymerization. Anal Chem.2009;81(16):7015-7021.
    [142]Qiu J-D, Liang R-P, Wang R, Fan L-X, Chen Y-W, Xia X-H. A label-free amperometric immunosensor based on biocompatible conductive redox chitosan-ferrocene/gold nanoparticles matrix. Biosens Bioelectron.2009;25(4):852-857.
    [143]Wang X-B, Dai B, Woo H-K, Wang L-S. Intramolecular rotation through proton transfer: [Fe(η5-C5H4CO2-)2] versus [(η5-C5H4CO2-)Fe(η5-C5H4CO2H)]. Angew Chem Int Ed. 2005;44(37):6022-6024.
    [144]Zhang D, Zhang Q, Su J, Tian H. A dual-ion-switched molecular brake based on ferrocene. Chem Commun.2009(13):1700-1702.
    [145]Hehn R, Kanitz A, Roth W. Electrochromic formulations and uses therefor. US Patents20100210807.
    [146]Knobloch FW, Rauscher WH. Condensation polymers of ferrocene derivatives. J Polym Sci.1961;54(160):651-656.
    [147]Huo J. Study on synthesis and properties of novel ferrocenyl hyperbranched polymers and ferrocenyl coordination polymers [Doctoral dissertation]:Zhejiang University; 2010.
    [148]Li C, Lo C-W, Zhu D, Li C, Liu Y, Jiang H. Synthesis of a photoresponsive liquid-crystalline polymer containing azobenzene. Macromol Rapid Commun.2009;30(22):1928-1935.
    [149]Rameshbabu K, Kannan P. Synthesis and characterization of thermotropic liquid crystalline polyphosphates containing photoreactive moieties. Liq Cryst.2004;31(6):843-851.
    [150]Furman J, Makaruk L. Ferrocenic liquid crystal polymers. Polimery.1996;41(7-8):423-425.
    [!51]Tan Q, Wang L, Ma L, Yu H, Liu Q, Xiao A. Electrochemical behaviors and anion recognition of ferrocene modified hyperbranched polyether. Macromolecules. 2009;42(13):4500-4510.
    [152]Xue W-M, Kuhn FE, Herdtweck E, Li Q. Organometallic polymers with the backbone consisting of ferrocene and bimetallic tetracarboxylates. Eur J Inorg Chem.2001 (1):213-221.
    [153]Nigar A, Khan MS, Akhter Z, Butt MS. Some new organometallic polyamides based on ferrocene. J Inorg Organomet Polym Mater.2007;17(3):509-516.
    [154]Iqbal N, Khan MS, Saeed MA, Akhter Z. Synthesis and physicochemical studies of ferrocene-containing materials. Appl Organomet Chem.2007;21(10):862-869.
    [155]Fengjuan X, Changxiao Y, Erxin W, Yunjun L. Thermal behaviors of ferrocenyl-terminated hyperbranched polyester. J Inorg Organomet Polym Mater.20I0;20(2):278-283.
    [156]Ma L, Wang L, Tan Q, Yu H, Huo J, Ma Z, et al. Study on synthesis and electrochemical properties of novel ferrocene-based compounds and their applications in anion recognition. Electrochim Acta.2009;54(23):5413-5420.
    [157]Li C, Wang L, Deng L, Yu H, Huo J, Ma L, et al. Electrochemical assessment of the interaction of dihydrogen phosphate with a novel ferrocenyl receptor. J Phys Chem B. 2009;113(46):15141-15144.
    [158]Tan Q, Wang L, Ma L, Yu H, Ding J, Liu Q, et al. Study on anion electrochemical recognition based on a novel ferrocenyl compound with multiple binding sites. J Phys Chem B.2008; 112(35):11171-11176.
    [159]Linert W, Fukuda Y, Comard A. Chromotropism of coordination compounds and its applications in solution. Coord Chem Rev.2001;218:113-152.
    [160]Smallwood IM. Handbook of organic solvent properties. New York:John Wiley & Sons; 1996.
    [161]Huo J, Wang L, Yu H-J, Deng L-B, Zhou J-F, Yang Q. Synthesis and electrochemical behavior of linear oligo(ferrocenylsilane) and hyperbranched poly(ferrocenylsilane). J Polym Sci, Part B:Polym Phys.2007;45(20):2880-2889.
    [162]Bard A, Faulkner L. Electrochemical methods fundamentals and applications. New York: John Wiley & Sons; 2001.
    [163]Chen T, Wang L, Jiang G, Wang J, Dong X, Wang X, et al. Electrochemical behavior of poly(ferrocenyldimethylsilane-b-dimethylsiloxane) films. J Phys Chem B.2005; 109(10):4624-4630.
    [164]Wang X, Wang L, Wang J, Chen T. Study on the electrochemical behavior of poly(ferrocenylsilane) films. J Phys Chem B.2004;108(18):5627-5633.
    [165]Najafi-Mohajeri N, Nelson GL, Benrashid R. Synthesis and properties of new ferrocene-modified urethane block copolymers. J Appl Polym Sci.2000;76(13):1847-1856.
    [166]Bueche F. Physical properties of polymers. New York, London:Interscience Publishers; 1962.
    [167]Mark JE. Physical properties of polymers handbook. New York:Springer; 2007.
    [168]Carlescu I, Scutaru AM, Apreutesei D, Alupei V, Scutaru D. The liquid crystalline behaviour of ferrocene derivatives containing azo and imine linking groups. Liq Cryst. 2007;34(7):775-785.
    [169]Carlescu I, Scutaru AM, Apreutesei D, Alupei V, Scutaru D. The liquid crystalline properties of some ferrocene-containing Schiff bases. Appl Organomet Chem.2007;21(8):661-669.
    [170]Zhang H, Yu Z, Wan X, Zhou QF, Woo EM. Effect of molecular weight on liquid- crystalline bahavior of a mesogen-jacketed liquid crystal polymer synthesized by atom transfer radical polymerization. Polymer.2002;43(8):2357-2361.
    [171]Ye C, Zhanng H-L, Huang Y, Chen E-Q, Lu Y, Shen D, et al. Molecular weight dependence of phase structures and transitions of mesogen jacketed liquid crystalline polymers based on 2-vinyIterephthalic acids. Macromolecules.2004;37(19):7188-7196.
    [172]Singh P, Rausch MD, Lenz RW. Ferrocene containing liquid crystalline copolyesters. Polym Bull.1989;22(3):247-252.
    [173]Hird M. Fluorinated liquid crystals-properties and applications. Chem Soc Rev. 2007;36(12):2070-2095.
    [174]Mark JE, Allcock HR, West R. Inorganic polymers. Oxford:Oxford University Press; 2005.
    [175]Frontiers in transition metal containing polymers. In:Abd-El-Aziz AS, Manners I, editors. Hoboken:John Wiley & Sons; 2007.
    [176]Dierking I. Recent developments in polymer stabilised liquid crystals. Polymer Chemistry.2010;1(8):1153-1159.
    [177]Bower DI. An introduction to polymer physics. Cambridge:Cambridge University Press; 2002.
    [178]Khan MS, Nigar A, Bashir M, Akhter Z. A new ferrocene-containing polyamide prepared from an improved synthesis of 1,1'-ferrocene dicarbonyl chloride and ferrocene-based diamine. Synth Commun.2007;37(3):473-482.
    [179]Najafi-Mohajeri N, Nelson GL. Cyclic voltammetry properties of ferrocene modified block copolyurethanes. Polymer.2001;42(16):7221-7224.
    [180]Tan Q, Wang L, Yu H, Deng L. Study on synthesis and electrochemical properties of a novel ferrocene-based compound and its application in anion recognition. J Phys Chem B. 2007;111(15):3904-3909.
    [181]Chen T, Wang L, Jiang G, Wang J, Wang X, Zhou J, et al. Electrochemical behavior on poly(ferrocenyldimethylsilane)-b-poly(benzyl ether) linear-dendritic organometallic polymer films. J Electroanal Chem.2006;586(1):122-127.
    [182]Hu X, Li Y, Xu C. Synthesis, characterization, and pyrolysis of ferrocenyl unit containing organosilicon polymers. J Appl Polym Sci.2010; 118(6):3384-3390.
    [183]Chapoy LL. Recent advances in liquid crystalline polymers. London:Elsevier Applied Science; 1985.
    [184]Woodward AE. Atlas of polymer morphology. Munich:Hanser; 1989.
    [185]Yuan WZ, Yu Z-Q, Tang Y, Lam JWY, Xie N, Lu P, et al. High solid-state efficiency fluorescent main chain liquid crystalline polytriazoles with aggregation-induced emission characteristics. Macromolecules.2011;44(24):9618-9628.
    [186]Roviello A, Sirigu A. Mesophasic polymers, co-polyalkanoates of 4,4'-dihydroxy-α,α'-dimethylbenzalazine. Eur Polym J.1979; 15(1):61-67.
    [187]Roviello A, Sirigu A. Mesophasic behaviour of some polycarbonates of 4,4'-dihydroxy-α,α'-dimethylbenzalazine. Eur Polym J.1979;15(5):423-430.
    [188]Blumstein A, Thomas O. Odd-even effect in thermotropic liquid crystalline 4,4'-dihydroxy-2,2'-dimethylazoxybenzene-alkanedioic acid polymers. Macromolecules. 1982;15(5):1264-1267.
    [189]Zhou Q-F, Lenz RW. Liquid crystal polymers.15. Synthesis and liquid crystalline properties of alkyl-substituted polyesters. J Polym Sci, Polym Chem Ed.1983;21(11):3313-3320.
    [190]Percec V, Tsuda Y. Liquid crystalline polyethers based on conformational isomerism.10. Synthesis and determination of the virtual mesophases of polyethers based on 1-(4-hydroxyphenyl)-2-(2-methyI-4-hydroxyphenyl)ethane and α,ω-dibromoalkanes containing from 17 to 20 methylene units. Macromolecules.1990;23(14):3509-3520.
    [191]Kricheldorf HR, Domschke A, Schwarz G. Liquid-crystalline polyimides.3. Fully aromatic liquid-crystalline poly(ester imide)s derived from N-(4-carboxyphenyl)trimellitimide and substituted hydroquinones. Macromolecules.1991;24(5):1011-1016.
    [192]Chang S, Han CD. Effect of flexible spacer length on the phase transitions and mesophase structures of main-chain thermotropic liquid-crystalline polyesters having bulky pendent side groups. Macromolecules.1997;30(6):1670-1684.
    [193]Komiya Z, Pugh C, Schrock RR. Synthesis of side-chain liquid crystal polymers by living ring-opening metathesis polymerization.2. Influence of molecular weight, polydispersity, and flexible spacer length (n=9-12) on the thermotropic behavior of the resulting polymers. Macromolecules.1992;25(24):6586-6592.
    [194]Komiya Z, Schrock RR. Synthesis of side chain liquid crystal polymers by living ring-opening metathesis polymerization.5. Influence of mesogenic group and interconnecting group on the thermotropic behavior of the resulting polymers. Macromolecules. 1993;26(6):1393-1401.
    [195]Laus M, Bignozzi MC, Angeloni AS, Galli G, Chiellini E. Side-chain liquid-crystalline alternating copolymers of mesogenic monomers synthesis and properties. Macromolecules. 1993;26(15):3999-4005.
    [196]Craig AA, Imrie CT. Effect of spacer length on the thermal properties of side-chain liquid crystal polymethacrylates.2. Synthesis and characterization of the poly[ω.-(4'-cyanobiphenyl-4-yloxy)alkyl methacrylate]s. Macromolecules.1995;28(10):3617-3624.
    [197]Winkler B, Ungerank M, Stelzer F. Side-chain liquid crystal polymers of 2,3-disubstituted norbomenes via ring-opening metathesis polymerization,2) Methoxybiphenyl as mesogenic group, influence of flexible spacer length m= 4 to 10 on the thermotropic behaviour. Macromol Chem Phys.1996;197(7):2343-2357.
    [198]Lee KM, Han CD. Rheology of nematic side-chain liquid-crystalline polymer: Comparison with main-chain liquid-crystalline polymer. Macromolecules.2002;35(16):6263-6273.
    [199]Weng X, Li CY, Jin S, Zhang D, Zhang JZ, Bai F, et al. Helical twist senses, liquid crystalline behavior, crystal microtwins, and rotation twins in a polyester containing main-chain molecular asymmetry and effects of the number of methylene units in the backbones on the phase structures and morphologies of its homologues. Macromolecules.2002;35(26):9678-9686.
    [200]Jeong K-U, Knapp BS, Ge JJ, Jin S, Graham MJ, Xiong H, et al. Structures and phase transformations of asymmetric bent main-chain liquid crystalline polyesters. Macromolecules. 2005;38(20):8333-8344.
    [201]Hasegawa M, Yamamoto T, Kanazawa A, Shiono T, Ikeda T. Photochemically induced dynamic grating by means of side chain polymer liquid crystals. Chem Mater. 1999; 11(10):2764-2769.
    [202]Hasegawa M, Yamamoto T, Kanazawa A, Shiono T, Ikeda T. A dynamic grating using a photochemical phase transition of polymer liquid crystals containing azobenzene derivatives. Adv Mater.1999;11(8):675-677.
    [203]Yamamoto T, Hasegawa M, Kanazawa A, Shiono T, Ikeda T. Holographic gratings and holographic image storage via photochemical phase transitions of polymer azobenzene liquid-crystal films. J Mater Chem.2000;10(2):337-342.
    [204]Yamamoto T, Hasegawa M, Kanazawa A, Shiono T, Ikeda T. Phase-type gratings formed by photochemical phase transition of polymer azobenzene liquid crystals:Enhancement of diffraction efficiency by spatial modulation of molecular alignment. J Phys Chem B. 1999;103(45):9873-9878.
    [205]Yu H, Naka Y, Shishido A, Ikeda T. Well-defined liquid-crystalline diblock copolymers with an azobenzene moiety:Synthesis, photoinduced alignment and their holographic properties. Macromolecules.2008;41(21):7959-7966.
    [206]Kapitza H, Zentel R. Combined liquid-crystalline polymers with chiral phases,2. Lateral substituents. Makromol Chem.1988;189(8):1793-1807.
    [207]Poths H, Zentel R, Vallerien SU, Kremer F. LC-polymers with axial chirality. Mol Cryst Liq Cryst.1991;203(1):101-111.
    [208]Piao XL, Kim J-S, Yun Y-K, Jin J-I, Hong S-K. Combined type liquid crystalline polymers composed of poly(p-phenylene terephthalate) main chain and azobenzene mesogenic side groups attached through polymethylene spacers. Macromolecules.1997;30(8):2294-2299.
    [209]Zhou M, Han CD. Synthesis and characterization of a combined main-chain/side-chain liquid-crystalline polymer exhibiting both thermotropic and lyotropic characteristics and its lyotropic phase behavior. Macromolecules.2005;38(23):9602-9609.
    [210]Huang W, Han CD. Synthesis of combined main-chain/side-chain liquid-crystalline polymers via self-assembly. Macromolecules.2006;39(14):4735-4745.
    [211]Alonso B, Cuadrado I, Moran M, Losada J. Organometallic silicon dendrimers. J Chem Soc, Chem Commun.1994(22):2575-2576.
    [212]Casado CM, Cuadrado I, Moran M, Alonso B, Garcia B, Gonzalez B, et al. Redox-active ferrocenyl dendrimers and polymers in solution and immobilised on electrode surfaces. Coord Chem Rev.1999;185-186:53-79.
    [213]Nguyen P, Gomez-Elipe P, Manners I. Organometallic polymers with transition metals in the main chain. Chem Rev.1999;99(6):1515-1548.
    [214]Fery-Forgues S, Delavaux-Nicot B. Ferrocene and ferrocenyl derivatives in luminescent systems. J Photochem Photobiol, A.2000; 132(3):137-159.
    [215]Corvazier L, Zhao Y. Induction of liquid crystal orientation through azobenzene-containing polymer networks. Macromolecules.1999;32(10):3195-3200.
    [216]Shen Y, Qiu L, Zao L, Zhang X, Zhao Y, Zhai J, et al. The second-order nonlinear optical properties of a series of polyesters containing push-pull azobenzene chromophore in their side chain. J Mater Sci.1999;34(7):1513-1517.
    [217]He Y, Wang X, Zhou Q. Epoxy-based azopolymers:Synthesis, characterization and photoinduced surface-relief-gratings. Polymer.2002;43(26):7325-7333.
    [218]Jung W-H, Ha E-J, Chung Id, Lee J-O. Synthesis of aniline-based azopolymers for surface relief grating. Macromol Res.2008;16(6):532-538.
    [219]Yamamoto T, Ohashi A, Yoneyama S, Hasegawa M, Tsutsumi O, Kanazawa A, et al. Phase-type gratings formed by photochemical phase transition of polymer azobenzene liquid crystal.2. Rapid switching of diffraction beams in thin films. J Phys Chem B. 2001; 105(12):2308-2313.
    [220]Okano K, Shishido A, Tsutsumi O, Shiono T, Ikeda T. Highly birefringent liquid-crystalline polymers for photonic applications:synthesis of liquid-crystalline polymers with side-chain azo-tolane mesogens and their holographic properties. J Mater Chem. 2005;15(33):3395-3401.
    [221]Amer WA, Wang L, Amin AM, Yu H, Tai Y. Synthesis and properties of main-chain ferrocene-based polymers containing N-methyldiethanolamine, phenyldiethanolamine and bisphenol-P. Submitted.2012.
    [222]Matsumoto S, Kubodera K-i, Kurihara T, Kaino T. Nonlinear optical properties of an azo dye attached polymer. Appl Phys Lett.1987;51(1):1-2.
    [223]Shuto Y, Amano M, Kaino T. Electrooptic light modulation in poled azo-dye-substituted polymer waveguides. Jpn J Appl Phys, Part 1.1991;30(2):320-326.
    [224]Chen M, Yu L, Dalton LR. New polymers with large and stable second-order nonlinear optical effects. Macromolecules.1991;24(19):5421-5428.
    [225]Mandal BK, Jeng RJ, Kumar J, Tripathy SK. New photocrosslinkable polymers for second-order nonlinear optical processes. Makromol Chem Rapid Commun.1991;12(11):607- 312.
    [226]Nemoto N, Miyata F, Nagase Y, Abe J, Hasegawa M, Shirai Y. Novel types of polyesters containing second-order nonlinear optically active chromophores with high density. Macromolecules.1996;29(7):2365-2371.
    [227]Qiu L, Zhang J, Zhai J, Shen Y. Synthesis and characterization of photonic polyesters containing azo chromophore in the side chain. Polym J.1996;28(12):1027-1032.
    [228]Wang X, Chen J-I, Marturunkkakul S, Li L, Kumar J, Tripathy SK. Epoxy-based nonlinear optical polymers functionalized with tricyanovinyl chromophores. Chem Mater. 1997;9(1):45-50.
    [229]Wang X, Kumar J, Tripathy SK, Li L, Chen J-I, Marturunkkakul S. Epoxy-based nonlinear optical polymers from post azo coupling reaction. Macromolecules.1997;30(2):219-225.
    [230]Nardele CG, Asha SK. Twin liquid crystals and segmented thermotropic polyesters containing azobenzene-effect of spacer length on LC properties. J Polym Sci, Part A:Polym Chem.2012;50(14):2770-2785.
    [231]Abd-El-Aziz AS, Okasha RM, Shipman PO, Afifi TH. Neutral and cationic cyclopentadienyliron macromolecules containing arylazo chromophores. Macromol Rapid Commun.2004;25(16):1497-1503.
    [232]Abd-El-Aziz AS, Pereira NM, Boraie W, Todd EK, Afifi TH, Budakowski WR, et al. Synthesis and polymerization of cationic bis(cyclopentadienyliron)arene complexes containing arylazo dyes. J Inorg Organomet Polym Mater.2006;15(4):497-509.
    [233]Abd-El-Aziz AS, Okasha RM, Afifi TH, Todd EK. A new class of cationic organoiron polynorbornenes containing azo dyes. Macromol Chem Phys.2003;204(4):555-563.
    [234]Abd-El-Aziz AS, Strohm EA, Ding M, Okasha RM, Afifi TH, Sezgin S, et al. Design of star-shaped organoiron oligomers with azo dye bridges. J Inorg Organomet Polym Mater. 2010;20(3):592-603.
    [235]Abd-El-Aziz AS, Afifi TH, Budakowski WR, Friesen KJ, Todd EK. The first example of cationic iron-coordinated polyaromatic ethers and thioethers with azo dye-functionalized side chains. Macromolecules.2002;2002(24):8929-8932.
    [236]Yu H, Wang L, Huo J, Ding J, Tan Q. Synthesis and curing behavior of a novel ferrocene-based epoxy compound. J Appl Polym Sci.2008; 110(3):1594-1599.
    [237]Morel M, Aguilera C, Jimenez V, Basaez L, Gebhardt P, Heggie S. Synthesis and properties of new liquid crystals derivatives of 2,7-diethynyl-9,9-dihexylfluorene. Liq Cryst. 2012;39(7):847-856.
    [238]Lee JH, Jang I, Hwang SH, Lee SJ, Yoo SH, Jho JY. Self-assembled discotic nematic liquid crystals formed by simple hydrogen bonding between phenol and pyridine moieties. Liq Cryst.2012;39(8):973-981.
    [239]Majumdar KC, Shyam PK, Rao DSS, Prasad SK. Oxadiazole-based non-symmetric liquid crystalline trimers terminating with ferrocene and cholesterol units exhibiting TGBC* phase over a wide thermal range. Liq Cryst.2012;39(9):1117-1123.
    [240]Majumdar KC, Ghosh T, Shyam PK. Ferrocene-based novel calamitic metallomesogens containing a 2-phenylbenzoxazole unit:synthesis and characterisation. Liq Cryst. 2011;38(5):567-573.
    [241]Balaji K, Murugavel SC. Studies on synthesis and thermal characterisation of thermotropic liquid-crystalline poly(benzylidene-ether)s containing alkanones and methylene spacers in the main chain. Liq Cryst.2012;39(6):683-693.
    [242]Rahmatpour A. Synthesis and characterization of new aromatic polyesters based on 8,16-methano-16H-dinaphtho[2,1-d:1',2'-g][1,3]dioxocin-2,14-diol. J Polym Res.2011;18(6):1813-1820.
    [243]Tsierkezos NG. Cyclic voltammetric studies of ferrocene in nonaqueous solvents in the temperature range from 248.15 to 298.15 K. J Solution Chem.2007;36(3):289-302.
    [244]Droulia M, Anastasaki A, Rokotas A, Pitsikalis M, Paraskevopoulou P. Statistical copolymers of methyl methacrylate and 2-methacryloyloxyethyl ferrocenecarboxylate: Monomer reactivity ratios, thermal and electrochemical properties. J Polym Sci, Part A:Polym Chem.2011;49(14):3080-3089.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700