用户名: 密码: 验证码:
新型金属有机晶态网络结构的设计合成与荧光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十几年来,金属有机晶态网络化合物因其迷人的拓扑结构及其在催化、分子识别、气体存储、离子交换、药物传导、气体传感、光致发光、质子导电和分子磁体等方面的潜在应用而受到了人们的广泛关注,并且已经取得了一些较好的科研成果,积累了很多对其结构和功能进行设计合成的策略和经验。但由于其合成过程中存在诸多因素的影响,目前该领域研究还没有完全实现网络结构的定向设计合成和性能的调控,因此,有目的设计合成有机分子建筑块和选择适宜的金属离子,以实现具有预定拓扑网络结构和性能的金属有机晶态网络化合物的研究,仍是当今一项具有挑战性的课题。
     本论文在综述了金属有机晶态网络结构与性能研究概况基础上,依据晶体工程学和超分子化学的基本原理,选择了当前金属有机晶态网络研究中的几个热点体系,旨在合成一系列具有特定和新颖网络结构或具有良好光致发光性能的金属有机(超分子)晶态网络化合物,为定向设计合成这类化合物积累一些有价值的实验基础。本论文采用常温自组装和水热溶剂热等合成方法共合成出_39个金属有机(超分子)晶态网络化合物,并对其进行了相关的结构和性能表征,所获得的主要研究成果包括以下几方面。
     1.设计合成了4(1H)-吡啶-_3-磺酸(H_2L1)、2(1H)-吡啶-5-磺酸(H_2L2)、2-羟基-5-氯-苯磺酸(H_2L3)、2-羟基-5-羧基-苯磺酸(H_3L4)及2,4-二羟基-1,5-苯二磺酸(H_4L5)五个有机芳香磺酸分子建筑块,并与具有多种配位数和丰富配位多面体构型的银离子通过液相自组装法成功构筑了七个新颖的银基多面体晶态网络化合物,[Ag_2(HL1)_2]_n2nH_2O(1),[Ag_5(HL1)_3(NO_3)_2(H_2O)]_n(2),[Ag_2(HL1)(NO_3)]_n(3),[Ag_3(HL2)_2(NO_3)(H_2O)]_n(4),[Ag_2(HL_3)_2]_n(5),[Ag6(L4)_2(H_2O)_3]_n(6),[Ag_5(L5)(NH_3)_2(NO_3)]_n(7)。结构分析表明,邻位取代的羟基不仅能够丰富磺酸基的配位模式,而且还能够调控银基有机晶态网络化合物的最终结构。化合物1是第一例具有一维“蝴蝶”链结构的磺酸银晶态网络结构,化合物2-7均为不同银离子多面体构筑的银基多面体晶态网络结构,其中,化合物2为第一例由四种不同高配位数(5-8)银配位多面体构筑的二维金属有机多面体网络,而化合物6为第一例由四种不同低配位数(2-5)银配位多面体构筑的二维金属有机多面体网络,化合物7是第一例由多种银离子多面体建构的三维银基多面体网络。此外,对这些化合物的红外、热重及荧光性质做了详细的表征与分析。
     2.设计合成了两个具有非对称间隔基的柔性联吡啶胺分子N-(吡啶-3-甲基)吡啶-2-胺(L1)和N-(吡啶-3-甲基)吡啶-_3-胺(L2),通过水热合成法与间苯二甲酸和不同的过渡金属离子建构出八个混配体金属有机晶态网络化合物,[Mn_2(ip)_2(L1)_2(H_2O)_3]_n·nH_2O (8),[Co(ip)L1(H_2O)]_n(9),[Zn(ip)L1]_n(10),[Cd_2(ip)_2L1]_n(11),[Mn(ip)L2(H_2O)]_n·nCH_3OH (12),[M(ip)L2(H_2O)]_n·nH_2O [M=Co (13) and Ni (14)],[Zn_3(ip)_2(OH)_2(L2)_2]_n(15)。结构分析表明,金属离子的性质、间苯二甲酸阴离子的配位模式及柔性联吡啶胺(L1, L2)分子的构象对其网络结构有重要影响。化合物8为一维梯形链状结构,化合物9,10和12为二维(4,4)层状结构,化合物11为三维柱撑网络,同构化合物1_3和14展现出三维tcb网络结构,化合物15为全新的三维(5~5.6~9.7)网络。此外,化合物10,11和15在室温下有蓝色荧光发射。
     3.利用含有优异发色团的5,5'-亚甲基双水杨酸(H_4MDSA)和螯合氮杂环分子[2,2’-联吡啶(2,2’-bipy)、邻菲罗啉(phen)]与Zn(II)、Cd(II)离子通过水热合成法建构出三个混配体金属有机晶态网络化合物,[Zn(H_2MDSA)(phen)(H_2O)]_n(16),[Cd(H_2MDSA)(2,2’-bipy)]_n(17),[Cd_2(H_2MDSA)_2(phen)_2(H_2O)]_n(18),呈现出了一维螺旋链(16)、一维波浪形双链(17)及三维pcu拓扑网络结构(18),且金属离子半径和H_4MDSA配位模式对最终网络结构的调控起到重要作用。但由于室温下化合物16-18具有较弱的荧光发射且水溶性较差,故在H_4MDSA分子中羟基的邻位位置引入水溶性的磺酸基进行修饰,得到了具有较好水溶性的5,5'-亚甲基双磺基水杨酸(H_6MDSSA)分子,并与K(I)离子液相组装出三个水溶性的晶态网络化合物,{2(NH_4)·[K_2(H_2MDSSA)(H_2O)_3]}n(19),{(NH_4)·[K_3(H_2MDSSA)(H_2O)_4]}n·2nH_2O (20)和[K_4(H_2MDSSA)(H_2O)_6]_n(21)。结构分析表明,化合物19为二维层状结构,而化合物20和21为三维网络结构。此外,在水溶液中对化合物21荧光行为的详细研究结果显示其可作为潜在的Fe(III)和Cu(II)离子荧光探针、pH指示剂
     4.利用四个柔性联吡啶胺类分子N,N’-二(2-吡啶基)-1,4-苯二甲胺(M1)、N,N’-二(3-吡啶基)-1,4-苯二甲胺(M2)、N,N’-二(2-吡啶基)-1,3-苯二甲胺(M3)及N,N’-二(3-吡啶基)-1,3-苯二甲胺(M4)与硝酸和高氯酸在水-醇混合体系中自组装出八个超分子化合物,H_2M1·2NO_3(22),H_2M2·2NO_3(23),H_2M3·2NO_3(24),H_2M4·2NO_3(25),H_2M1·2ClO_4(26),H_2M2·2ClO_4(27),H_2M3·2ClO_4(28),及H_2M4·2ClO_4(29)。结构分析表明,这些化合物展现出了由平面型硝酸根调控的平行堆积超分子网络和四面体构型高氯酸根离子组装的波浪形堆积超分子网络,四个质子化的柔性联吡啶胺阳离子分别展现出trans-trans-trans,trans-trans-cis及cis-trans-trans构象,而且高氯酸根离子构筑的超分子化合物展现出很强的蓝光发射,这为今后设计合成具有优异发光性能的超分子晶态网络提供了一个思路。
     5.选择了水合肼、四个柔性脂肪二胺、三个刚性芳香二胺及一个半刚性芳香二胺分子与1,5-萘二磺酸(H_2NDS)分子在水-醇混合溶液中组装出十个共晶化合物,(H_2HA)·(NDS)(30),(H_2EDA)·(NDS)(31),(H_2PDA)·(NDS)(32),(H_2BTDA)·(NDS)(33),(H_2BDMA)·(NDS)·2H_2O (34),2(o-HBDA)·(NDS)(35),(m-H_2BDA)·(NDS)(36),(H_2MBDA)·(NDS)·3H_2O (37),(H_2SDA)·(NDS)·H_2O (38)及2(HSDA)·(NDS)·H_2O (39)(HA=水合肼,EDA=乙二胺,PDA=1,3-丙二胺,BTDA=1,4-丁二胺,BDMA=间苯二甲胺,o-BDA=邻苯二胺,m-BDA=间苯二胺,MBDA=4-甲基间苯二胺,SDA=4,4’-亚砜基二苯胺)。结构分析表明,十个共晶化合物展现出六种类型的超分子网络结构。有机二胺分子和超分子作用力,如π···π堆积、C-H···π、N-H···π及anion···π等能够显著影响共晶化合物的超分子花样,且–SO_3和–NH_3相互连接形成多样的[1+1]、[2+2]、[2+4]、[3+3]、[4+4]及[5+5]氢键环。脂肪二胺分子组装的化合物具有较强的荧光发射,而刚性芳香二胺分子使荧光强度明显降低,因此,在水-醇体系中H_2NDS分子可以被用于定性鉴别脂肪二胺和刚性芳香二胺分子,同时H_2NDS分子也可以作为o-BDA分子的潜在荧光检测试剂。
Metal-organic crystal networks (MOCNs) have attracted extensive interests in recentyears owing to their intriguing structural topologies and potential applications incatalysis, molecular recognization, gas storage, ion exchange, drug delivery, gas sensor,photoluminescence, proton conductivity, as well as molecular magnet. To date, someexcellent studies have been reported, which provide some useful strategies andexperiences. However, as a result of the many factors during the assembly process, noappropriate methods to tune the structures and properties of MOCNs are detected.Therefore, it is still a challenging task to seek for effective synthetic strategies to obtainMOCNs with expected structures and properties through the rational design of organicmolecules and choice of metal cations.
     According to our summarization of the current topological structures and propertiesof MOCNs, we choose a few hot topics based on the principle of crystal engineeringand supramolecular chemistry and aim to synthesize a series of metal-organic orsupramolecular crystal networks with novel architectures or excellent photoluminescentproperties, which then provide some valuable strategies for designing and synthesizingsuch types of MOCNs. Accordingly,39MOCNs are synthesized under differentsolution and hydro(solvo)thermal conditions. Their corresponding architectures andproperties have also been studied. These researches mainly include the followingaspects:
     1. Five aromatic sulfonic molecules, namely,4(1H)-pyridone-3-sulfonic acid (H_2L1),2(1H)-pyridone-5-sulfonic acid (H_2L2),_2-hydroxyl-5-chloro-benzenesulfonic acid(H__2L3),2-hydroxyl-5-carboxylbenzenesulfonic acid (H_3L4) and4,6-dihydroxy-1,3-benzenedisulfonic acid (H_4L5), have been designed and employed toreact with silver(I) cation which exhibits various coordination numbers and diversecoordination spheres, leading to the formation of seven novel silver(I)-based MPFs, [Ag_2(HL1)_2]_n2nH_2O (1),[Ag_5(HL1)_3(NO_3)_2(H_2O)]_n(2),[Ag2(HL1)(NO_3)]_n(3),[Ag_3(HL2_2(NO_3)(H_2O)]_n(4),[Ag_2(HL3_2]_n(5),[Ag_6(L4_2(H_2O_3]_n(6) and [Ag_5(L5)(NH_3_2(NO_3)]_n(7). Structural analyses indicate that the introduction of the hydroxylgroup at the ortho-position of-SO3group can enrich the coordination modes of thesulfonate groups and modulate the final topological structures of silver(I)-sulfonates.Complex1presents the first1-D “butterfly” chain in silver(I) sulfonates. Complexes2-7exhibit diverse silver(I)-based MPFs with different silver polyhedra, in whichcomplex2is the first2-D silver(I)-based MPFs with four different high coordinationnumbers and four types of coordination polydedra, while complex6is the first2-Dsilver(I)-based MPFs with four different low coordination numbers and four types ofcoordination polydedra. Complex7represents the first3-D silver(I)-based MPFsconstructed from different coordination polydedra. Moreover, the IR, TG and PLproperties of these complexes have also been characterized.
     2. Two flexible bis(pyridyl) ligands with a non-coordinating amine group in theunsymmetrical spacer, N-(pyridin-3-ylmethyl)pyridin-2-amine (L1) andN-(pyridin-3-ylmethyl)pyridin-3-amine (L2), have been designed and synthesized,which then are used to react with isophthalic acid (H_2ip) and transition metal cations togenerate eight mixed-ligand MOCNs, namely,[Mn2(ip_2(L1_2(H_2O_3]_n·nH_2O (8),[Co(ip)L1(H_2O)]_n(9),[Zn(ip)L1]_n(10),[Cd_2(ip)_2L1]_n(11),[Mn(ip)L2(H_2O)]_n·nCH_3OH (12),[M(ip)L_2(H_2O)]_n·nH_2O [M=Co (13) and Ni (14)]and [Zn_3(ip_2(OH_2(L2_2]_n(15). The structural diversities indicate that the nature of themetal cations, the versatile coordination modes of the ip dianions, as well as theconformations of L1and L2play crucial roles in modulating structures and topologiesof these complexes. Complex8exhibits a1-D ‘ladder’ chain structure, while complexes9,10and12display2-D (4,4) layer networks. Complex11is a3-D pillared layeredframework. Complexes13and14are isomorohous and exhibit3-D tcb net. Complex15is a3-D framework and presents a new topology with the Schl fli symbol of (55.69.7).Moreover, solid-state luminescent properties demonstrate that complexes10,11and15 exhibit blue emission at room temperature.
     3.5,5'-Methylenedisalicylic acid (H4MDSA) with excellent chromophore isemployed to react with Zn(II), Cd(II), and2,2’-bipy or phen under hydrothermalcondition, thus giving rise to three mixed-ligand MOCNs,[Zn(H_2MDSA)(phen)(H_2O)]_n(16),[Cd(H_2MDSA)(2,2’-bipy)]_n(17) and [Cd_2(H_2MDSA)_2(phen)2(H_2O)]_n(18).Structural analyses indicate that these three complexes exhibit different1-D helical (16),wave-like (17) chain, and_3-D pcu net (18). The structural evolutions are mainlydepending on the radii of the metal cations and the coordination modes of the H4MDSA.However, complexes16-18present weak emission and poor water solubility at roomtemperature. Thus, in order to improve such situation, the H4MDSA molecule isdecorated with hydroxyl groups on the ortho-position of sulfonate groups, and a newwater soluble molecule of5,5'-methylenedisulfonic-salicylic acid (H6MDSSA) isobtained. Three water soluble MOCNs based on the reaction of H6MDSSA and K(I)cation, namely,{2(NH_4)·[K2(H_2MDSSA)(H_2O)_3]}n(19),{(NH_4)·[K3(H_2MDSSA)(H_2O)4]}n·2nH_2O (20) and [K4(H_2MDSSA)(H_2O)6]_n(21), have been synthesized.Complex19exhibits2-D layer structure while complexes20and21present3-Dnetworks. Moreover, careful investigation on the luminescent properties of complex21in the aqueous solution demonstrates that it could be used as pH indicator andluminescent probe for detecting Fe(III) and Cu(II) cations.
     4. Self-assembly of four bis(pyridyl) organic molecules with long flexible spacer,1,4-bis(2-pyridylaminomethyl)benzene (M1),1,4-bis(3-pyridylaminomethyl)benzene(M2),1,3-bis(2-pyridylaminomethyl)benzene (M3) and1,3-bis(3-pyridylaminomethyl)-benzene (M4), and different inorganic acids (HNO_3and HClO4) leads to the formationof eight supramolecular complexes, H_2M1·2NO_3(22), H_2M2·2NO_3(23), H_2M_3·2NO3(24), H_2M4·2NO_3(25), H_2M1·2ClO4(26), H_2M2·2ClO4(27), H_2M3·2ClO4(28) andH_2M4·2ClO4(29). For the same organic cations, the NO3-induced supramolecularaggregations are all packed in a better layer-by-layer mode than the ClO4-induced ones,owing to the coplanarity of the NO_3-anion. The four flexible bis(pyridyl) cations exhibit various conformation modes of trans-trans-trans, trans-trans-cis and cis-trans-trans.Moreover, the perchlorates exhibit strong emission intensities, which provides a strategyfor the rational design of organic supramolecular crystal networks with excellentluminescent properties.
     5. Ten cocrystals assembled by1,5-naphthalenedisulfonic acid (H_2NDS) withhydrazine, four flexible aliphatic diamines, three rigid and one semi-rigid aromaticdiamines (Scheme1), namely,(H_2HA)·(NDS)(30),(H_2EDA)·(NDS)(31),(H_2PDA)·(NDS)(32),(H_2BTDA)·(NDS)(33),(H_2BDMA)·(NDS)·2H_2O (34),2(o-HBDA)·(NDS)(35),(m-H_2BDA)·(NDS)(36),(H_2MBDA)·(NDS)·3H_2O (37),(H_2SDA)·(NDS)·H_2O (38) and2(HSDA)·(NDS)·H_2O (39)(HA=hydrazine, EDA=1,2-ethanediamine, PDA=1,3-propanediamine, BTDA=1,4-butanediamine, BDMA=1,3-benzenedimethanamine, o-BDA=1,2-benzenediamine, m-BDA=1,3-benzenediamine, MBDA=4-methyl-1,3-benzenediamine, SDA=4,4’-sulfonyldiamiline), have been synthesized and characterized. The nature of thediamines can effectively influence the final architectures of the cocrystals throughdifferent hydrogen bonding interactions and other non-covalent bonding interactions,such as π···π stacking, N-H···π, C-H···π, as well as the the anion···π interactions.Different hydrogen bonding modes formed by–SO_3and–NH_3groups result in diverse[1+1],[2+2],[2+4],[3+3],[4+4] and [5+5] hydrogen bonding rings, which thengenerate six types of architectures with the assistance of the above non-covalentbonding interactions. Luminescent investigations demonstrate that the cocrystalscontaining aliphatic diamines exhibit stronger emission intensity than those containingaromatic diamines. Therefore, the H_2NDS might be used to distinguish the aliphaticdiamine from aromatic diamine qualitatively in the mixed water-methanol solution,especially, H_2NDS might be a potential luminescent detector for o-BDA molecule.Keywords: metal-organic crystal network; metal-polyhedra framework; supramolecularcomplex; luminescent property
引文
[1] M. O’Keeffe, O. M. Yaghi. Deconstructing the Crystal Structures of Metal-OrganicFrameworks and Related Materials into Their Underlying Nets[J]. Chem. Rev.,2012,112:675-702.
    [2] Y. Cui, Y. Yue, G. Qian, B. Chen. Luminescent Functional Metal-OrganicFrameworks[J]. Chem. Rev.,2012,112:1126-1162.
    [3] J.-R. Li, J. Sculley, H.-C. Zhou. Metal-Organic Frameworks for Separations[J].Chem. Rev.,2012,12:869–932.
    [4] L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, J. T. Hupp.Metal-Organic Framework Materials as Chemical Sensors[J]. Chem. Rev.,112:1105–1125.
    [5] P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Férey, R. E.Morris, C. Serre. Metal-Organic Frameworks in Biomedicine[J]. Chem. Rev.,2012,112:1232–1268.
    [6] W. Zhang, R.-G. Xiong. Ferroelectric Metal-Organic Frameworks[J]. Chem. Rev.,2012,112:1163–1195.
    [7] A. Werner. Beitrag zur Konstitution anorganischer Verbindungen[J]. Z. Anorg.Chem.,1893,3:267-330.
    [8] B. F. Hoskins, R. Robson. Infinite polymeric frameworks consisting of threedimensionally linked rod-like segments[J]. J. Am. Chem. Soc.,1989,111:5962-5964.
    [9] J. J. Perry IV, J. A. Perman, M. J. Zaworotko. Design and synthesis ofMetal-Oragnic Frameworks Using Metal-Organic Polyhedra as SupramolecularBuilding Blocks[J].Chem. Soc. Rev.,2009,38:1400-1417.
    [10] S. R. Batten, N. R. Champness, X.-M. Chen, J. Garcia-Martinez, S. Kitagawa, L.hrstr m, M. O’Keeffe, M. P. Suh, J. Reedijk. Coordination polymers,metal–organic frameworks and the need for terminology guidelines[J].CrystEngComm,2012,14:3001-3004.
    [11] A. F. Wells. Three Dimensional Nets and Polyhedra[M]. New York,1977.
    [12] M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keeffe, O. M.Yaghi. Modular Chemistry: Secondary Building Units as a Basis for the Design ofHighly Porous and Robust Metal-Organic Carboxylate Frameworks[J].Acc.Chem.Res.,2001,34:319-330.
    [13] O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim.Reticular synthesis and the design of new materials[J]. Nature,2003,423:705-714.
    [14] J. J. Perry IV, J. A. Perman, M. J. Zaworotko. Design and synthesis ofmetal–organic frameworks using metal–organic polyhedra as supermolecularbuilding blocks[J]. Chem. Soc. Rev.,2009,38:1400-1417.
    [15] H. J. Bruser, D. Schwarzenbach, W. Petter, A. Ludi. The crystal structure ofPrussian Blue: Fe4[Fe(CN)6]3·xH2O[J]. Inorg. Chem.,1977,16:2704-2710.
    [16] O. M. Yaghi, H. Li, C. Davis, D. Richardson, T. L. Groy. Synthetic Strategies,Structure Patterns, and Emerging Properties in the Chemistry of Modular PorousSolids[J]. Accounts Chem. Res.,1998,31:474-484.
    [17] H. L. Li, M. Eddaoudi, M. O’keeffe, O. M. Yaghi. Design and synthesis of anexceptionally stable and highly porous metal-organic framework[J]. Nature,1999,402:276-279.
    [18] B. L. Chen, M. Eddaoudi, S. T. Hyde, M. O’Keeffe, O. M. Yaghi. InterwovenMetal-Organic Framework on a Periodic Minimal Surface with Extra-LargePores[J]. Science,2001,291:1021-1023.
    [19] M. Eddaoudi, J. Kim, N. L. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O. M. Yaghi.Systematic Design of Pore Size and Functionality in Isoreticular MOFs and TheirApplication in Methane Storage[J]. Science,2002,295:469-472.
    [20] Y.-Q. Tian, C.-X. Cai, Y. Ji, X.-Z. You, S.-M. Peng, G.-H. Lee.[Co5(im)10·2MB]n: Ametal-organic open-framework with zeolite-like topology[J]. Angew. Chem. Int.Edit.,2002,41:1384-1386.
    [21] R. Banerjee, A. Phan, B. Wang, C. Konbler, H. Furukawa, M. O'Keeffe, O. M.Yaghi. High-throughput synthesis of zeolitic imidazolate frameworks andapplication to CO2capture[J]. Science,2008,319:939-943.
    [22] N. W. Ockwig, O. D. Friedrichs, M. O'Keeffe, O. M. Yaghi. Reticular chemistry:Occurrence and taxonomy of nets and grammar for the design of frameworks[J].Accounts Chem. Res.,2005,38:176-182.
    [23] K. J. Gagnon, H. P. Perry, A. Clearfield. Conventional and UnconventionalMeta-Organic Frameworks Based on Phosphonate Ligands: MOFs and UMOFs[J].Chem. Rev.,2012,112:1034-1054.
    [24] G. K. H. Shimizu, R. Vaidhyanathan, J. M. Taylor. Phosphonate and sulfonate metalorganic frameworks[J]. Chem. Soc. Rev.,2009,38:1430–1449.
    [25] H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi. Design and synthesis of anexceptionally stable and highly porous metal-organic framework[J]. Nature,1999,402:276-279.
    [26] M. Eddaoudi, J. Kim, N. Rsi, D.Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi.Systematic Design of Pore Size and Functionality in Isoreticular MOFs and TheirApplication in Methane Storage[J]. Science,2002,295:469-472.
    [27] H. K. Chae, D. Y. S. perez, J. K. Y. Go, M. Eddaoudi, A. J. Matzger, M. O’Keeffe,O. M. Yaghi. A route to high surface area,porosity and inclusion of largemolecules in crystals[J]. Nature,2004,427:323-527.
    [28] G. Férey, C. Serre, C. M. Draznieks, F. Millange, S. Surble, J. Dutour, I. Margiolaki.A Hybrid Solid with Giant Pores Prepared by a Combination of TargetedChemistry,Simulation, and Powder Diffraction[J]. Angew. Chem. Int. Ed.,2004,43:6296-6301.
    [29] G. Férey, C. M. Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki.A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes andSurface Area[J]. Science,2005,309:2040-2042.
    [30] H. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler,B.Wang, O. M. Yaghi. Multiple Functional Groups of Varying Ratios in MetalOrganic Frameworks[J]. Science,2010,327:846-850.
    [31] J. Plévert, T. M. Gentz, T. L. Groy, M. O’Keeffe, O. M. Yaghi. Layered StructuresConstructed from New Linkages of Ge7(O,OH,F)19Clusters[J]. Chem. Mater.,2003,15:714-718.
    [32] F. Gándara, M. E. Medina, N. Snejko, B. G mez-Lor, M. Iglesias, E.Gutiérrez-Puebla, M. A. Monge. Two-Dimensional Hybrid Germanium ZeotypeFormed by Selective Coordination of the trans-1,2-Diaminocyclohexane Isomer tothe Ge Atom: Heterogeneous Acid-Base Bifunctional Catalyst[J]. Inorg. Chem.,2008,47:6791-6795.
    [33] C. Bonneau, J. Sun, R. S. Smith, B. Guo, D. Zhang, A. K. Inge, M. Edén, X. Zou.Open-Framework Germanate Built from the Hexagonal Packing of RigidCylinders[J]. Inorg. Chem.,2009,48:9962-9964.
    [34] A. Thirumurugan, R. A. Sanguramath, C. N. R. Rao. Hybrid Structures Formed byLead1,3-Cyclohexanedicarboxylates[J]. Inorg. Chem.,2008,47:823-831.
    [35] Y. Cui, S. J. Lee, W. Lin. Interlocked Chiral Nanotubes Assembled from QuintupleHelices[J]. J. Am. Chem. Soc.,2003,125:6014-6015.
    [36] X. L. Wang, C. Qin, E. B. Wang, L. Xu, Z. M. Su, C. W. Hu. Interlocked andInterdigitated Architectures from Self-Assembly of Long Flexible Ligands andCadmium Salts[J]. Angew. Chem., Int. Ed.,2004,43:5036-5040.
    [37] Y. Q. Sun, J. Zhang, Y. M. Chen, G. Y. Yang. Porous Lanthanide-Organic OpenFrameworks with Helical Tubes Constructed from Interweaving Triple-Helical andDouble-Helical Chains[J]. Angew. Chem., Int. Ed.,2005,44:5814-5817.
    [38] S. C. Sahoo, T. Kundu, R. Banerjee. Helical Water Chain Mediated ProtonConductivity in Homochiral Metal-Organic Frameworks with unprecedentedZeolitic unh-Topology[J]. J. Am. Chem. Soc.,2011,133:17950-17958.
    [39] A. D. Burrows. Mixed-component metal–organic frameworks (MC-MOFs):enhancing functionality through solid solution formation and surfacemodifications[J]. CrystEngComm,2011,13:3623-3642.
    [40] Z. Wang, S. M. Cohen. Postsynthetic modification of metal–organic frameworks[J].Chem. Soc. Rev.,2009,38:1315-1329.
    [41] B. L. Chen, C. D. Liang, J. Yang, D. S. Contreras, Y. L. Clancy, E.B. Lobkovsky, O.M. Yaghi, S. Dai. A Microporous Metal-Organic Framework forGas-Chromatographic Separation of Alkanes[J]. Angew. Chem. Int. Ed.,2006,45:1390-1393.
    [42] H. Liu, Y. Zhao, Z. Zhang, N. Nijem, Y. J. Chabal, H. Zeng, J. Li. The Effect ofMethyl Functionalization on Microporous Metal-Organic Frameworks' Capacityand Binding Energy for Carbon Dioxide Adsorption[J]. Adv. Funct. Mater.,2011,21:4754-5762.
    [43] S. Cavenati, C. A. Grande, A. E. Rodrigues. Adsorption Equilibrium of Methane,Carbon Dioxide, and Nitrogen on Zeolite13X at High Pressures[J]. J. Chem. Eng.Data,2004,49:1095-1101.
    [44] S. R. Caskey, A. G. W. Foy, A. J. Matzger. Dramatic Tuning of Carbon DioxideUptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores[J].J. Am. Chem. Soc.,2008,130:10870-10871.
    [45] H. S. Choi, M. P. Suh. Highly Selective CO2Capture in Flexible3D CoordinationPolymer Networks[J]. Angew. Chem. Int. Ed.,2009,48:6865-6869.
    [46] Z. Wang, S. M. Cohen. Postsynthetic Covalent Modification of a NeutralMetal Organic Framework[J]. J. Am. Chem. Soc.,2007,129:12368-12369.
    [47] K. K. Tanabe, Z. Wang, S. M. Cohen. Systematic Functionalization of aMetal Organic Framework via a Postsynthetic Modification Approach[J]. J. Am.Chem. Soc.,2008,130:8508-8517.
    [48] K. K. Tanabe, S. M. Cohen. Engineering a Metal–Organic Framework Catalyst byUsing Postsynthetic Modification[J]. Angew. Chem. Int. Ed.,2009,48:7424-7427.
    [49] J. G. Nguyen, S. M. Cohen. Moisture-Resistant and SuperhydrophobicMetal Organic Frameworks Obtained via Postsynthetic Modification[J]. J. Am.Chem. Soc.,2010,132:4560-4561.
    [50] W. Morris, C. J. Doonan, H. Furukawa, R. Banerjee, O. M. Yaghi. Crystals asMolecules: Postsynthesis Covalent Functionalization of Zeolitic ImidazolateFrameworks[J]. J. Am. Chem. Soc.,2008,130:12626-12627.
    [51] S. C. Jones, C. A. Bauer. Diastereoselective Heterogeneous Bromination ofStilbene in a Porous Metal Organic Framework[J]. J. Am. Chem. Soc.,2009,131:12516-12517.
    [52] D. Britt, C. Lee, F. J. Uribe-Romo, H. Furukawa, O. M. Yaghi. Ring-OpeningReactions within Porous Metal Organic Frameworks. Inorg. Chem.,2010,49:6387-6389.
    [53] H. Lee, L. J. Kepley, H. G. Hong, T. E. Mallouk. Inorganic analogs ofLangmuir-Blodgett films: adsorption of ordered zirconium1,10-decanebisphosphonate multilayers on silicon surfaces[J]. J. Am. Chem. Soc.,1988,110:618-620.
    [54] T. Uemura, N. Yanai, S. Kitagawa. Polymerization Reactions in PorousCoordination Polymers[J]. Chem. Soc. Rev.,2009,38:1228-1236.
    [55] D. Zacher, O. Shekhah, C. W ll, R. A. Fischer. Thin Films of Metal-OrganicFrameworks[J]. Chem. Soc. Rev.,2009,38:1418-1429.
    [56] C. M. Draznieks, C. Serre, S. Surblé, N. Audebrand, G. Férey. Very LargeSwelling in Hybrid Frameworks: A Combined Computational and PowderDiffraction Study[J]. J. Am. Chem. Soc.,2005,127:16273-16278.
    [57] S. Surblé, C. Serre, C. M. Draznieks, F. Millange, G. Férey. A new isoreticular classof metal-organic-frameworks with the MIL-88topology[J]. Chem. Commun.,2006,284-286.
    [58] C. Scherb, A. Sch del, T. Bein. Directing the Structure of Metal-OrganicFrameworks by Oriented Surface Growth on an Organic Monolayer[J]. Angew.Chem. Int. Ed.,2008,47:5777-5779.
    [59] H. L. Guo, G. S. Zhu, I. J. Hewitt, S. L. Qiu."Twin Copper Source"Growth ofMetal-Organic Framework Membrane: Cu3(BTC)2with High Permeability andSelectivity for Recycling H2[J]. Journal of the American Chemical Society,2009,131:1646-1647.
    [60] J.-M. Lehn. Supramolecular Chemistry-Scope and Perspectives Molecules,Supermolecules, and Molecular Devices (Nobel Lecture)[J]. Angew. Chem. Int.Ed.,1988,27:89-112.
    [61] R. Custelcean, D. Jiang, B. P. Hay, W. Luo, B. Gu. Hydrogen-Bonded Helices forAnion Binding and Separation[J]. Cryst. Growth Des.,2008,8:1909-1915.
    [62] R. Custelcean, B. A. Moyer. Anion Separation with Metal–Organic Frameworks[J].Eur. J. Inorg. Chem.,2007,10:1321-1340.
    [63] N. Tohnai, Y. Mizobe, M. Doi, S. Sukata, T. Hinoue, T. Yuge, I. Hisaki, Y.Matsukawa, M. Miyata. Well-Designed Supramolecular Clusters ComprisingTriphenylmethylamine and Various Sulfonic Acids[J]. Angew. Chem. Int. Ed.,2007,46:2220-2223.
    [64] Y. Mizobe, T. Hinoue, A. Yamamoto, I. Hisaki, M. Miyata, Y. Hasegawa, N. Tohnai.Systematic Investigation of Molecular Arrangements and Solid-State FluorescenceProperties on Salts of Anthracene-2,6-disulfonic Acid with Aliphatic PrimaryAmines[J]. Chem. Eur. J.,2009,15:8175-8184.
    [65] T. Hinoue, M. Miyata, I. Hisaki, N. Tohnai. Guest-Responsive Fluorescence ofInclusion Crystals with π-Stacked Supramolecular Beads[J]. Angew. Chem. Int.Ed.,2012,51:155-158.
    [66] Y. He, S. Xiang, B. Chen. A Microporous Hydrogen-Bonded Organic Frameworkfor Highly Selective C2H2/C2H4Separation at Ambient Temperature[J]. J. Am.Chem. Soc.,2011,133:14570–14573.
    [67] S. Xiang, Z. Zhang, C.-G. Zhao, K. Hong, X. Zhao, D.-L. Ding, M.-H. Xie, C.-D.Wu, R. Gill, K. M. Thomas, B. Chen. Rationally tuned micropores withinenantiopure metal-organic frameworks for highly selective separation of acetyleneand ethylene[J]. Nat. Commun.,2010,2:204.
    [68] K. L. Wong, G. L. Law, Y. Y. Yang, W. T. Wong. A highly porous luminescentterbium-organic framework for reversible anion sensing.[J]. Adv. Mater.,2006,18:1051-1054.
    [69] B. Chen, L. Wang, F. Zapata, G. Qian, E. B. Lobkovsky. A LuminescentMicroporous Metal Organic Framework for the Recognition and Sensing ofAnions[J]. J. Am. Chem. Soc.,2008,130:6718-6719.
    [70] B. Zhao, X. Y. Chen, P. Cheng, D.-Z. Liao, S.-P. Yan, Z.-H. Jiang. Coordinationpolymers containing1D channels as selective luminescent probes[J]. Journal of theAmerican Chemical Society,2004,126:15394-15395.
    [71] W. Liu, T. Jiao, Y. Li, Q. Liu, M. Tan, H. Wang, L. Wang. Lanthanide coordinationpolymers and their Ag+-modulated fluorescence[J]. J. Am. Chem. Soc.,2004,126:2280-2281.
    [72] W.-G. Lu, L. Jiang, X.-L. Feng, T.-B. Lu. Three-Dimensional Lanthanide AnionicMetal-Organic Frameworks with Tunable Luminescent Properties Induced byCation Exchange. Inorg. Chem.,2009,48:6997-6999.
    [73] Y. Xiao, Y. Cui, Q. Zheng, S. Xiang, G. Qian, B. Chen. A microporous luminescentmetal-organic framework for highly selective and sensitive sensing of Cu2+inaqueous solution[J]. Chem. Commun.,2010,46:5503-5505.
    [74] J. An, C. M. Shade, D. A. C. Czegan, S. Petoud, N. L. Rosi. Zinc-AdeninateMetal-Organic Framework for Aqueous Encapsulation and Sensitization ofNear-infrared and Visible Emitting Lanthanide Cations[J]. J. Am. Chem. Soc.,2011,133:1220-1223.
    [75] B. L. Chen, Y. Yang, F. Zapata, G. Lin, G. Qian, E. B. Lobkovsky. Luminescentopen metal sites within a metal-organic framework for sensing small molecules[J].Adv. Mater,2007,19:1693-1696.
    [76] Z. Guo, H. Xu, S. Su, J. Cai, S. Dang, S. Xiang, G. Qian, H.e Zhang, M. O’Keefe,B. Chen. A robust near infrared luminescent ytterbium metal-organic frameworkfor sensing of small molecules[J]. Chem. Comm.,2011,47:5551-5553.
    [77] Y. Takashima, V. M. Mart ínez, S. Furukawa, M. Kondo, S. Shimomura, H. Uehara,M. Nakahama, K. Sugimoto, S. Kitagawa. Molecular decoding using luminescencefrom an entangled porous framework[J]. Nat. Commun.,2011,2:168.
    [78] Q.-R. Fang, G.-S. Zhu, Z. Jin, Y.-Y. Ji, J.-W. Ye, M. Xue, H. Yang, Y. Wang, S.-L.Qiu. Mesoporous Metal-Organic Framework with Rare etb Topology for HydrogenStorage and Dye Assembly[J]. Angew. Chem., Int. Ed.,2007,46:6638-6642.
    [79] B. V. Harbuzaru, A. Corma, F. Rey, J. L. Jordá, D. Ananias, L. D. Carlos, J. Rocha.A Miniaturized Linear pH Sensor Based on a Highly PhotoluminescentSelf-Assembled Europium(III) Metal-Organic Framework[J]. Angew. Chem., Int.Ed.,2009,48:6476-6479.
    [80] J. S. Miller, J. C. Calabrese, J. EPsteiA. Ferromagnetic properties ofone-dimensional decamethylferrocenium tetracyanoethylenide (1:1):
    [Fe(η5-C5Me5)2]˙+[TCNE]˙–. J. Chem. Soc. Chem. Commun.,1986:1026-1028.
    [81] O. Kahn. Molecular Magnetism[M]. New York: VCH,1993.
    [82] B. Moulton, J. J. Lu, R. Hajndl, S. Harkkharan, M. J. Zaworotko. CrystalEngineering of a Nanoscale Kagomé Lattice[J]. Angew. Chem. Int. Ed.,2002,41:2821-2824.
    [83] X-Y. Wang, L. Wang, Z-M. Wang, S. Gao. Solvent-Tuned Azido-Bridged Co2+Layers: Square, Honeycomb, and Kagomé[J]. J. Am. Chem. Soc.,2006,128:674-675.
    [84] J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp.Metal-organic framework materials as catalysts[J]. Chem. Soc. Rev.,2009,38:1450-1459.
    [85] L. Ma, J. M. Falkowski, C. Abney, W. Lin. A series of isoreticular chiralmetal-organic frameworks as a tunable platform for asymmetric catalysis[J]. Nat.Chem.,2010,2:838-846.
    [86] K. Schlichte, T. Kratzke, S. Kaskel. Improved synthesis,thermal stability andcatalytic properties of the metal-organic framework compound Cu3(BTC)2[J].Micropor. Mesopor. Mat.,2004,73:81-88.
    [87] L. Alaerts, E. Seguin, H. Poelman, F. Thibault-Starzyk, P. A. Jacobs, D. E. De Vos.Probing the Lewis acidity and catalytic activity of the metal-organic framework
    [Cu3(btc)2](BTC=benzene-1,3,5-tricarboxylate)[J]. Chem.-Eur. J.,2006,12:7353-7363.
    [88] A. Henschel, K. Gedrich, R. Kraehnert, S. Kaskel. Catalytic properties ofMIL-101[J]. Chem. Commun.,2008:4192-4194.
    [89] S. Horike, M. Dinc, K. Tamaki, J. T. Long. Size-selective lewis acid catalysis in amicroporous metal-organic framework with exposed Mn2+coordination sites[J]. J.Am. Chem. Soc.,2008,130:5854-5855.
    [90] Y. K. Hwang, D. Y. Hong, J. S. Chang, S. H. Jhung, Y.-K. Seo, J. Kim, A. Vimont,M. Daturi, C. Serre, G. Férey. Amine grafting on coordinatively unsaturated metalcenters of MOFs: Consequences for catalysis and metal encapsulation[J]. Angew.Chem. Int.,2008,47:4144-4148.
    [91] Q.-R. Fang, D.-Q. Yuan, J. Sculley, J.-R. Li, Z.-B. Han, H.-C. Zhou. FunctionalMesoporous Metal-Organic Frameworks for the Capture of Heavy Metal Ions andSize-Selective Catalysis[J]. Inorg. Chem.,2010,49:11637-11642.
    [92] L. J. Murray, M. Dinca, J. R. Long, Hydrogen storage in metal-organicframeworks[J]. Chem. Soc. Rev.,2009,38:1294-1314.
    [93] Y. H. Hu, L. Zhang. Hydrogen storage in metal-organic frameworks[J]. Adv. Mater.,2010,22: E117-E130.
    [94] M. P. Suh, H. J. Park, T. K. Prasad, D.-W. Lim. Hydrogen Storage in Metal-OrganicFrameworks[J]. Chem. Rev.,2012,112:782-835.
    [95] B. L. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras, O. M. Yaghi. HighH2Adsorption in a Microporous Metal-Organic Framework with Open MetalSites[J]. Angew. Chem. Int. Ed.,2005,44:4745-4749.
    [96] O. K. Farha, A. O. Yazaydin, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G.Kanatzidis, S. T. Nguyen, R. Q. Snurr, J. T. Hupp. De novo synthesis of ametal-organic framework material featuring ultrahigh surface area and gas storagecapacities[J]. Nat. Chem.,2010,2:944-948.
    [97] H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim, O. M. Yaghi. Ultrahigh Porosity in Metal-OrganicFrameworks[J]. Science,2010,329:424-428.
    [98] G Férey. Hybrid porous solids: past, present, future[J]. Chem. Soc. Rev.,2008,37:191-214.
    [99] A. R. Millward, O. M. Yaghi. Metal-organic frameworks with exceptionally highcapacity for storage of carbon dioxide at room temperature[J]. J. Am. Chem. Soc.,2005,127:17998-17999
    [100] B. Wang, A. P. C té, H. Furukawa, M. O’Keeffe, O. M. Yaghi. Colossal cages inzeolitic imidazolate frameworks as selective carbon dioxide reservoirs[J]. Nature,2008,453:207-211.
    [101] S. S. Kaye, H. J. Choi, J. R. Long. Generation and O2Adsorption Studies of theMicroporous Magnets CsNi[Cr(CN)6](TC=75K) and Cr3[Cr(CN)6]2·6H2O (TN=219K)[J]. J. Am. Chem. Soc.,2008,130:16921-16925.
    [102] M. D. Allendorf, R. J. T. Houk, L. Andruszkiewicz, A. A. Talin, J. Pikarsky, A.Choudhury, K. A. Gall, P. J. Hesketh. Stress-induced Chemical Detection UsingFlexible Metal-Organic Frameworks[J]. J. Am. Chem. Soc.,2008,130:14404-14405.
    [103] J. Della Rocca, D. Liu, W. Lin. Nanoscale Metal-Organic Frameworks forBiomedical Imaging and Drug Delivery[J]. Acc. Chem.Res.,2011,44:957-968.
    [104] P. Horcajada, C. Serre, M. Vallet-Regí,M. Sebban, F. Taulelle, G. Férey. Metal-Organic Frameworks as Efficient Materials for Drug Delivery[J]. Angew. Chem.,Int. Ed.,2006,45:5974-5978.
    [105] K. M. L. Taylor-Pashow, J. D. Rocca, Z. Xie, S. Tran, W. Lin. PostsyntheticModifications of Iron-Carboxylate Nanoscale Metal-Organic Frameworks forImaging and Drug Delivery[J]. J. Am. Chem. Soc.,2009,131:14261-14263.
    [106] G. Alberti, L. Boccali, M. Casciola, L. Massinelli, E. Montoneri. Protonicconductivity of layered zirconium phosphonates containing-SO3H groups. III.Preparation and characterization of γ-zirconium sulfoaryl phosphonates[J]. SolidState Ionics,1996,84:97-104.
    [107] M. Sadakiyo, T. Yamada, H. Kitagawa. Rational Designs for Highly Proton-Conductive Metal-Organic Frameworks[J]. J. Am. Chem. Soc.,2009,131:9906-9907.
    [108] A. Shigematsu, T. Yamada, H. Kitagawa. Wide Control of Proton Conductivity inPorous Coordination Polymers[J]. J. Am. Chem. Soc.,2011,133:2034-2036.
    [109] N. C. Jeong, B. Samanta, C. Y. Lee, O. K. Farha, J. T. Hupp. Coordination-Chemistry Control of Proton Conductivity in the Iconic Metal-OrganicFramework Material HKUST-1[J]. J. Am. Chem. Soc.,2012,134:51-54.
    [110]朱志彪.吡啶磺酸金属配合物的合成与结构化学研究[D].硕士论文,黑龙江大学,2008.
    [111]万旺.对苯二酚二磺酸配合物的合成与表征[D].学士论文,黑龙江大学,2011.
    [112]李明帅.邻羟基芳香磺酸配合物的合成与结构化学研究[D].硕士论文,黑龙江大学,2011.
    [113] S. K. Makinen, N. J. Melcer, M. Parvez, G. K. H. Shimizu. Highly Selective GuestUptake in a Silver Sulfonate Network Imparted by a Tetragonal to Triclinic Shiftin the Solid State[J]. Chem. Eur. J.,2001,7:5176-5182.
    [114] L. J. May, G. K. H. Shimizu. Highly Selective Intercalation of Primary Amines ina Continuous Layer Ag Coordination Network[J]. Chem. Mater.,2005,17:217-220.
    [115] G. K. H. Shimizu, G. D. Enright, K. F. Preston, C. I. Ratcliffe, J. L. Reid, J. A.Ripmeester. A layered silver sulfonate incorporating nine-coordinate AgI in ahexagonal grid[J]. Chem. Commun.,1999:1485-1486.
    [116] G. K. H. Shimizu, G. D. Enright, C. I. Ratcliffe, G. S. Rego, J. L. Reid, J. A.Ripmeester. Silver Sulfonates: An Unexplored Class of Layered Solids[J]. Chem.Mater.,1998,10:3282-3283.
    [117] J. O. Yu, A. P. Cote, G. D. Enright, G. K. H. Shimizu. The First Nonlayered MetalSulfonate Structure: a1-D Ba2+Network Incorporating Hydrophobic Channels[J].Inorg. Chem.,2001,40:582-583.
    [118] G. Smith, B. A. Cloutt, D. E. Lynch, K. A. Byriel, C. H. L. Kennard. NitrogenBase Adducts with Silver(I) p-Toluenesulfonate: Syntheses and Single CrystalX-ray Characterizations of the Adducts with Pyridine (1:1),2-Aminopyridine(1:2),2-Aminopyrimidine (1:1),4,6-Dimethyl-2-aminopyrimidine (2:3), and3-Aminobenzoic Acid (1:2) and the Crystal Structure of the ParentSilver(I) p-Toluenesulfonate[J]. Inorg. Chem.,1998,37:3236-3242.
    [119] A. J. Bondi. van der Waals Volumes and Radii[J]. J. Phys. Chem.,1964,68:441-451.
    [120] A. L. Spek. PLATON. A Multipurpose Crystallographic Tool[M]. UtrechtUniversity: Utrecht, The Netherlands,2001.
    [121] J. R. Stork, V. S. Thoi, S. M. Cohen. Rare Examples of Transition-Metal-Main-Group Metal Heterometallic Metal-Organic Frameworks from Gallium andIndium Dipyrrinato Complexes and Silver Salts: Synthesis and FrameworkVariability[J]. Inorg. Chem.,2007,46:11213-11223.
    [122] A. P. Cote, G. K. H. Shimizu. The supramolecular chemistry of the sulfonategroup in extended solids[J]. Coord. Chem. Rev.,2003,245:49-64.
    [123] A. P. Cote, G. K. H. Shimizu. Silver(I) Arylsulfonates: A Systematic Study of“Softer” Hybrid Inorganic-Organic Solids[J]. Inorg. Chem.,2004,43:6663-6673.
    [124] A. P. Cote, M. J. Ferguson, K. A. Khan, G. D. Enright, A. D. Kulynych, S. A.Dalrymple, G. K. H. Shimizu. Intercalation of Alcohols in Ag Sulfonates:Topotactic Behavior Despite Flexible Layers[J]. Inorg. Chem.,2002,41:287-292.
    [125] K. Akhbari, A. Morsali, S. Rafiei, M. Zeller. A new two-dimensionalAgI coordination polymer with Ag C interactions: Thermal, fluorescence,structural and solution studies[J]. J. Organomet. Chem.,2008,693:257-262.
    [126] W. T. Carnall, S. Siegel, J. R. Ferraro, B. Tani, E. Gebert. New series of anhydrousdouble nitrate salts of the lanthanides. Structural and spectral characterization[J].Inorg. Chem.,1973,12:560-564.
    [127] M. Kasha. Collisional perturbation of spin-orbital coupling and the mechanism offuorescence quenching. A visual demonstration of the perturbation[J]. J. Chem.Phys.,1952,20:71-74.
    [128] M. Munakata, L. P. Wu, T. Kuroda-Sowa, M. Maekawa, Y. Suenaga, G. L. Ning, T.Kojima. Supramolecular Silver(I) Complexes with Highly Strained PolycyclicAromatic Compounds[J]. J. Am. Chem. Soc.,1998,120:8610-8618.
    [129] S.-Q. Zang, J. Han, T. C. W. Mak. Silver(I) Organic Networks Assembled withthe Flexible Prop-2-ynyloxybenzene Ligand: In Situ Recrystallization andUnusual Silver-Aromatic Interaction[J]. Organometallics,2009,28:2677-2683.
    [130] J. F. Ma, J. Yang, S. L. Li, S. Y. Song, H. J. Zhang, H. S. Wang, K. Y. Yang. TwoCoordination Polymers of Ag(I) with5-Sulfosalicylic Acid[J]. Cryst. Growth Des.,2005,5:807-812.
    [131] K. Nakakamoto. Infrared and Raman of Inorganic and CoordinationCompounds[M].4th Edn., New York: John Wiley&Sons, Inc,1986,223.
    [132] Valeur, B. Molecular Fluorescence: Principles and Applications[M]. Wiley-VCH,Weinheim,2002.
    [133] P. Phuengphai, S. Youngme, P. Kongsaeree, C. Pakawatchai, N. Chaichit, S. J.Teat, P. Gamez, J. Reedijk. Drastic steric effects from, respectively, a hydrogen,a methyl and an ethyl group on the coordination network of a zinc(II)-4,4′-bi-pyridine-carboxylato ternary system[J]. CrystEngComm,2009,11:1723-1732.
    [134] Y. Inubushi, S. Horike, T. Fukushima, G. Akiyama, R. Matsuda, S. Kitagawa.Modification of flexible part in Cu2+interdigitated framework for CH4/CO2separation[J]. Chem. Commun.,2010,46:9229-9231.
    [135] J.-J. Wang, T.-L. Hu, X.-H. Bu. Cadmium(II) and zinc(II) metal–organicframeworks with anthracene-based dicarboxylic ligands:solvothermal synthesis,crystal structures, and luminescent properties[J]. CrystEngComm,2011,13:5152-5161.
    [136] T. Gadzikwa, O. K. Farha, C. D. Malliakas, M. G. Kanatzidis, J. T. Hupp, S. T.Nguyen. Selective Bifunctional Modification of a Non-catenated Metal-OrganicFramework Material via “Click” Chemistry[J]. J. Am. Chem. Soc.,2009,131:13613-13615.
    [137] Y. Hijikata, S. Horike, D. Tanaka, J. Groll, M. Mizuno, J. Kim, M. Takata, S.Kitagawa. Differences of crystal structure and dynamics between a softporous nanocrystal and a bulk crystal[J]. Chem. Commun.,2011,47,7632-7634.
    [138] J. Chen, C.-P. Li, M. Du. Substituent effect of R-isophthalates (R=-H,-CH3,-OCH3,-tBu,-OH,-NO2) on the construction of CdIIcoordina-tion polymers incorporatinga dipyridyl tecton2,5-bis(3-pyridyl)-1,3,4-oxadiazole[J]. CrystEngComm,2011,13:1885-1893.
    [139]朱莉娜.新型柔性多吡啶胺类配位聚合物材料的分子建构与性质研究[D].硕士论文,黑龙江大学,2008.
    [140] S. Hazra, B. Sarkar, S. Naiya, M. G. B. Drew, A. Frontera, D. Escudero, A. Ghosh.Self-Assembled Molecular Complexes and Coordination Polymers of CdII,Hexamine, and Monocarboxylates: Structural Analysis and Theoretical Studies ofSupramolecular Interactions[J]. Cryst. Growth Des.,2010,10:1677-1687.
    [141] V. A. Blatov. IUCr CompComm Newsletter[M].2006,7:4-38,http://www.topos.ssu.samara.ru/.
    [142] F. Wang, Y.-X Tan, H. Yang, H.-X. Zhang, Y. Kang, J. Zhang. A new approachtowards tetrahedral imidazolate frameworks for high and selective CO2uptake[J].Chem. Commun.,2011,47:5828-5830.
    [143] L. J. Bellamy. The Infrared Spectra of Complex Molecules[M]. Wiley, New York,1958.
    [144] Y.-Q. Gong, J.-T. Chen, D.-Q. Yuan, M.-Y. Wu, Y.-G. Huang, F.-L. Jiang, M.-C.Hong. Syntheses, crystal structures and photoluminescences of two (4,4)topological coordination networks derived from the flexible bipyridyl ligands[J].Inorg. Chim Acta,2007,360:2207-2214.
    [145] G. K. Walkup, S. C. Burdette, S. J. Lippard, R. Y. Tsien. A New Cell-PermeableFluorescent Probe for Zn2+[J]. J. Am. Chem. Soc.,2000,122:5644-5645.
    [146] B. L. Schottel, H. T. Chifotides, K. R. Dunbar. Anion-π interactions[J]. Chem. Soc.Rev.,2008,37:68-83.
    [147] Z.-B. Zhu, S. Gao, S. W. Ng. Ethane-1,2-diammonium naphthalene-1,5-disulfonate[J]. Acta Cryst.,2009, E65: o2658.
    [148] T. J. Mooibroek, C. A. Black, P. Gamez, J. Reedijk. What’s New in the Realm ofAnion π Binding Interactions? Putting the Anion π Interaction in Perspective[J].Cryst. Growth Des.,2008,8:1082-1093.
    [149] Rendell, D. Fluorescence and Phosphorescence[M]. Wiley, New York,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700