用户名: 密码: 验证码:
油田采出液组成与破乳关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各大油田相继进入开发中后期,各种强化采油措施的使用,引入了大量的表面活性剂和聚合物,加大了采出液乳化程度,给后续的原油乳状液破乳带来了困难。研究采出液中原油各组分、添加剂对原油乳状液稳定性和破乳性能影响的,可为原油乳状液的破乳提供一定的理论指导。
     采用液-固吸附色谱法将孤岛第五联合站采出液中原油分为极性四组分,通过对原油及各组分的元素含量分析﹑相对分子质量测定﹑红外光谱分析,确定原油极性组分组成。结果表明:沥青质相对分子量最大,不饱和度最高,杂原子含量最高;胶质、沥青质中含有大量的含氧、含氮化合物,具有较强的活性。
     通过原油及其组分模拟乳状液的稳定性和破乳实验及界面张力的测定,系统研究了原油各组分及不同浓度不同分子量的聚丙烯酰胺对原油及各组分模拟乳状液稳定性及破乳过程的影响。结果表明:原油及其三组分配成的模拟乳状液的稳定性依次为:沥青质>原油>胶质>油分,沥青质是影响原油乳状液稳定性最主要的活性组分;模拟体系加入聚丙烯酰胺后,对原油及三组分模拟油乳状液的稳定性及破乳影响各不相同,同时会导致生成中间相和脱出水水质变差。
     研究了聚丙烯酰胺对原油及其组分油水界面张力的影响。研究发现:聚丙烯酰胺的加入可以使油水界面张力降低。随着聚丙烯酰胺(分子量相同)浓度的增加,原油及胶质、沥青质煤油溶液与水相的油水界面张力先降低后升高,浓度在一定范围内时可以显著降低界面张力,超过这个范围后,由于聚丙烯酰胺的吸附开始顶替界面上的活性物质使界面张力升高。
With the most major oil field entering the intermediary and later stage of exploitation reciprocally, a variety of enhanced oil recovery measures are used. And these measures introduced a large number of surfactants and polymers, which intensified the emulsification degree of produced oil. And this brings difficulties to the follow-up deemulsification of crude oil emulsion. The study on the effect of the crude oil components and additives to the stability and dehydration of crude oil emulsion, can provide a theoretical guidance on the deemulsification of crude oil.
     The Gudao 5# crude oil was separated into four components (saturated, aromatic, resin, asphaltene) by means of fluid-soild adsorption chromatogram.The composition of the components were studied through elementary composition analysis, molecular weight measurement, IR spectrum analysis. The result showed: the molecular weight of asphaltene is the largest, and the degree of unsaturation and content of hetero atom is highest in the four components; besides resin and asphaltene contain much nitrogenous and oxygenous chemical, and have relatively high activity.
     Through the experiment on the stability and deemulsification behavior of crude oil and components simulate emulsion, and the measurement of interfacial tension, the effect of the crude oil components and HPAM of different molecular weight and concentration on the stability and deemulsification of simulate emulsion was researched systematically. The result showed: the stability of simulate oil emulsion order was asphaltene, resin, oil without resin and asphaltene, asphaltene was the main active component; the effect of HPAM on crude oil and three components simulate oil showed different. Besides HPAM can result to thicker interface layer and bad water quality.
     The effect of HPAM on the oil-water interfacial tension of crude oil and components simulate emulsion was studied. The result showed: the oil-water interfacial tension decreased with the addition of HPAM. The interfacial tension between the kerosene solution of crude oil, resin, asphaltene and aqueous phase enhanced first then decreased with the concentration of HPAM (the same molecular weight) increasing. The interfacial tension can be remarkably reduced when the concentration of HPAM was in a certain scope, and when the concentration surpassed the scope, the interfacial tension started to elevate, since the adsorption of HPAM beginning to replace the active components in the interface.
引文
[1]张鸿仁.油田原油脱水[M].北京:石油工业出版社,1990:200-232
    [2]杨小莉,陆婉珍.有关原油乳状液稳定性的研究[J].油田化学,1998,15(1):87-96
    [3]冯叔初.油气集输[M].山东东营:石油大学出版社(华东),1988:134-156
    [4]牟建海.原油破乳机理研究与破乳剂的发展[J].化工科技市场,2002,4,科研与开发:26-30
    [5]苑世领,徐桂英.原油破乳剂发展的概况[J].日用化学工业,2000,1(30):36-39
    [6]李明远,甄鹏,纪淑玲等.原油乳状液稳定性研究界面膜特性与原油乳状液稳定性[J].石油学报(石油加工),1998,14(3):1-5
    [7]夏立新,曹国英,陆世维等.原油乳状液稳定性和破乳研究进展[J].化学研究与应用,2002,14(6):623-627
    [8]丁德磐,孙在春,杨国华等.原油乳状液的稳定与破乳[J],油田化学,1998, 1(15):82-86,96
    [9]梁文杰.石油化学[M] .山东东营:石油大学出版社(华东),1995:424-430
    [10] Dickie J P, Yen T F.The role of trace metal in petroleum[J].Anta Chem,1969 , 39 (14):1847 -1857
    [11] Yen T F.Structure of petroleum asphaltene and its significance[J].Energy Sources,1974, 1 (4) :463-447
    [12] Speight J G.Molecular weight and association of asphaltenes:a critical review[J].Rev Inst Fr Petrol,1985,40(1):51-61
    [13] Storm D A,Shue E Y.Characterization of colloidal asphaltenic particles in heavy oil[J]. Fuel, 1995, 74(8):1140-1145
    [14] Mohammed RA, Bailey A I, Lucklam P F. Dewatering of crude oil emulsion 2 . Interfacial properties of the asphaltic constituents of crude oil[J] . Colloids and Surfaces A: Physicochem Eng Aspects,1993,80:237 - 242
    [15] Li Mingyuan. Ph D Thesis. Bergen:University of Bergen,1993
    [16] Eley D D, Hey M J, Lee M A.Rheological studies of asphaltene flims adsorbed at the oil/water interface[J]. Colloids and Surfaces,1987,24(2-3):173– 182
    [17]李学文,康万利.原油乳状液的稳定性与界面膜研究进展[J].油气田地面工,2003,22(10):7-8
    [18] Andersen S I,Birdi,Kulbir S.Aggregation of asphaltenes as determined by calorimetry[J]. Journal of Colloid and Interface Science,1991,142(2) :497-502
    [19] Bhardwaj,Anil,Hartland,Stanley.Kinetics of coalescence of water droplets in water-in-crude oil emulsions[J],Journal of Dispersion Science and Technology,1994,15(2):133-146
    [20]李平,郑晓宇,朱建民.原油乳状液的稳定与破乳机理研究进展[J].精细化工,2001,18(2):89-93
    [21]郑忠.胶体科学导论[M],北京:高等教育出版社,1989:446-447影响[J].石油学报(石油加工),1999,15(5):1-5
    [22]李明远,俎永平.原油乳状液稳定性研究(蜡与原油乳状液稳定性) [J],油气田地面工程,1997,16(2):1-3
    [23]夏立新.油水界面膜与乳状液稳定性关系的研究(博士学位论文)[D],中国科学院大连化学物理研究所,辽宁大连:2002
    [24]张春玲,林梅钦,宗华等.破乳剂浓度对聚合物驱原油乳状液破乳及界面性质影[J],应用化工,2006,34(1):24-26
    [25]康万利,岳湘安,胡靖郑.含聚合物油水乳状液的聚结特性[J].油气地面工程,1995,14(5):21-24
    [26]孙双立,李莉,陈育红.聚合物驱采出液破乳助剂HF-31的室内性能评价及现场应用[J].精细石油化工进展,2005(4):8-10
    [27]王任芳,李克华.无机盐对原油破乳剂破乳效果的影响[J].石油炼制与化工,1999;30(1):60-63
    [28]胡同亮,杨柯.原油脱盐脱水研究进展[J].抚顺石油学院学报,2003,3(23):1-5
    [28] [美]贝歇尔.乳状液理论与实践[M].付鹰译.北京:科学出版社,1985
    [30]任卓琳,牟英华.原油破乳剂机理与发展趋势[J].油气田地面工程,2005;24(7):16-17
    [31]佟曼丽.油田化学[M].山东东营:石油大学出版社,1997:276-277
    [32]王云峰,张春光,侯万国.表面活性剂在油田开发中的应用[M],石油工业出版社,1995:209-210
    [33] Sharma I.C,Haque I.,Chemical demulsification of natural petroleum emulsion of 74assam(India) [J]. Colloid & Polymer Sci.1982, 260:616-622
    [34]张健,向问淘,韩明等.乳化原油的化学破乳作用[J].油田化学,2005,22(3):283-288
    [35]王明宪.浅论影响原油乳状液破乳的因素[J].油气地面工程,1995,1(14):24-26
    [36]杨翠定,顾侃英,吴文辉.石油化工分析方法(RIPP实验法)[M] .北京:科学出版社,1990:17-21
    [37]梁文杰.重质油化学[M].山东东营:石油大学出版社,2001:35-45
    [38]刘杰,李干佐,吕锋锋.孤东原油组分与其ASP配方体系之间界面张力的研究[J].山东大学学报(理学版),2004,39(1),101-102.
    [39] GB/T 2538一88,原油试验法[S].石油化工科学研究院.北京:中国标准出版社,1989年6月
    [40] GB/T 8929-2006,原油水含量的测定蒸馏法[S].中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.北京:中国标准出版社,1998年4月
    [41] GB/T2540-81,石油产品密度测量法(比重瓶法)[S].北京:中国标准出版社,1998年4月
    [42] GB/2538石油产品流程测定法[S].北京:中国标准出版社,2000年4月
    [43] GB/T264-1983石油产品酸值测定法[S].北京:石油标准出版社,1983年3月
    [44] GB/T18609-2001,原油酸值的测定(电位滴定法)[S].北京:石油标准出版社,2001年8月
    [45] SH/T0251-93,石油产品碱值测定(高氯酸电位滴定法)[S].北京:中国标准出版社,1994年9月
    [46] SH/T0162-92,石油产品中碱性氮测定法[S].北京:中国标准出版社,1994年9月
    [47]邓文安,刘晨光,沐宝泉.石油化学实验讲义.石油大学炼制系应用化学教研室,11-17
    [48]康万利,岳湘安,胡靖邦.含聚合物原油乳状液稳定性研究[J].油气田地面工程,1995,14(2):28-30
    [49]宗华,林梅钦,顾鹏翔等.HPAM对孤岛原油及沥青质油水界面特性影响的研究[J].应用化工,2005,34(2):86-88

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700