用户名: 密码: 验证码:
宽带宽角有源相控阵天线单元研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于第四代战斗机多方面的作战需要,宽带宽角有源相控阵天线技术成为研究的必然趋势。宽带宽角有源相控阵天线是共享孔径大空域扫描天线系统,是第四代机载雷达研制的关键技术。本文密切结合协作方“宽带宽角有源相控阵天线”研究课题,系统地研究了宽工作频带、宽扫描角度有源相控阵天线单元的分析与设计,并重点对锥形开槽天线进行了分析,提出了一种具备宽带宽角特性的介质切口、带状线阶梯锥形开槽天线。作者的主要工作和研究成果可概括为以下几个方面:
     1.针对常规vivaldi天线存在的后向辐射大、主辐射方向增益低的缺点,提出通过优化常规vivaldi天线贴片形式的方法,得到一种增益表现稳定的改进型vivaldi天线。设计并制作了一付工作在6-18GHz的改进型vivaldi天线,并对其电性能进行了实际测试。测试结果表明,在整个工作频带内,改进型vivaldi天线的增益比常规vivaldi天线增益有显著提高。
     2.在常规线性锥形开槽天线形式的基础上,研制了一种小型化宽带宽角线性锥形开槽天线。通过采用独特的导体贴片开缝结构和导体边沿曲线化处理方式,使天线单元具备宽工作频带、宽波束宽度特性。实测结果显示,在工作频带内(8.2-14.5GHz)天线单元的电压驻波比小于2,主工作频带内(10.5-12.6GHz)半功率波束宽度达到120°。
     3.将孤立状态天线单元方向图与描述单元阵列扫描特性的有源反射系数相结合,提出了一种间接、快速、精确推导阵中有效单元方向图的方法,该方法在很大程度上提高了天线设计效率和成功率。
     4.以锥形开槽天线为研究对象,深入分析了该种天线单元在有源相控阵中的阻抗特性和辐射特性,在此基础上设计了一种具备宽带宽角特性的介质切口、带状线阶梯锥形开槽天线,并实际测试天线单元在169元阵中的特性。测试结果表明天线在8-12GHz的工作频带内电压驻波比小于1.6,在8-10GHz频带范围内半功率波束宽度均大于100°,同时,交叉极化电平基本低于-20dB,出色地完成了“宽带宽角有源相控阵天线”天线单元的设计工作。
     5.针对电子对抗方面对共形阵列方向图提出的特殊要求,使用以实数遗传算法为主体、结合简化二次插值算法的混合遗传算法对宽带宽角圆柱共形阵列的辐射特性参数进行分析和优化。计及有限长圆柱上共形分布的天线单元间特定的电磁耦合,通过幅度加权优化,获得了具有指定副瓣电平及“波陷”区域的共形阵列方向图。
     6.建立X型极化分集系统的互耦分析模型,推导天线单元平均接收功率以及空域相关系数的解析式,由此分析天线间互耦与来波平均到达角对天线单元平均接收功率及其信道容量等的影响,结果指出互耦降低了MIMO极化分集系统中天线单元平均接收功率及其信道容量。
     7.基于X型极化分集系统的互耦分析模型,综合考虑了天线部分和电路部分互耦对X型极化分集系统的影响。分析表明系统耦合虽然会提高信号信道的相关性,但同时也可以降低信道平均接收功率比,从而提高系统的极化分集增益。文中同时指出交叉极化鉴别度τ对系统性能影响显著。
To suffice the general-purpose demands of the forth generation combat aircraft, it is inevitable that the antenna technique of wide-band and wide-angle Active Electrically Scanned Array (AESA) is of concerned. The antenna of the wide-band and wide-angle AESA is the system of co-aperture and board airspace scanning, and is the pivotal technique of the forth generation airborne radar. Associated tightly to a "Wide-band and Wide-angle Active Electrically Scanned Array Antenna" Pre-research project, this dissertation presents a systematic investigation on the analysis and design of the antenna elements of the wide-band and wide-angle AESA, tapered slot antenna (TSA) is discussed emphatically, and a modified design of Linearly Tapered Slot Antenna (LTSA) is demonstrated with the character of wide-band and wide-angle radiation. The author's major contributions on the subject can be summarized as follows:
     1. Great back-radiation and low gain in the main-direction are shown in the routine form of vivaldi antenna. A modified vivaldi antenna possessing stable gain appearance, is proposed by optimizing the shape of the regular vivaldi antenna patch. An improved vivaldi antenna operating at the bandwidth of 6-18GHz is designed and fabricated, and the test on the electronical characters of modified antenna is presented. Contrast with routine vivaldi antenna, the gain of modified antenna has been promoted prominently at the whole bandwidth.
     2. Based on regular Linearly Tapered Slot Antenna (LTSA), a modified design of LTSA is demonstrated for miniaturization wide-band wide-angle radiation. The proposed antenna is optimized by wizardly grooves and notches on the patch for wide-band wide-angle radiation. Measured results show that the Voltage Standing Wave Ratio (VSWR) of proposed antenna is below 2 at the operation frequency (8.2~14.5GHz) and the half-power beamwidth (HPBW) of modified miniature antenna achieves 120°at the main frequency (10.5~12.6GHz).
     3. An indirect, fast and accurate method to induce the active element pattern is investigated by combining single antenna pattern and active reflective coefficient which shows the element scanning character in the array. Proposed method is capable of enhancing the efficiency and succeeds in the antenna design.
     4. The impedance and radiation characters in the AESA of Linearly Tapered Slot Antenna (LTSA) are deeply investigated, and a dielectric-cut, stripline step tapered slot antenna is proposed. Test results of 169 elements array demonstrate that proposed antenna possesses perfect wide-band and wide-angle radiation characters. Measured element VSWR in the array is less than 1.6 at the frequency of 8~12GHz, the HPBW is wider than 100 degrees at the frequency of 8~10GHz, and the cross-polarization is lower than -20dB. The Pre-project of "Wide-band and Wide-angle Active Electrically Scanned Array Antenna" is completed excellently.
     5. For the Electronical Antagonism demands of conformal antenna array, the radiation parameters of conformal antenna array are synthesized and optimized using a hybrid genetic algorithm (HGA), which combines the real-coded genetic algorithm (RCGA) and the simplified quadratic interpolation (SQI) method. By analyzing the mutual coupling effects on the individual element patterns and synthesizing amplitude weights of the elements, the perfect patterns are obtained which have appointed sidelobe level and "wave-null" zones.
     6. A useful model for analyzing mutual coupling (MC) of X-type polarization diversity system is propounded. Thus the analytical expressions for both the average received power for each antenna element and spatial correlation between elements are also derived, and the effects of both MC and the mean Direction of Arrival (DOA) on the average power and capacity of MIMO wireless channels are investigated. Analysis results show that MC decrease the average received power of each elements and channel capacity in the MIMO polarization diversity system.
     7. Mutual coupling (MC) analysis model of X-type polarization diversity system is proposed, the effects of MC both of antennas and circuit on performance of system are investigated. To consider MC, it is not only increasing the correlation for polarization diversity system, but decreasing the ratio of received average power and improving the system polarization diversity gain. The paper also presents that cross-polarization differentiated gradeτhas the great effects on the system performance.
引文
[1]张光义.相控阵雷达系统.北京:国防工业出版社,1994.
    [2]张光义,赵玉洁.相控阵雷达技术.北京:电子工业出版社,2006.
    [3]N.Bruce.Ultra-wideband radar:Proceedings of the First Los Alamos symposium,USA:CRC Press,Boca Raton,1991.
    [4]J.D.Taylor.Introduction to ultrawideband radar system,USA:CRC Press,Boca Raton,1995.
    [5]黎海涛.超宽带雷达关键技术研究.电子科技大学博士论文,2000.
    [6]M.Skolnik et al.一种超宽频带微波雷达的设计原理,国际雷达会议,中译本,pp.31-38,1995.
    [7]王光泰,徐继麟等.超宽带雷达技术特点.电子科技大学学报.26(增刊):PP.13-16.1997.
    [8]G Mitropoulos,R.Makti,M.Gargalakos et al.Design of a 26GHz Base Station Phased Array Antenna Element.IEEE Antennas and Propagation Society International Symposium,22-27,2:687-690,Jun.2003.
    [9]Y.Qian et al.Microstrip-fed Quasi-Yagi Antenna with Broadband Characteristics.Electronics Letters,Vol.34,No.23,pp.2194- 2196,Nov.1998.
    [10]Tyzh-Ghuang Ma,Shyh-Kang Jeng.A Novel Compact Ultra-Wideband Printed Dipole Antenna with Tapered Slot Feed.IEEE Antennas and Propagation Society International Symposium,22-27,3:608-611,Jun.2003.
    [11]K.Trott,B.Cummings,R.Cavener et al.7-21GHz Wideband Phased Array Radiator.IEEE Antennas and Propagation Society Symposium,3:2265-2268,2004.
    [12]晏焕强,束咸荣,非相似元四倍频程相控阵天线.现代雷达,4(26):pp.59-61,2004.
    [13]文树梁,袁起,秦忠宇.宽带相控阵雷达的设计准则与发展方向.系统工程与电子技术.27(6):pp.1007-1011,2005.
    [14]翟丽霞,张理云.一种平面相控阵天线波束展宽的优化方法.舰船科学技术.3:pp.19-22,1995.
    [15]罗永健,俞根苗,张守宏等.基于确知波形的宽带宽角相控阵发射波束形成方法.电子学报.3:pp.358-360,2003.
    [16]A.H.Aboud,K.H.Sayidmaric.Reduction of Sidelobe Structure in Phased Arrays by Auxiliary Antenna.Radio Science Conference.8:pp.70-73,2004.
    [17]S.H.Son,U.H.Park,K.H.Lee et al.Mobile Phased Array Antenna Design with Low Sidelobe Pattern by Genetic Algorithm.IEEE Antennas and Propagation Society International Symposium,20-25,4:4112-4115,Jun.2004.
    [18]李黎.宽带相控阵天线综合.西北工业大学硕士论文,2006.2.
    [19]S.N.Prasad and S.Mahapatra.A Novel MIC Slot Line Aerial.Proc.9th European Microwave Conf.pp.120-124,1979.
    [20]P.J.Gibson.The Vivaldi Aerial.Proc.9th European Microwave Conf.pp.101-105,1979.
    [21]Janaswamy and D.H.Schaubert.Dispersion Characteristics for Wide Slotlines on Low-Permittivity Substrates.IEEE Trans.on Microwave Theory and Techniques,Vol.33,No.8,pp.723-726,Aug.1985.
    [22]Janaswamy and D.H.Schaubert.Analysis of the Tapered Slot Antenna.IEEE Trans.Antennas and Propagation.,vol.35,NO.9 pp.1058-1065,Sep.1987.
    [23]D.H.Schaubert.Endfire tapered slot antenna characters.IEEE Trans.Antennas and Propagation.,vol.35,NO.9 pp.1058-1065,Sep.1987.
    [24]J.Chang,D.H.Schaubert and K.S.Yngvesson,etc.32GHz power-combining TSA array with limited sector scanning.IEEE Trans.Antennas and Propagation.,vol.35,NO.9 pp.1058-1065,Sep.1987.
    [25]D.H.Schaubert and J.A.Aas.An explanation of some E-plane scan blindnesses in single-polarized tapered slot arrays.IEEE Trans.Antennas and Propagation.,vol.35,NO.9 pp.1058-1065,Sep.1987.
    [26]D.H.Schaubert,J.A.Aas,M.E.Cooley,and N.E.Buris.Moment method analysis of infinite stripline-fed tapered slot antenna arrays with a ground plane.IEEE Trans.Antennas and Propagation.,vol.42,pp.1161-1166,Aug.1994.
    [27]J.Shin,and Schaubert,D.H.Toward a better understanding of wideband Vivaldi notch antenna arrays.Proc.of 1995 Antenna Applications Symp.,Allerton Park,Monticello,IL,Sep.1995.
    [28]D.H.Schaubert,A.van Ardenne and C.Craeye.etc.The square kilometer array(SKY) antenna.IEEE Trans.Antennas Propagat.,vol.48,pp.122-124,Jan.2000.
    [29]牛军谦,吕善伟,刘涓等.Vivaldi天线及其在宽带测量系统中的应用.宇航计测技术,24(3):20-23,Jun.2004.
    [30]方广有,佐藤源之.频率步进探地雷达及其在地雷探测中的应用.电子学报,33(3):436-439,Mar.2005.
    [31]R.F.Harrington,Time-Harmonic Electromagnetic Fields,McGraw Hill,New York,1961.
    [32]K.S.Yee,Numerical Solution of Initial Boundary Value Problems Involving Maxwell Equations in Isotropic media,IEEE trans.On AP,pp302-307,May.1966.
    [33]D.E.Goldberg,Genetic algorithms in search,optimization and machine learning.Reading,Ma:Addison Wesley,1989.
    [34]Yao X,Liu Y,Lin G M,Evolutionary programming made faster.IEEE Trans Evol Comput,3(2):82-102,1999.
    [35]Li H,Jiao Y C,Wang Y P,Integrating the simplified quadratic interpolation into the genetic algorithm for solving constrained optimization problems.Int Conf on Computational Intelligence and Security.Germany:1:247-254,Springer,2005.
    [36]Ondrej Hrstka,Anna Kucerova,Improvements of real coded genetic algorithms based on differential operators preventing premature convergence.Advances in Engineering Software,35:237-246,2004.
    [37]Wang H F,Wu K Y,Hybrid genetic algorithm for optimization problems with permutation property.Computers & Operations Research,31:2453-2471,2004.
    [38]黄鹍,陈森发,周振国.基于正交试验法的小生境混合遗传算 法.控制理论与应用,21(6):1007-1010,2004.
    [39]R.Courant,Variational methods for the solution of problems of equilibrium and vibration,Bull.Am.Math.Soc,49,1-23.1943.
    [40]M.J.Turner,R.W.Clough,H.C.Martin and L.J.Topp,Stiffness and deflection analysis of complex structures,J.Aero.Sci,23,805-823,1956.
    [41]R.W.Clough,The finite element in plane stress analysis,Proc.2~(nd) ASCE Conf.on Electronic Computation,Pittsburgh,Pa,Sept,1960.
    [42]R.J.Melosh,Basis of Derivation of Matrices for the Direct Stiffness Method,J.AIAA,1,1631-1637,1963.
    [43]R.E.Jones,A Generalization of the Direct-Stiffness Method of Structural Analysis,AIAAJ,Vol.2,No.5,pp.821-826,1964.
    [44]J.H.Holland.Outline for a logical theory of adaptive systems.Journal of the Association for Computing Machinery,9(3):297-314,1962.
    [45]J.H.Holland.Adaptation in natural and artificial systems:An introductory analysis with applications to biology,control and artificial intelligence.1~(st) edition, Ann Arbor, MI; The University of Michigan Press, 1975; 2~(nd) edition,Cambridge, MA; MIT Press. 1992.
    [46] E. Hallen. Theoretical investigations into the transmitting and receiving qualities of antenna. Nova Acta Regiae Soc. Sci. Upsaliensis, ser. IV, Vol.11,pp. 1-44, 1938.
    [47] J. Galejs. Excitation of Slots in a Conducting Screen above a Lossy Dielectric Half Space. IRE Trans. on AP, Vol.10, pp.436-443, Jul. 1962.
    [48] S. Ramo and J. R. Whinnery. Fields and Waves in Modern Radio. 2~(nd) ed. New York: Wiley,pp.357-358, 1953.
    [49] S. B. Cohn. Slot Line on a Dielectric Substrate. IEEE Trans. on Microwave Theory and Techniques, Vol.17, No.10, pp.768-778, Oct. 1969.
    [50] J. B. Knorr and K. Kuchler. Analysis of Coupled Slots and Coplanar Strips on Dielectric Substrate. IEEE Trans. on Microwave Theory and Techniques,Vol.23, No.7, pp.541-548, Jul. 1975.
    [51] A. F. Stevenson. Theory of slots in rectangular waveguides. J. Appl. Phys.Vol.19,pp.24-38,Jan. 1948.
    [52] T. Itoh and R. Mittra. Dispersion characteristics of slot lines. Electron. Lett,Vol.7, pp.364-365, Jul. 1971.
    [53] E. A. Mariani, C. P. Heinzman, J. P. Agrios and S. B. Cohn. Slot line characteristics. IEEE Trans. Microwave Theory Tech (1969 Symp. Issue),Vol.17, pp. 1091-1096, Dec. 1969.
    [54] E. Strumwasser, J. A. Short, R. J. Stegen and J. R. Miller. Slot study in rectangular TEM transmission line. Hughes Aircraft Company, Tech. Memo 265,Air Force Contract AF, 19(122)-454, Jan. 1952.
    [55] M. C. Bailey. Design of dielectric-covered resonant slots in a rectangular waveguide. IEEE Trans. on AP, Vol.15, pp.594-598, Sep. 1967.
    [56] J. Shin and D. H. Schaubert, A Parameter Study of Stripline-Fed Vivaldi Notch-Antenna Arrays, IEEE Trans. Antennas and Propagation., vol.47, pp.879-886, May. 1999.
    [57] S. Nikolaou, G. E. Ponchak, J. Papapolymerou and M. M. Tentzeris,Conformal Double Exponentially Tapered Slot Antenna (DETSA) on LCP for UWB Applications, IEEE Trans. Antennas and Propagation., vol.54, pp.1663-1669, June. 2006.
    [58] R. Garg, P. Bhartia, I. Bahl and A. Ittipiboon, Microsrtip Antenna Design Handbook, Artech House, Norwood, MA, 2001.
    [59] H. Holter, T. H. Chio and D. H. Schaubert, Experimental Results of 144-Element Dual-Polarized Endfire Tapered-Slot Phased Arrays, IEEE Trans.Antennas and Propagation., vol.48, NO.11, pp. 1707-1718, Nov. 2000.
    [60] T. Y. Yun and K. Chang, A Low-Cost 8 to 26.5 GHz Phased Array Antenna Using a Piezoelectric Transducer Controlled Phase Shifter, IEEE Trans.Antennas and Propagation., vol.49, NO.9, pp. 1290-1298, Sep. 2001.
    [61] G. J. Wunsch and D. H. Schaubert, Full and Partial Crosswalls Between Unit Cells of Endfire Slotline Arrays, IEEE Trans. Antennas and Propagation.,vol.48, NO.6, pp. 981-986, June. 2000.
    [62] H. Holter, T. H. Chio and D. H. Schaubert, Elimination of impedance anomalies in single- and dual-polarized end fire tapered slot phased arrays,IEEE Trans. Antennas and Propagation., vol. 48, Issue. 1, pp. 122-124, Jan.2000.
    [63] R. C. Hansen, Ed, Microwave Scanning Antenna, volume II, Array Theory and Practice. New York: Academic, 1966.
    [64] N. Amitay, V. Galindo and C. P. Wu, Theory and Analysis of Phased Array Antennas, New York: Wiley-Interscience, 1972.
    [65] R. J. Mailloux, Phased array theory and technology, Proc. IEEE, vol. 70, pp.246-291, Mar. 1982.
    [66] P. W. Hannan, The element-gain paradox for a phased-array antenna, IEEE Trans. Antennas and Propagation, vol. 12, pp. 423-433, July. 1964.
    [67] J. L. Allen, Gain and impedance variations in scanned dipole arrays, IRE Trans.Antennas and Propagation, vol. 10, pp. 566-572, Sept. 1962.
    [68] L. Stark, Comparison of array element types, in Proc. 1970 Phased Array Antenna Symp., pp. 51-66, June. 1970.
    [69] D. M. Pozar, The Active Element Pattern, IEEE Trans. Antennas and Propagation, vol. 42, NO. 8, pp. 1176-1178, Aug. 1994.
    [70] R. S. Elliott, Antenna Theory and Design. Englewood Cliffs, NJ: Prentice-Hall,1981.
    [71] Y. T. Lo and S. W. Lee, Antenna Handbook: Theory, Applications, and Design,Eds., Van Nostrand, New York, 1998.
    [72] Mahanti, G. K., A. Chakraborty, and S. Das, Design of fully digital controlled reconfigurable array antennas with fixed dynamic range ratio., Journal of electromagnetic Waves and Applications, Vol. 21, No. 1, 97-106, 2007.
    [73] Babayigit, B., A. Akdagli, and K. Guney, A clonal selection algorithm for null synthesizing of linear antenna arrays by amplitude control., Journal of Electromagnetic Waves and Application, Vol. 20, 1007-1020, 2006.
    [74] Lee, K. C. and Jhang, J. Y, Application of particle swarm algorithm to the optimization of unequally spaced antenna arrays., Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2001-2012, 2006.
    [75] Guney, K. and M. Onay, Amplitude-only pattern nulling of linear antenna arrays with the use of bees algorithm., Progress In Electromagnetics Research,PIER 70, 21-36, 2007.
    [76] Mahanti, G. K., N. Pathak, and P. Mahanti, Synthesis of thinned linear antenna arrays with fixed sidelobe level using realcoded genetic algorithm., Progress In Electromagnetics Research, PIER 75, 319-328, 2007.
    [77] L. I. Vaskelainen, Constrained Least-Squares Optimization in Conformal Array Antenna Synthesis., IEEE Trans. Antennas and Propagation., vol. 55, no.3, pp. 859-867, March. 2007.
    [78] N. Kojima, K. Hariu and I. Chiba, Low sidelobe pattern synthesis using projection method with mutual coupling compensation, Phased Array Systems and Technology, 2003. IEEE International Symposium on, pp. 559-564, 2003.
    [79] J. A. Ferreira and F. Ares, Pattern synthesis of conformal arrays by the simulated annealing technique, Electron. Lett., vol. 33, no. 14, pp.1187-1189,1997.
    [80] D. W. Ansell and E. J. Hughes, Using multi-objective genetic algorithms to optimise the subarray partitions of conformal array antennas, Antennas and Propagation, 2003. Twelfth International Conference on, vol. 1, NO. 5, pp.151-155, April. 2003.
    [81] D. W. Boeringer, D. H. Werner and D. W. Machuga, A Simultaneous Parameter Adaptation Scheme for Genetic Algorithms With Application to Phased Array Synthesis, IEEE Trans. Antennas and Propagation., vol.53,NO.1.pp. 356-371, Jan. 2005.
    [82] Hong Li, Yong-Chang Jiao and Yu-ping Wang, Integrating the Simplified Interpolation into the Genetic Algorithm for Constrained Optimization Problems. International Conference on CIS2005, Xi'an, pp. 247-254, 2005.
    [83] 张祖稷,张凯院,徐仲.雷达天线技术.北京:电子工业出版社, 2005.
    [84] Zhi Xu, Hong Li, Qi-zhong Liu and Jian-ying Li, Pattern synthesis of conformal phased array by the hybrid genetic algorithm, Progress In Electromagnetics Research, PIER 79, 75-90, 2008.
    [85]李宏,焦永昌,张莉,王宇平.一种求解全局优化问题的新混合遗传算法,24(3):1-6,2007.
    [86]M.M.Ali,A.T(o∣¨)ORN,S.Vitanen,A numerical comparison of some modified controlled random search algorithms.Journal of Global Optimization,11:377-385,1997.
    [87]黄培康,殷红成,许小剑.雷达目标特性.北京:电子工业出版社,2005.
    [88]D.Gesbert and J.Akhtar,Breaking the barriers of Shannon's Capacity:An overview of MIMO Wireless Systems,Telenor's Journal:TELEKTRONIKK.
    [89]G.J.Foschini,Layered space-time architecture for wireless communications in a fading environment when using multiple antennas,Bell Labs Technical Journal,Autumn,6(2):1-59,1996.
    [90]G.J.Foschini,M.j.Gans,On limits of wireless communication in a fading environment when using multiple antennas,Wireless Pers.Commun.,6(3):311-355,1998.
    [91]B.Vucetic and J.Space-Time coding,New York,Wiley,2003.
    [92]D.Gesbert,H.Boelcskei,D.Gore and A.Paulraj,MIMO wireless channels:capacity and performance prediction,Proc.Globe com'2000,1083-1088,2000.
    [93]罗涛等,多天线无线通信原理与应用.北京:北京邮电大学出版社,2005.
    [94]W.Roh,A.Paulraj,MIMO channel capacity for the distributed antenna.Proc IEEE Veh Technol Conf'02,706-709,2002.
    [95]A.J.Goldsmith,S.A.Jafar,N.Jindal and S.Vishwanath,Capacity limits of MIMO channels.IEEE J.on Sel.Areas Commun.,21(5):684-702,2003.
    [96]C.Waldschmidt,C.Kuhnert,T F~(u∣¨)gen and W.Wiesbeck,Measurements and Simulations of compact MIMO-Systems based on Polarization Diversity,2003IEEE Topical Conference on Wireless Communication Technology,pp284-285,2003.
    [97]C.B.Dietrich JR.,K.Dietze,J.R.Nealy,W.L.Stutzman.Spatial,polarization,and pattern diversity for wireless handheld terminals,IEEE Trans.Antennas and Propag,vol(49),no.9,pp.1271-1281,2001.
    [98]M.R.Andrews,P.P.Mitra and R.deCarvalho,Tripling the capacity of wireless communications using electromagnetic polarization,Nature,vol.409,pp.316-318,Jan.2001.
    [99]S.A.Bergrnann and H.W.Arnold,Polarisation diversity in portable communications environment.Electron.Lett.,vol.22,no.11,pp.609-610,May. 1986.
    [100] Liang Dong, Hosung Choo, R W Heath, Jr, Hao Ling. Simulation of MIMO channel capacity with antenna polarization diversity. Vol. 4, Issue 4, July 2005. pp. 1869-1873. Digital Object Identifier 10. 1109/TWC. 2005. 850318,2005.
    [101] M. J. Fakhereddin, K. R. Dandekar, Combined Effect of Polarization Diversity and Mutual Coupling on MIMO Capacity. Antennas and Propagation Society International Symposium, vol. 2, pp. 495 - 498, 2003.
    [102] Li Xin, Nie Zaiping and Huang Xiujiang, Channel coupling in orthogonal polarization diversity systems and its influence on diversity performances.Antennas and Propagation Society International Symposium, vol.1 A pp. 72 -75, 2005.
    [103] K.R. Dandekar, H. Ling and G. Xu, Effect of mutual coupling on direction finding in smart antenna applications, Electronics Letters, Vol.36, No.26,pp.1889-1891, Oct. 2000.
    [104] T. Svantesson, Direction finding in the presence of mutual coupling. Chalmers University of Technology Technical Report No. 307L, 1999.
    [105] A. Lemma, E. Deprettere and V. D. Veen, Experimental analysis of antenna coupling for high-resolution DOA estimation algorithms. IEEE 2nd Workshop on Signal Processing Advances in Wireless Communications, pp. 362-365,July 1999.
    [106] K. Pasala and E. FRIEL, Mutual coupling effects and their reduction in wideband direction of arrival estimation. IEEE Trans. Aerosp. Electron. Syst.,30(4), pp. 1116-1122,1994.
    [107] T. S. Rappaport, Wireless Communications Principles and Practice. Prentice Hall inc. 1996. 蔡涛等译,无线通信原理与应用.北京:电子工业出版社,pp.247-248, 1999.
    [108] I. J. Gupta and A. K. Ksienski, Effect of mutual coupling on the performance of adaptive arrays. IEEE Trans. Antennas Prop. vol. AP-31, pp.785-791,Sep. 1983.
    [109] A. M. D. Turkmani, A. A. Arowojolu, P. A. Jefford and C. J. Kellett, An experimental evaluation of the performance of two-branch space and polarization diversity schemes at 1800MHz. IEEE Trans. Vehi. Tech., 44(2):318-326, 1995.
    [110] R. G. Vaughan, Polarization Diversity in Mobile Communications. IEEE Trans. Vehicular Technology, Vol. 39, NO. 3, Aug. 1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700