用户名: 密码: 验证码:
广东省三座大型供水水库浮游植物群落结构动态及其与环境因子的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高州水库、南水水库、大沙河水库是广东省三座大型水库,近年来水库均发生过蓝藻水华。为了解其发生的原因与特征,该论文于2010年对三座水库进行了周年与季节性的水质和浮游生物动态的监测与研究。分析环境因子与浮游植物群落结构的相关性,以了解影响浮游植物群落变动的主要环境因子。本论文研究主要结果如下:
     1、高州水库、南水水库、大沙河水库年平均总氮低于1mg/L,季节分布特点表现为枯水期较高,丰水期较低。总磷浓度在大沙河水库与高州水库表现为枯水较高,丰水期较低,南水水库浓度极低,受季节变化的影响较小。
     2、三座水库周年共检测到浮游植物87种隶属7大门类。大沙河水库与高州水库常年均以绿藻门种类最多,蓝藻门种类次之;南水水库硅藻门种类较多,绿藻门次之。
     3、高州水库3-4月蓝藻丰度较高,丰水期绿藻丰度较高;大沙河水库浮游植物丰度较高,6-9月绿藻占优势,其它时期蓝藻占优势;南水水库浮游植物丰度较低,硅藻-绿藻占优势。高州水库1-5月以粘质鱼腥藻、水华微囊藻为优势种,其它时期扁鼓藻、角星鼓藻、小环藻等为优势种。大沙河水库6-9月角星鼓藻等为优势种,其它时期微囊藻成为优势种。南水水库以小环藻和直链藻为优势种。
     4、三座水库营养状态水平存在差异,典范对应分析与相关性分析表明影响藻类群落结构的影响因子不同。在高州水库,硝氮对蓝藻群落的影响较大,而绿藻群落则受温度的影响较大;南水水库中,电导率与正磷对硅藻群落的影响较大,也是影响优势种变化的主要环境因子;在大沙河水库,氨氮、总磷与电导率是影响优势种群落变化的主要环境因子。
     5、高州水库在枯水期降雨较少,水库水位与库容较低,透明度下降,水温下降,更有益于对低温较好适应能力的种类—粘质鱼腥藻成为优势种并形成水华。在丰水期,表层水温增加,水体分层加剧,同时降雨大幅度提高,水位显著升高,水华微囊藻的优势度增加,取代了粘质鱼腥藻成为最主要的优势种,但由于总丰度下降,蓝藻水华消失。
To know phytoplankton community and its relationship with environmental factors in three reservoirs, Gaozhou reservoir, Nanshui reservoir and Dashahe reservoir, we monthly investigated phytoplankton community structure and environmental factors from January to Desember in 2010. Correlation analysis and Canonical correspondence analysis are used for exploring the relationship between phytoplankton comminuty and environmental factors.
     The average total nitrogen concentration in Gaozhou, Nanshui and Dashahe reserivors were less than 1 mg/L. Total nitrogen concentration was higher in dry season than in wet season. Total phosphorus concentration in Dashahe and Gaozhou reserviors were higer in dry season than in wet season, and it was low without seasonal dynamics in Nanshui reservoir.
     Eighty seven taxons in 7 phylas were identified in the three reservoirs. Chlorophyta contributed to most phytoplankton species in Dashahe and Gaozhou reservoirs. Most species of phytoplankton belonged to Bacillariophyta and Chlorophyta in Nanshui reservoir.
     Cyanophyta dominated the phytopalnkton assemblage from March to Apirl and Chlorophyta dominated in wet season in Gaozhou reservoir. Anabaena mucosa and Microcystis flos-aquae were the predominant species from January to May and Cosmarium sp. staurastrum sp. and Cyclotella sp. were predomomant species in the other periods. Chlorphyta dominated phytoplankton assemblage from June to September and Cyanophyta dominanted phytoplankton assemblage in the other period in Dashahe reservoir. Staurastrum sp. was the predominant species from June to September but Microcystis sp. in the other periods. Bacillariophyta and Chlorphyta were dominant classes in Nanshui reservoir, and Cyclotella sp. and Melosira sp. were the predominant species.
     The environmental factors primarily regulating the dynamics of phytoplankton community were different between three reservoirs. In Gaozhou Reservoir, Canonical correspondence analysis showed that nitrate concentration was the most important factor for determing Cyanophyta abundance, while Chlorophyta abundance was mainly affected by water temperature. Conductivity and phosphate concentration were the main environment factors structuring the phytoplankton community in Nanshui reservoir; Ammonium, phosphate concentrations and conductivity were the critical environment factors for structuring phytoplankton community in Dashahe reservoir.
     Low precipitation, low water level and storage capacity, and decreasing water transparency and temperature Gaozhou reservoir in dry season, contributed to Anabaena mucus turning into the dominant species and forming cyanobacterial blooms. In flood season, increase of precipitation resulted in high water level, and thermal stratification occurred in water column. Microcystis flos-aquae dominated the phytoplankton community gradually replacing Anabaena mucus, the blooms finally disappeared with a dramatic decrease of total cyanobacteral biomass.
引文
杜桂森,王建厅等.密云水库的浮游植物群落结构与密度[J].植物生态学报,2001.25(4):501-504.
    范林君.网箱养鱼对红光水库和百丈水库水质影响的研究[D].西南大学,2006.
    郭厚良,金传萌,宋文贞.丝状蓝藻柱胞鱼腥藻原生质球的培养再生[J].植物学报,1996,38(8):637-640.
    郭蔚华,李楠,张智等.嘉陵江出口段三类水体蓝藻绿藻硅藻优势种变化机理[J].生态环境学报,2009,18(1):51-56.
    高光,秦伯强,朱广伟等.太湖梅梁湾中碱性磷酸酶的活性及其与藻类生长的关系[J].湖泊科学,2004,16:245-251.
    胡韧,雷腊梅,张成武.我国鱼腥藻的新记录种—粘质鱼腥藻[J].生态科学,2009.28(1):1-3.
    胡鸿钧,李尧英,魏印心,朱惠忠,陈嘉佑,施之新编著.中国淡水藻类[M].上海:上海科技出版社,1980.
    胡鸿钧,魏印心.中国淡水藻类[M].北京:科学出版社,2006.
    黄玉瑶.内陆水域污染生态学—原理与应用[M].北京:科学出版社,2001.
    韩博平,韩志国,付翔.藻类光合作用机理与模型[M].北京:科学出版社,2003.
    韩博平,李铁林,旭钿.广东省大中型水库富营养化现状与防治对策研究[M].北京:科学出版社,2003.
    焦荔,方志发,朱淑君.千岛湖网箱养鱼对水质的影响[J].环境监测管理与技术,2007,19(4):23-25.
    金湘灿,屠清瑛.湖泊富营养化调查规范[J].北京:中国环境科学出版社,1990.
    刘建康.高级水生生物学[M].北京:科学出版社,1999.
    刘建康,谢平.揭开武汉东湖蓝藻水华消失之谜[J].长江流域资源与环境,1999,8(3):312-314.
    刘恩生.鱼类与水环境间相互关系的研究回顾和设想[J].水产学报,2007,31(3):391-399.
    李一平,逢勇.动水条件下太湖水体透明度及其影响因子模拟[J].河海大学学报,2009,37(6):625-630.
    李秋华,大镜山水库水质改善生态工程效果及浮游植物群落动态特征[D].广州:暨南大学,2008.
    李素菊,吴倩,戴永宁等.巢湖浮游植物叶绿素浓度与反射光谱特征的关系[J].湖泊科学,2001,14(3):228-234.
    林秋奇,胡韧,韩博平.流溪河水库水动力学对营养盐和浮游植物分布的影响[J].生态学报,2003,23(11):2278-2284.
    林秋奇,雷腊梅,韩博平.南亚热带不同营养水平水库的蓝藻组成与动态[J].生态学杂志,2007,26(7):1027-1033.
    林少君,贺立静,黄沛生等.浮游植物中叶绿素a提取方法的比较与改进[J].生态科学,2005,24(1):9-11.
    林少君,顾继光,魏鹏,韩博平.广东省公平水库与星湖生态特征的对比分析[J].生态学杂志,2005,24(7):773-779.
    刘晓瑞,葛晓立等.密云水库内湖富营养化现状分析[J].湖泊科学,2002,14(4):331-336.
    刘正文,钟萍,韩博平.铜绿微囊藻中的紫外保护物质类菌孢素氨基酸MAAs与水华形成机制探讨[J].湖泊科学,2003,15(4):359-363.
    陆开宏,朱津永等.湖南镇水库浮游生物及其影响因子的典范对应分析[J].中国水产科学,2008,15(6):950-960.
    邬红娟,过生练.水库水文情势与浮游植物群落结构[J].水科学进展,2001,12(1):51-55
    吴晓辉,李其军.水动力条件对藻类影响的研究进展[J].生态环境学报,2010,19(7):1732一1738.
    王东红,黄清辉,王春霞等.长江中下游浅水湖泊中总氮及其形态的时空分布[J].环境科学,2004,25:27-30.
    谢平,浅水湖泊内源磷负荷季节变化的生物驱动机制[J].中国科学,2005,35:11-23.
    许海,刘兆普等.太湖上游不同类型过境水氮素污染状况[J].生态学杂志,2008, 27(1):43-49.
    许夏玲.滴水湖浮游植物群落结构及其与环境因子关系的研究[D].上海:上海师范大学,2008.
    余员龙,任丽萍等.2007-2008年千岛湖营养盐时空分布及影响因素[J].湖泊科学,2010,22(5):684-692.
    叶守泽,夏军,郭生练,等.水库水环境模拟预测与评价[M].北京:中国水利水电出版社,1997.
    杨东方,于子江等.营养盐硅在全球海域中限制浮游植物的生长[J].海洋环境科学,2008,27(5):547-553.
    朱伟,万蕾,赵联芳.不同温度和营养盐质量浓度条件下藻类的种间竞争规律[J].生态环境,2008,17(1):6-11.
    张运林,秦伯强,陈伟民等.太湖水体透明度的分析、变化及相关分析[J].海洋湖沼通报,2003,2:30-36.
    章宗涉,黄祥飞.淡水浮游生物研究方法[J].北京:科学出版社,1991.
    Ahn C Y, Chung A S. Rainfall, Phycocyanin, and N:P ratios related to cyanobacterial blooms in a large reservoir [J]. Hydrobiologia,2002,474:117-124.
    Arfi R. The effects of climate and hydrology on the trophic status of Selinge Reservoir, Mali, West Africa [J]. Lake and Resevoir:Research and management,2003, 8:247-257.
    Bulgakov N G, Levich A P. The nitrogen:phosphorus ratio as a factor regulating phytoplankton community structure:nutrient ratios [J]. Archiv fur Hydrobiologie, 1999,146:3-22.
    O'reilly C M, Alin S R, Plisnier P, Cohen A S, Mckee B A. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika [J]. Nature,2003,424:766-768.
    Chisolm S W. Phytoplankon size [G].//Fatkowski P G, Woodhead A D. Primary productivity and biogeochemical cycles in the Sea. New York:Plenum Press,1992, 213-233.
    Chow-Fraser P, Lougheed V, Thiec V L, Crosbie B, Simser L, Lord J. Long-term response of the biotic community to fluctuating water levels and changes in water quality in Cootes Paradise Marsh, a degraded coastal wetland of Lake Ontario [J]. Wetlands Ecology and Management,1998,6:19-42.
    Figueredo C C, Gianti A. Seasonal variation in the diversity and species richness of phytoplankton in a tropical eutrophic reservoir [J]. Hydrobiologia,2001,445:165-174.
    Falkowski P G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean [J]. Nature,1997,387(2):272-275.
    Figueredo C C, Giani A. Seasonal variation in the diversity and species richness of phytoplankton in a tropical eutrophic reservoir [J]. Hydrobiologia,2001,445: 165-174.
    Figueroa F L, Conde-Alvarez R, Gmez I. Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroal gaeunder different light conditions [J]. Photosynthesis Research,2003,75:259-275.
    Geraldes A M, Boavida M J. Distinct age and landscape influence on two reservoirs under the same climate [J]. Hydrobiologia,2003,504:277-288.
    Hamed M M, El-beshry M Z. Uncertainty analysis in dissolved oxygen modeling in streams [J]. Environmental Management,2004,34(2):233-244.
    Horppila J, Peltonen H, Malinen T, et al. Top-down or Bottom-up effects by fish:issues of concern in biomanipulation of lakes [J]. Restoration Ecology,1998,6:20-28.
    Horn H. The relative importance of climate and nutrients in controlling phytoplankton growth in Saidenbach Reservoir [J]. Hydrobiologia,2003,504:159-166.
    Hunt R J, Matveev V, Jones G J, et al. Structuring of the cyanobacterial community by pelagic fish in subtrop ical reservoirs:Experimental evidence from Australia [J]. Freshwater Biology,2003,48:1482-1492.
    Krom M D, Mortimer R J D, poulton S W,et al. In-situ determination of dissolved iron production in recent marine sediments [J]. Aquatic Science,2002,64:282-291.
    Lavaud J, Rousseau B, Etienne A L. General features of photoprotection by energy dissipation in planktonic diacoms (Bacillariophyceae) [J]. Phycology,2004,40: 130-137.
    Leps J, Smilauer P. Multivariate analysis of ecological data using CANOCO [M]. Cambridge:Cambridge University Press,2003.
    Moiler P, Li X P, Niyogi K K. Non-photochemical quenching:a response to excesslight energy [J]. Plant Physiology,2001,125:1558-1566.
    Morais P, Chicharo M A, Barbosa A, et al. Phytoplankton dynamics in a coastal saline lake(SE-Portugal) [J]. Acta Oecologica,2003,24:87-96.
    Nalewajko C, Murphy T P. Effects of temperature and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach [J]. Limnology,2001,2:45-48.
    Oliver R, Ganf G. Freshwater Blooms. In:Whitton B A, Potts M. The Ecology of cyanobacteria [M]. The Netherlands:Kluwer Academic Publishers,2002,149-194.
    Paerl H W, Fulton R S, Moisander P H,et al. Harmful freshwater algal blooms, with an emphasis on cyanobacteria [J]. Scientific World journal,2001,1:76-113.
    Pinilla G A. Vertical distribution of phytoplankton in a clear water lake of Colonbian Amazon [J]. Hydrobiologia,2006,568:79-90.
    Pollongher U. Phytoplankton periodicity in a subtropical lake(Lake Kinneret, Israel) [J]. Hydrobiologia,1986,138:127-138.
    Rennella A M, Ouiros R. The effects of hydrology on plankton biomass in shallow in shallow lakes of the Pampa plain [J]. Hydrobiologia,2006,556:181-191.
    Reynolds C S. PhytopIankton periodicity:the interactions of form, function and environmental Variability [J]. Freshwater Biology,1984,14,111-142.
    Ruban A V, LaVaud J, Rousseau B, et al. The super-excess energy dissipation in diatom algae:comparative an alaysis with higher plants [J]. Photosynthesis Research, 2004,82:165-175.
    Salmaso N. Effects of climatic fluctuations and vertical mixing on the interannual trophic variability of Lake Garda, Italy [J]. Limnology and Oceanograph,2005, 50(2):553-565.
    Scheffer M, Rinaldi S, Gragnani A, et al. On the dominance of filamentous cyanobacteria in shallow turbid lakes [J]. Ecology,1997,78:72-282.
    Schindler D. Evolution of phosphorus limitation in lakes [J].Science,1977, 195:260-262.
    Sommer U. The periodicity of phytoplankton in lake constance (Bodensee) in comparison to other deep lakes of central Europe [J]. Hydrobiologia,1986, 138:1-7.
    Straskraba M, Tundisi J G, Dunean A. State of the art of reservoir limnology and water quality management[G].//Strasklaba M, Tundisi J G, Duncan A. Comparative reservoir limnology and water quality management. Netherlands:Kluwer Acasdemic Publishers,2003.
    Temponeras M, Kristiansen J, Moustka-Gouni M. Seasonal variation in phytoplankton composition and physical-chemical features of the shallow Lake Doirani, Maeedonia, Greece [J]. Hydrobiologia,2000,424:109-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700