用户名: 密码: 验证码:
水压桥路流动特性及水压伺服阀静态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水压传动技术以海(淡)水作为介质,具有无污染、不燃烧、节约能源、工作介质易于获取等突出优点,正日益受到国内外工程界的广泛重视。水压伺服控制技术是水压技术不可或缺的重要组成部分,是水压技术的一个十分重要的发展分枝和方向,已成为当前国际上本学科前沿一个极为重要的研究课题。水压伺服阀是结合了机械、电子以及液压技术的高精密元件,它的性能直接影响着整个水压伺服系统的性能。
     本文根据水的特性提出了一种水压伺服阀结构,其液压桥路采用两级固定阻尼孔与喷嘴挡板串联的结构形式。重点研究了水压伺服阀液压桥路流动特性,探讨了喷嘴挡板位移,阀芯运动速度与阀芯两端压力的关系;研究了喷嘴直径、串联固定阻尼孔直径、阀芯直径及其运动速度、喷嘴挡板与喷嘴之间初始距离等参量对于水压桥路特性的影响。同时运用正交设计方法将各个参量变化以及各参量之间的交互作用对桥路特性的影响进行了分析,为水压伺服阀的设计奠定了理论基础。
     对水压伺服阀的静态特性及其传递特性进行了理论分析,得出了水压伺服阀系统反馈方框图,根据方框图得出了伺服阀系统的传递函数,对传递函数进行仿真得出了其伯德图,验证了伺服阀系统的稳定性。
     对由两级固定阻尼孔与喷嘴挡板串联的喷嘴挡板液压桥路,应用商业化的CFD软件——FLUENT,引入质量转移方程、气体体积方程以及RNG k ?ε湍流模型,对其流动特性和气穴特性进行了全面的仿真研究。两级固定阻尼孔有两种结构形式,一种是两级均为薄壁小孔,另一种是一级为薄壁小孔、一级为环形圆缝。改变固定阻尼孔的直径、环形圆缝的间隙和叠合长度、喷嘴挡板位移等参数,得出了喷嘴挡板液压桥路在不同的几何条件以及边界条件下的流动特性。
     通过对现有试验台架进行技术改造,自行设计了不同形状和规格的喷嘴、环形圆缝、固定阻尼孔等组合试件,对上述喷嘴挡板液压桥路的流动特性进行了试验研究,对喷嘴挡板上液动力进行了相关测试。
     在上述研究工作的基础上,完成了水压伺服阀的设计及制造;并利用现有的试验设备,设计了相应的水压伺服阀静态特性试验台,研制了试验装置的硬件接口电路,编制了功能较为完善的数据采集软件,完成了水压伺服阀进行静态特性试验研究。对水压伺服阀的空载流量特性、负载流量特性、内部泄漏特性以及压力特性进行了相关分析,在此基础上对水压伺服阀的零偏、滞环、流量增益、压力增益、非线性度以及不对称度等特性进行了相关研究。
Water hydraulics technology which is operated by fresh water or seawater, has become more and more appealing to engineering fields across the globe, owing to its great advantages such as environment friendliness, non-flammability, cheapness, cleanliness and high availability of the operating fluids. Water hydraulic servo control technology which is an important and indispensable component, and a very important development branch and direction of water hydraulic technology, has already become an extremely important research problem of front disciplines in the world at present.Water hydraulic servo valves are high-precision components, which are the combination of mechanic, electronic and hydraulic technology. Its performance determines the quality of the whole system.
     In this paper, a structure of hydraulic servo valves has been developed according to the characteristics of water. The water hydraulic servo bridge model,in which the two tandem fixed dampers are adopted as prepositive dampers, is developed. The flow characteristics of the Hydraulic servo bridge is studied especially. The parameter sensitivity analysis for the hydraulic bridge is undertaken. The relationship among the flapper displacement, the spool speed and the end pressure of the spool is explored. The influence of parameters, including the diameter of the nozzle, the diameters of the two tandem fixed dampers, the spool diameter and its sliding speed, the initial clearance between nozzle and flapper, on the characteristics of the hydraulic bridge is also investigated. The orthogonal design is used to analyze the influence and the interaction of those parameters on the characteristics of the hydraulic bridge. This has laid the theoretical foundation for the design of water hydraulic servo valves.
     The static characteristics and the transmission characteristics of the Hydraulic servo valve are analyzed theoretically, educing its feedback block diagram. According to the block diagram of the servo valve system, the transfer function of the system is obtained. Through the simulation of the transfer function, the bode diagram of the system is drawn, verifying the stability of the servo valve.
     The flow characteristics of the typical throttles and hydraulic half bridge which consists of two tandem fixed dampers and a flapper-nozzle, are numerically studied using RNG k ?εturbulent model combined with mass transfer equation, volume fraction equation and two-layer zonal model through commercial CFD software package FLUENT. There are two structures of the tandem fixed dampers; one is two small orifices; the other is a small orifice and annular gap damper. By changing the fixed orifice diameter, ring slot length of the gap and, clearance of the gap, the nozzle displacement parameters, the flow characteristics of the Hydraulic bridge is obtained in different geometric conditions and different boundary conditions.
     The test-bed is technologically reconstructed, a series of coupled elements, including flapper-nozzle, annular gap damper and fixed orifice, are designed. Under the conditions of various throttle clearances, experimental tests are conducted to obtain the flow characteristics of these typical throttles. The force of liquid on the nozzle-flapper is tested
     On the basis of these studies, the design and manufacture of the hydraulic servo valve is completed. And by the use of existing test equipment, the test rig of the static characteristics of the hydraulic servo valve is designed. The hardware interface circuit of the experiment device is developed. The multifunction data acquisition and control software is compiled. The test on the static characteristics of the water hydraulic servo valves is completed, and the correlation of test results is analyzed. The static characteristics including no-load flow characteristics, load flow characteristics, leakage characteristics and the characteristics of internal pressure are studied. The Null bias, Hysteresis, Flow gain, Pressure gain, Nonlinearity and Unsymmetry of the Hydraulic servo valve has researched on the basis of the static characteristics.
引文
[1] S. Stricker. Advances Make Tap Water Hydraulics More Practical. Hydraulics & Pneumatics, 1996, 12: 29~32
    [2]杨曙东,李壮云,朱玉泉.水压传动的主要课题与研究进展.中国机械工程, 2000, 11 (9): 1069~1073
    [3] Usher S. Towards a water-powered robot. Industrial Robot, 1996, 23 (4): 19-23
    [4] Li Z. Y., Yu Z. Y., et al. The Development and Perspective of Water Hydraulics. In: Proceedings of 4th JHPS International Symposium on Fluid Power. Tokyo, 1999: 335~342
    [5] Urata E. Technological Aspects of the New Water Hydraulic. In: Proc of the Sixth Scandinavian International Conference on Fluid Power. Finland, 1999: 21~34
    [6] S?rensen P., Sc. B., Com. B. News and Trends by the Industrial Application of Water Hydraulics. In: Proc. of 6th Scandinavian Int. Conf. on Fluid Power. Finland, 1999: 651~674
    [7] Trostmann E. Water Hydraulics Control Technology. Marcel Dekker Inc, 1996: 36~41
    [8] Koskinen K. T., Vilenius M. J. Water Hydraulics—A Versatile Technology. Journal of the Japan Hydraulics & Pneumatics Society, 1998, 29 (7): 13~19
    [9] Siuko M., Kemppainen T. Development of Water Hydraulic Extractor Tool for Iter. In: The Sixth Scandinavian International Conference on Fluid Power. Finland: 1999. 687~696
    [10] S?rensen P. Latst. Development in the Application of Water Hydraulics. In: Fluid Power Theme days in IHA, Water Hydraulics. Tampere, Finland: 1997. 64~68
    [11]许耀铭.油膜理论与液压泵和马达的摩擦副设计.北京:机械工业出版社, 1987
    [12]路甬祥等.电液比例控制技术.北京:机械工业出版社, 1987
    [13]徐新章.高水基流体在液压系统中应用的前景.机床与液压,1983: 28~34
    [14]李壮云,朱玉泉.难燃液压液的发展及其合理应用.见:中国机械工业学会,难燃介质流体传动学术研讨会. 1988: 97~105
    [15] Kenny P., Yardley E. D., Eedy A. R. M., et al. A Study of Erosion and Corrosion of Materials Used in Hydraulic Equipment with Fire-resistant Fluids. The Mining Engineer, 1979, (9): 235~243
    [16]赖邦均,周梓容,彭浩柯.间隙泄漏水量的初步测定及其计算公式的探讨.凿岩机械气动工具, 2002, (2): 45~52
    [17]聂松林,杨友胜,朱玉泉等.二级节流中间区域压力分布及其刚度特性分析.液压与气动, 2005, (8): 9~11
    [18]张铁华,杨友胜,李壮云.二级圆锥式节流阀口的设计及试验研究.液压与气动, 2001, (11): 12~15
    [19]廖义德,刘银水,黄艳等.二级节流抗气蚀性能的试验研究.流体机械, 2003 (6): 1~3
    [20]廖义德,张铁华,李壮云.海淡水液压阀阀口设计及性能分析.液压与气动, 2002, (1): 31~32
    [21] Lichtarowicz A., Duggins R. K., Markland E. Discharge Coefficient for Incompressible Non-cavitating Flow Through Long Orifice. Journal of Mechanical Engineering Science, 1965, 17 (2): 210~219
    [22] Pearce I. D., Lichtarowicz A. Discharge Performance of Long Orifices with Cavitating Flow. In: Proceedings of the Second Fluid Power Symposium. Guidford: 1971. 12~34
    [23] Yamaguchi A., Suzuki T. Cavitation in Hydraulic Fluids (Part 3: On Cavitation in Long Orifice). Journal of Fluid Control, 1980, 12 (4): 21~38
    [24] Yamaguchi A., Saito H. Cavitation in Hydraulic Fluids (Part V: Effects of Fluid Properties and Orifices Materials on Cavitation in in Long Orifice). Journal of Fluid Control, 1987, 18 (2-3): 19~32
    [25]山科智四郎,日比昭,市川常雄等.短圆筒形节流中油的气蚀.港口装卸, 1986, 10
    [26] Nie Songlin, Wu Zhengjiang, Zhu Yuquan. Experimental Investigation on Flow Characteristics of Circumferential Gap Damper in Water Hydraulics. In: Proceedings of 6th ICFP. Hangzhou, 2005: 189~193
    [27] Liu Yinshui, Wu Zhengjiang, Yang Yousheng. Experimental Study on Cavitation Characteristics of Water Hydraulic Orifice. In: Proceedings of 6th ICFP. Hangzhou, 2005: 204~207
    [28] Oshima S., Ichikawa T. Cavitation phenomenon and Valve Performance of Oil Hydraulic Poppet Valve. In: ICFP. Zhejiang University, Hangzhou, 1985: 1563~1581
    [29] OSHIMA S., ICHIKAWA T. Cavitation Phenomena and Performance of Oil Hydraulic Valve (1st Report, Mechanism of Generation of Cavitation and Flow Performance). Trans. of Japan Soc. of Mech. Engrs., Series B, 1985, 51 (462): 427~435
    [30] OSHIMA S., ICHIKAWA T. Cavitation Phenomena and Performance of Oil Hydraulic Valve (2nd Report, Influence of the Chamfer Length of the Seat and the Flow Performance). Trans. of Japan Soc. of Mech. Engrs., Series B, 1985, 51 (462): 628~636
    [31] OSHIMA S., ICHIKAWA T. Effect of Valve Shape on the Charateristics of an OilHydraulic Poppet Valve (1st Report, When the Seat Angle is Different From the Poppet from the Poppet Angle). Trans. of Japan Soc. of Mech. Engrs., Series B, 1986, 52 (474): 801~806
    [32] OSHIMA S., Timo L., Matti L. Experimental Study on cavitation in water hydraulic poppet valve. Trans. of the Japan Fluid Power System Society, 2002, 33 (2): 29~35
    [33]市川常雄,清水孝.ポペツの流量係数について.日本机械学会论文集(第2部), 31 (222)
    [34] Schrenk E. Disc valves, Flow patterns, resistance and loading (Translation from German). BHRA Publication, 1925: 547~565
    [35] Stone J. A. Discharge coefficients and steady state flow force for hydraulic poppet valves. Trans. ASME, J. Basic Engng., 1960 (3): 144~156
    [36] McCloy D., Mcguigan R. H. Some static and dynamic characteristics of poppet valves. proc. Instn. mech. Engrs., 1964: 179~181
    [37] Oki L., Nakayama Y., Kawakami K. Characteristics of Flat Seated Disc valves for discharging water into water (Experimental Research on disc valves, 10th report). Soc. Mech. Engrs, 1967, 10 (39): 467~475
    [38] Lichtarowicz A. Flow and force characteristics of flapper valves. In: Third international symposium on Fluid Power. Turin: 1976.
    [39] Johnston D. N., Edge K. A., Vaughan N. D. Experimental investigation of flow and force characteristics of hydraulic poppet and disc Valves. Proc Instn Mech Engrs, Part A, 1991, 205: 161~171
    [40] Von Mises R. The Calculation of Flow Coefficient for Nozzle and Orifice. VDA, 1917, 61: 21~23
    [41] Takenaka T., Yamane R., Iwamizu T. Thrust of the Disc Valves. Bull. J. Soc. Mech. Engrs, 1964,7 (27): 559~568
    [42] Duggins R. K. Further Studies of Flow in a Flapper Valve. Third International Symposium on Fluid Power, Turin, Italy, 1973: B2-25
    [43] [日]市川常雄.液压技术基本理论.鸡西煤矿机械厂译.上海:煤炭工业出版社, 1975
    [44] [日]竹中利夫,浦田英三著.液压流体力学.温立中,贺正辉译.北京:科学出版社, 1980
    [45]曹秉刚,郭卯应,中野和夫等.锥阀流场的边界元法分析.机床与液压, 1991 (2): 2~10
    [46] Hayashi S., Matsui T., Ito, T. Study of Flow and Thrust in Nozzle-flapper valves. Trans. ASME, J. Fluids Engng, 1975 (97): 39~51
    [47] Pountney D. C., Weston W., Banieghbal M. R. A Numerical Study of Turbulent Flow Characteristics of Servo-valve Orifices. Proc Instn Mech Engrs, Part A, 1991, 205: 139~147
    [48] Vaughan N. D., Johnston D. N., Edge K. A. Numerical simulation of fluid flow in poppet valves. Proc Instn Mech Engrs, Part A, 1992, 206: 119~127
    [49] Borghi M., Cantore G., Milani M. et al. Analysis of Hydraulic Components using Computational Fluid Dynamics Models. Proc Instn Mech Engrs, Part C, 1998, 212: 619~629
    [50] Nadarajah S., Balabani S., Tindal M. J., et al. The Turbulence Structure of the Annular Non-swirling Flow Past an Axisymmetric Poppet Valve. Proc Instn Mech Engrs, Part C, 1998, 212: 455~467
    [51] Nadarajah S., Balabani S., Tindal M. J., et al. The Effect of Swirl on the Annular Flow Past an Axisymmetric Poppet Valve. Proc Instn Mech Engrs, Part C, 1998, 212: 473~484
    [52] Feancis J., betts P. L. Modelling incompressible flow in a pressure relief valve. Pro Instn Mech Engrs, Part E, 1997, 211: 83~93
    [53] Ito K., Takahashi K, Inoue K. Flow in a Poppet Valve. JSME International Journal, Series B, 1993, 36 (1): 42~50
    [54]高红.溢流阀阀口气穴与气穴噪声的研究:博士学位论文.杭州:浙江大学, 2003
    [55]高殿荣,王益群.液压锥阀流场的有限元分析.机床与液压, 2000 (2): 12~14
    [56]高殿荣,赵永凯.液压元件非圆形流道液流的有限元计算.机械设计, 1998 (3): 15~18
    [57]范洁川等.流动显示与测量.北京:机械工业出版社, 1997
    [58] Urata E., Nakao Y. Study of a flapper-nozzle system for a water hydraulic servo valve. JSME International Journal, Series B, 1998, 41 (2): 270~277
    [59] Urata E., Miyakawa S., Yamashina C., et al. Development of a water hydraulic servo valve. JSME International Journal, Series B, 1998, 41 (2): 286~294
    [60] Urata E., Yamashina C. Influence of flow force on the flapper of a water hydraulic servovalve. Transactions of the Japan Society of Mechanical Engineers, Part B, 1997, 63 (610): 2070~2077
    [61] Urata E., Miyakawa S., Yamashina C., et al. Frequency response of a water hydraulic servo valve. IEE International Conference On Robotics and Automation, 1995:2212~2217
    [62] S. A. Black et al. The Development of a Seawater Hydraulic Vane Motor. In: Proc. of 37th NCFP. U.S.A.: 1981. 111~118
    [63] Taylor P. M., Kieffer J., Oldaker R., et al. A water hydraulic robot, Proc. of the 32nd Conference on Decision and Control, Part 2 (of 4), 1993 (2): 1911~1912
    [64] Urata E., Miyakawa S., Yamashina C. Hydraulic support of spool for water hydraulic servo valve—its influence on flapper-nozzle characteristics. Proc. of the 4th Scandinavian. Intl. Conf. of Fluid Power, Finland, 1995, 2 (2): 910~929
    [65]吉滩裕,佐佐木宏,成濑俊久.海水压驱动マニピュレ—タにつぃで.油压と空气压,平成3年, 22 (6): 48~55
    [66]聂松林,贾国涛,吴正江等.水压圆周缝隙流动特性的仿真研究.机床与液压, 2005 (8): 56~58
    [67]刘银水,黄艳,邱鸿利等.二级节流的性能分析及其在水压阀中的应用.机床与液压, 2001 (5): 16~17
    [68]成召国,李志刚,黄琪.双喷嘴挡板电液伺服阀压力特性的研究.工程机械, 2005 (7): 28~30
    [69]盛敬超.液压流体力学.北京:机械工业出版社, 1982
    [70]李国康,唐宏欣,朱英杰等.防气穴二级节流器的正交试验研究.沈阳工业学院学报, 1995, (3): 13~18
    [71]朱伟勇.最优设计理论与运用.沈阳:辽宁人民出版社, 1981
    [72]王占林,李培滋.飞机液压传动与伺服控制.北京:国防工业出版社, 1980
    [73]雷天觉.液压工程手册.北京:机械工业出版社, 1990
    [74]贺小峰,张铁华,李壮云.海、淡水液压阀的研究.机床与液压, 2000 (3): 44~45
    [75]王新华,魏源迁,李剑锋等.水压传动元件的腐蚀与控制.机床与液压, 2004 (9): 1~4
    [76]朱碧海,李壮云,贺小峰等.水压阀关键技术的研究.润滑与密封, 2004 (5): 132~133
    [77]朱碧海,李壮云,朱玉泉等.水压系统中的污染物控制.液压与气动, 2003 (12): 49~51
    [78]宋雪曙.金属材料的海水腐蚀与防护.机械工程材料, 1983, 17 (2): 3~4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700