用户名: 密码: 验证码:
微小矩形通道内流动与换热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的进步,电子、机械等领域都向小型化、微型化方向发展,对此类产品的散热要求也日益提高。微通道换热器以体积小、换热能力强等特点成为微小型化后主要的散热设备,其性能也成为国内外学者研究的热点之一。
     本文利用试验和数值模拟的方法研究了当量直径为0.633-1.079mm的微小通道内流动与换热特性,工质为液体水,雷诺数为100-3000。试验结果表明该尺寸范围内当量直径较大的通道,层流向紊流转变的临界雷诺数约为2000,而对于当量直径较小的通道,临界雷诺数约为1700,较常规尺度的转变点有所提前。层流表观摩阻系数和平均努谢尔数的试验值与数值计算结果吻合良好。最后通过数值方法对恒定泵功及恒定流量条件下不同结构参数的通道进行了换热计算,给出了最佳换热结构参数。
With the development of science and technology, electronics, machinery and other fields are developing in the direction of miniaturization and micromation. Cooling requirements of such products have keep rising. Microchannel heat exchanger with the feature of small in size and power in heat transfer has become major cooling equipment after miniaturization and micromation. And the performance study has become one of hot spots to domestic and overseas scholars.
     Flow and heat transfer characteristics in small rectangle channels with equivalent diameter ranging from 0.633 to 1.079 mm were studied both experimentally and numerically in this paper. Liquid water was employed as work fluid, with the Reynolds number ranging from approximately 100 to 3000. The experimental results show that transition from laminar to turbulent flow occurred at critical Reynolds numbers about 2000 in the larger channels of the dimensions considered here. And the smaller ones occurred at about 1700, which is earlier than conventional scale. Experimental values of laminar apparent friction coefficient and Nusselt number are in good agreement with numerical values. Finally, the heat transfer of different structure channels were calculated by numerical methods assuming pump power or flow rate is constant, and optimum heat transfer structures were given.
引文
[1]陈育和,改变未来生活的微型化技术,科技潮, 2004(6): 28-30.
    [2] D.B. Tuckerman , R.F.W. Pease, High-Performance heat sinking for VLSI. IEEE Electron Device Letters, 1981, EDL-2(5):126-129.
    [3] Y. Mishan, A. Mosyak, E. Pogrebnyak, G. Hetsroni, Effect of developing flow and thermal regime on momentum and heat transfer in micro-scale heat sink, Int. J. Heat Mass Transfer, 2007,50:3100-3114.
    [4] .姚李英,陈涛,王升启,左铁钏,高聚物基PCR微流控芯片技术,中国生物工程杂志, 2004, 24(3): 90-93.
    [5]姜海,郑小林,彭承琳,翁璇,基于MEMS技术的红细胞变形性测量系统的研究,中国医疗器械信息, 2006, 12(12): 28-31.
    [6]钟晓晖等,用于个人冷却的微型制冷系统研究现状,暖通空调, 2007, 37(1): 38-42.
    [7] O. Reynolds. An experiment investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in Parallel Channels, Phil. Trans. R.Soc, 1883, 174: 935-982.
    [8] F.M. White, Fluid Mechanics(third ed), New York, McGraw Hill, 1994.
    [9] R.K. Shah, A.L. London, Laminar flow forced convection in duct, T.F.Irvine , J.P Hartnett,Supplement 1 in Advances in Heat Transfer, New York, Academic, 1978.
    [10] W.M.凯斯, M.E.克拉福特,对流传热传质(陈熙等译),北京,科学出版社, 1986.
    [11]刘鹤年,流体力学,北京,中国建筑工业出版社, 2001.
    [12]孔珑,工程流体力学(第二版),北京,水利电力出版社,1992.
    [13] Majid Bahrami, M. Michael Yovanovich, J. Richard Culham. A novel solution for pressure drop in singly connected microchannels of arbitrary cross-section, Int. J. Heat Mass Transfer, 2007,50: 2492-2502.
    [14] W.M.Rohsenow et al, Handbook of heat transfer fundamentals(2nd ed.), New York, McGraw-Hill, 1985
    [15] G. Hetsroni, A. Mosyak, E. Pogrebnyak, L.P. Yarin, Fluid flow in micro-channels. Int. J. Heat Mass Transfer, 2005, 48: 1982-1998.
    [16] D. Liu, S.V. Garimella, Investigation of liquid flow in microchannels, AIAA J. Thermophys. Heat Transfer, 2004,18: 65-72.
    [17] Z.X. Li, D.X. Du, Z.Y. Guo, Experimental study on flow characteristics of liquidin circular micro-tubes, Microscale Thermophys. Eng, 2003, 7: 253-265.
    [18] B. Xu, K.T. Ooi, N.T. Wong and W.K. Choi, Experimental investigation of flow friction for liquid flow in microchannels, Int. Comm. Heat Mass Transfer, 2000, 27: 1165-1176.
    [19] W. Qu, I. Mudawar, Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink, Int. J. Heat Mass Transfer, 2002, 45: 2549-2565.
    [20] J. Judy, D. Maynes and B.W. Webb, Characterization of frictional pressure drop for liquid flows through microchannels, Int. J. Heat Mass Transfer, 2002, 45: 3477-3489.
    [21] A.Popescu, J.R.Welty, D.Pfund, D.Rector, Thermal measurements in rectangular microchannels, in: Proc. of IMECE2002, IMECE2002-32442, 2002.
    [22] W.Qu, I.Mudawar, Experimental and numerical study of pressure drop and heat transfer in a single-phase microchannel heat sink, Int. J. Heat Mass Transfer, 2002, 45: 2549-2565.
    [23] K.C. Toh et al, Numerical computation of fluid flow and heat transfer in microchannels, Int. J. Heat Mass Transfer, 2002,45: 5133-5141.
    [24]张春平,粗糙度对微细通道内流动与换热特性影响的试验研究与理论分析, [博士学位论文],北京,中国科学院, 2007.
    [25]王玮等,粗糙表面对微尺度流动影响的数值分析,工程热物理学报, 2003, 24(1): 85-87.
    [26] X.F. Peng, G.P. Peterson and B.X. Wang, Heat transfer characteristics of water flowing through microchannels, Exp. Heat Transfer, 1994, 7: 265-283.
    [27] X.F. Peng, G.P. Peterson and B.X. Wang, Frictional flow characteristics of water flowing through microchannels, Exp. Heat Transfer, 1994, 7: 249-264.
    [28] Gh.M. Mala, D. Li, Flow characteristics of water in microtubes, Int. J. Heat Fluid Flow, 1999, 20: 142-148.
    [29] W. Qu, Gh.M. Mala, D. Li, Pressure driven water flows in trapezoidal silicon micro-channels, Int. J. Heat Mass Transfer, 2000, 43: 353-364.
    [30] D. Pfund, D. Rector, A. Shekarriz, Pressure drop measurements in a micro-channel, AIChE J, 2000, 46:1496-1507.
    [31] M.M. Rahman, Measurements of heat transfer in microchannel heat sinks, Int. Commun. Heat Mass Transfer, 2000,27: 495-506.
    [32] S.G. Kandlikar, S. Joshi, S. Tian, Effect of channel roughness on heat transfer andfluid flow characteristics at low Reynolds numbers in small diameter tubes, in: Proc. of 35th National Heat Transfer Conference, Anaheim CA, USA, 2001, Paper: 12134.
    [33] G.P. Celata, M. Cumo, M. Guglielmi, G. Zummo, Experimental investigation of hydraulic and single phase heat transfer in 0.130 mm capillary tube, Microscale Thermophys. Eng, 2002,6: 85-97.
    [34] H.Y. Wu, P. Cheng, An experimental study of convective heat transfer in silicon microchannels with different surface conditions, Int. J. Heat Mass Transfer, 2003, 46: 2547-2556.
    [35] C.M. Ho, Y.C. Tai, Micro-electro-mechanical systems(MEMS) and fluid flows, Ann. Rev. Fluid Mech. 1998, 30: 579–612.
    [36] H. Herwig, O.Hausner. Critical view on“new results in micro-fluid mechanics”: an example, Int. J. Heat Mass Transfer, 2003, 46: 935-937.
    [37] Mohamed Gad-el-Hak, Comments on“critical view on new results in micro-fluid mechanics”, Int. J. Heat Mass Transfer, 2003, 46: 3941-3945.
    [38] Poh-Seng Lee, Suresh V. Garimella, Dong Liu, Investigation of heat transfer in rectangular microchannels, Int. J. Heat Mass Transfer 2005,48: 1688-1704.
    [39]陈矛章,粘性流体动力学基础,北京,高等教育出版社, 1993.
    [40]陶文铨,数值传热学(第二版),西安,西安交通大学出版社, 2001.
    [41] S. V. Patankar, Numerical heat transfer and fluid flow. NewYork, McGraw-Hill, 1980.
    [42]王福军,计算流体动力学分析:CFD软件原理与应用,北京,清华大学出版社, 2004.
    [43]郑捷庆,邹锋,张军,罗惕乾, CFD软件在工程流体力学教学中的应用,中国现代教育装备, 2007, 10(56): 119-121.
    [44]章梓雄,董曾南,粘性流体力学,北京,清华大学出版社, 2003.
    [45] R.M.Curr,D.Sharma, and D.G. Tatchell, Numerical predictions of some three dimensional boundary layers in ducts, Comput. Meth. Appl. Mech. Eng, 1972, 1: 143-158.
    [46]齐铭,制冷附件,北京,航空工业出版社, 1992.
    [47] V.L. Streeter, E.B. Wylie, Fluid Mechanics(8th ed.), New York, McGraw-Hill, 1985.
    [48] J.P. Holman, Experimental Methods for Engineer(s4th ed.), New York, McGraw- Hill, 1984.
    [49] Latif M. Jiji, Heat Convection, New York, Springer Berlin Heidelberg, 2006.
    [50] G. Hetsroni, A. Mosyak, E. Pogrebnyak, L.P. Yarin, Fluid flow in microchannels, Int. J. Heat Mass Transfer, 2005,48: 1982-1998.
    [51] Cheng P, Wu H Y, Mesoscale and microscale phase change heat transfer, Advances in heat transfer, 2006,39: 469.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700