用户名: 密码: 验证码:
磁流变弹性体变刚度机理及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变弹性体是磁流变材料中新的一员,是磁流变液的固体模拟,它主要由橡胶基体和可磁化铁颗粒组成。可磁化颗粒弥散在橡胶基体中,在外加磁场作用下形成有序排列结构,并被根植在固化后的基体里。因此在磁场的作用下,磁流变弹性体的力学、电学、磁学诸性能可发生连续的、迅速的和可逆的变化。由于磁流变弹性体在兼具磁流变材料可控特性的同时,还具有无需密封、性能稳定、响应迅速等优点,因此在航空航天、运载车辆和土建结构的减振缓冲控制领域有着巨大的应用潜力。
     本文探讨了磁流变弹性体流变效应的微观模型,计算得到了颗粒链倾斜角、磁场强度、剪应变与材料剪切模量的关系。在开尔文模型的基础上,改进了表征磁流变弹性体力学特性的粘弹性模型,进而设计出一款基于磁流变弹性体的隔振缓冲器,并进行系列性能实验验证。具体内容包括:
     ①分析了磁流变弹性体颗粒铁磁性和基体粘弹性,在偶极子和耦合场模型基础上,结合颗粒链剪应变的大小,计算得到了三种不同情况下的颗粒链对磁流变弹性体磁致效应的影响。计算结果表明,随着颗粒链的倾斜角的增大,磁流变弹性体的磁致效应将减小,因此在材料制备过程中应采取相应措施减小颗粒链的倾斜角。
     ②提出了一个磁流变弹性体的宏观粘弹性参数模型,计算了磁流变弹性体的磁致剪切模量、损耗模量和损耗因子。利用改进的动态机械分析仪(DMA)对磁流变弹性体样品进行了不同磁场、不同频率的剪切储能模量、损耗模量和损耗因子的测量,实验结果验证了粘弹性模型的合理性。
     ③利用磁流变弹性体变刚度特性设计出一款磁流变弹性体隔振缓冲器,分析了隔振缓冲器的隔振原理,搭建了单自由度的自由跌落缓冲实验系统,并对磁流变弹性体隔振缓冲器在不同跌落高度和磁场情况下的最大响应加速度进行了测试。实验结果表明,随着外加磁场的增加,隔振缓冲器的响应加速度减小,达到了隔振缓冲的目的。
Magnetorheological elastomer(MRE) is a new member of Magnetorheological material and solid simulation of Magnetorheological fluid. It is mainly composed of rubber and magnetizable iron particles. The magnetizable particles disperse in the rubber and form ordered arrangement structure which takes root in the curing rubber under the external magnetic field. So MRE’s mechanical, electric and magnetic properties can occur continuous, rapid and reversible change under the applied magnetic field. Because MRE has the controllable properties as the MR materials, at the same time the application equipments have the advantages of no sealing equipments, steady performance and rapid response etc, so it has the huge potential value in the vibration reduction and cushioning controlling area of aerospace, vehicle and civil structure.
     In this paper, the microcosmic model of MRE rheological effect is studied, the relationship between oblique angle of particles chains, magnetic field intensity, shear strain and MRE’s shear modulus is also be calculated. On the basis of Kelvin model, the viscoelasticity model described the mechanical properties of MRE is improved. An isolation buffer based on MRE is designed and series of experiments are done to verify its performance, the specific contents include:
     ①Analyzed the ferromagnetic particles and matrix viscoelasticity of MR elastomer. On the basis of dipole and coupling field models, the influence to MRE’s magneto-induced effect of three kinds of particles chains is get. The calculation results implicate that the MRE’s magneto-induced effect will decrease while the oblique angle of particles chains increases. So certain measures should be taken to decrease the oblique angle of particles chains in the process of material production.
     ②A macroscopic viscoelasticity parameter model described the mechanical performance of MRE is proposed, the magneto-induced shear modulus, loss modulus and loss gene of MRE are calculated on the basis of above model. By using the improvement dynamic mechanical analyzer, the magneto-induced shear storage modulus, loss modulus and loss gene of MRE sample are tested at different magnetic field and frequency and the experimental results implicate the rationality of viscoelasticity model.
     ③By making use of variable stiffness properties of MRE, an isolation buffer based on MRE is designed and its isolation principle is analyzed. A single degree of freedom free-falling impact system is built, and the maximum response acceleration of MRE isolation buffer is tested at different falling highness and magnetic field. The experimental data implicate that the maximum response acceleration will decrease while the applied magnetic field increases. The goal of isolation buffer is achieved.
引文
[1] W M. Winslow. Translating Electrical Impulses into Mechanical Force[P]. U.S. Patent 2,417,850 March 25,.1947.
    [2] J.Rabinow. Magnetic Fluid Clutch[R]. Technical News Bulletin, National Bureau of Standards,32/4, 1948. pp.54-60.
    [3] J.Rabinow. The Magnetic Fluid Clutch[J]. AIEE Transactions, 67, 1948. pp.1308-1315.
    [4] Eige, J. J., et al., Feasibility of Vibration and Shock Exciter Using Electric Field Modulation of Hydraulic Power[R]. WADD Technical Report, No; 61~185(Ohilo: Wright-patterson Air Force Base), 1961.
    [5] Standrud, H. T., Electric-field Valves Inside Cylinder Vibrator[J]. Hydraulics Pneumatics, Vol.9, 1966, P.139~143.
    [6] Coulter, J. P., et al., Application of Electrorheological Materials in Vibration Control[C]. Proc. 2nd Int. Conf. On ER Fluid, (Raleigh, Nc), 1989.
    [7] Shulman, Z. P. et al., Structure Physical Properties and Dynamics of Magnetorheological Suspensions[J]. Int. J. Mutiphase Flow, Vol.12(6), 1986, p.935~955.
    [8] Kordonsky, W. I., Elements and Devices Based on Magnetorheological Effect[J]. J. of Intel. Meter. Stru. Vol.4, 1993, P.65~69.
    [9] Weiss, K. D. et al., High Strength Magneto- and Electro-rheogical Fluids[J]. Society of Automotive Engineers, SAE paper, No:932541, 1993.
    [10] Ralf Bolter, et al., Design Rules for MR Fluid Actuators in Different Working Modes[C]. SPIE, Vol.3045, 1997, P.148~159.
    [11] Ashour, D. et al., Manufacturing and Characterization of Magnetorheological Fluids[C]. SPIE, Vol.3040, 1997, P.174—184.
    [12] Ginder, J. M., et al., Shear Stress in Magnetorheological Fluids[J]. Role of Magnetic Saturation, Applied Physics Letters, Vol.65, 1994, P.3410—3418.
    [13] Ginder, J. M., et al. Rheology of Magnetorheological Fluids. Models and Measurements[C]. Proc. of the 5th International Conference on ER and MR Fluids, Edited by Tao, R. 1995, P.504—515.
    [14] Jolly, M. R., et al., A Model of the Behavior of Magnetorheological Materials[J]. Smart Mater. Strut. Vol3(5), 1996, P.607—614.
    [15] Lou, Z. Ervin, R. D., Filisko,F.E., A Preliminary Parametric Study Of Electrorheological Damper[J]. Trans. ASME, Journal of Fluid Engineering, Vol.116, 1994, p.570—577.
    [16]廖昌荣.汽车磁流变阻尼器动态响应特征的研究[D].重庆大学博士论文,2002.
    [17] Sameer Marathe, Farhan Gandhi and K.W. Wang, Helicopter Blade Response and Aeromechanical Stability with A Magnetorheological Fluid Based Lag Damper[C]. SPIE, Vol.3329, 1998, p.390—401.
    [18]周刚毅一种测量磁流变液流变特性的系统研制[J].机械科学与技术. Vol.17(增刊) 1998, P.101—102.
    [19]刘奇,张平,王东亚,黄元龙.磁流变体(MRF)材料的制备与性能研究[J].功能材料Vol.32(3), 2001, p.257—259.
    [20]张先舟.磁流变弹性体的研制及其机理研究[D].中国科学技术大学硕士论文,2004.
    [21]汪建晓,孟光.磁流变弹性体研究进展.功能材料[J]. 2006, 37(5):706.
    [22]龚兴龙,邓华夏,李剑锋,陈琳,张培强.磁流变弹性体及其半主动吸振技术[J].中国科学技术大学学报. 2007,37(10).
    [23] Shiga T , Okada A , Kurauchi T. Journal of Applied Polymer Science[J]. 1995,58:787.
    [24] Mark R Jolly, J David Carlson and Beth C Mu?noz. A model of the behaviour of magnetorheological materials[J]. Smart Mater. Struct,1996 (5):607–614.
    [25] S.A.Demchuk, V.A.Kuz'min. Vscoelastic Properties of Magnetorheological Elastomers in the Regime of Dynamic Deformation[J]. Journal of Engineering Physics and Thermophysics, 75(2), 2002. pp.396-400.
    [26] M.Lokander, B.Stenberg. Performance of Isotropic Magnetorheological Rubber Materials[J]. Polymer Testing 22, 2003. pp.245-251.
    [27] M.Lokander, B.Stenberg Improving the Magnetorheological effect in Magnetorheoligcol Rubber Materials[J]. Polymer Testing 22, 2003. pp.677-680.
    [28]陈琳,龚兴龙,江万权,张培强.增塑剂对磁流变弹性体磁流变效应的影响[J].功能材料. 2006年第5期(37)卷.
    [29] L. C. Davis. Model of magnetorheological elastomers[J]. Journal of Applied physics, 1999, 85(6):3348.
    [30] Y. Shen, M. F. Golnaraghi, AND G. R. Heppler. Experimental Research and Modeling of Magnetorheological Elastomers[J]. Journal of intelligent material systems and structure, 2004,15:27.
    [31]党辉,朱应顺,龚兴龙,张培强.基于分布链修正的磁流变弹性体的物理模型[J].化学物理学报,2005,18(6):971.
    [32] J.M.Ginder, M.E.Nichols, et al. Magnetorheological Elastomers: Properties and Applications[C]. Proceedings of SPIE (1999), 3675. pp. 131—138.
    [33]龚兴龙,李剑锋,张先舟,张培强.磁流变弹性体力学性能测量系统的建立[J].功能材料,2006,37(5):733.
    [34]方生,龚兴龙,张先舟,张培强.磁流变弹性体力学性能的测试与分析[J].中国科学技术大学学报,2004,34(4):456.
    [35] Ginder John M, Nichols Mark E, Elie Larry D,Clark Seamus M,Ford Motor Co. Controllable-stiffness components based on magnetorheological elastomers[C]. Proceedings of SPIE ,2000,3985:418.
    [36] Ginder John M , Schlotter William F ,Nichols Mark E .Magnetorheological elastomers in tunable vibration absorbers[C]. Proceedings of SPIE, 2001,4331:103.
    [37] Hua-xia Deng, Xing-long Gong1 and Lian-huaWang. Development of an adaptive tuned vibration absorber with magnetorheological elastomer[J]. Smart Mater.Struct,2006,15:111.
    [38]邓华夏,龚兴龙,张培强,张先舟,朱应顺.中国,刚度和阻尼均可控的减震器[P].专利号:200520070319.申请日:20050401.
    [39]张利平,秦冀广.缓冲器原理与应用[J].现代机械1999年第1期: 49—51.
    [40]中国百科网[Z]:http://www.chinabaike.com.
    [41]杨挺青等.黏弹性理论与应用[M].科学出版社, 2004.
    [42]周光泉,刘孝敏.粘弹性理论[M].中国科学技术大学出版社, 1996.
    [43]刘志全,黄传平.月球探测器软着陆机构发展综述[J].中国空间科学技术,2006年2月第1期:33—39.
    [44]张少实,庄茁.复合材料与粘弹性力学[M].机械工业出版社, 2005.
    [45] Bellan C ,Bossis G. Intenational Journal of Modern Physcis B[C] , 2002 , 16 : 2447—2453.
    [46]赵玉刚.冲击响应分析方法及其应用[D].浙江大学硕士学位论文,2004.
    [47]徐斌,张斌,周红卫.落锤冲击试验机数据采集与分析系统[J].试验技术与试验机,1999年第39卷第3期.
    [48]常俊英,赵杰. MATLAB在振动隔离中的应用[J].北京石油化工学院学报, 2003年12月,第11卷第4期: 49—52.
    [49]陈琳,龚兴龙.碳黑对磁敏高弹体力学性能的影响[J].功能材料,2007年增刊(38)卷: 1251—1254.
    [50]孙桃林,龚兴龙,李剑锋,江万权,胡源.蒙脱土对硅橡胶基磁流变弹性体性能的影响[J].功能材料,2007年增刊(38)卷: 1255—1257.
    [51]朱应顺,龚兴龙,张培强.磁流变弹性体若干物理量的数值分析[J].计算力学学报,2007年10月,第24卷第5期: 565—570.
    [52]王莲花,龚兴龙,邓华夏,倪正超,孔庆合.磁流变弹性体自调谐振式吸振器及其优化控制[J].实验力学,2007年8月,第22卷3-4期: 429—434.
    [53]王世旺,汪建晓.剪切式磁流变弹性体阻尼器力学性能研究[J].佛山科学技术学院学报(自然科学版),2007年9月,第25卷第5期: 17—20.
    [54]汪建晓,王世旺,孟光.挤压式磁流变弹性体阻尼器-转子系统的振动特性试验[J].航空学报,2008年1月,第29卷第1期: 91—94.
    [55]陈琳,龚兴龙,孔庆合.天然橡胶基磁流变弹性体的研制与表征[J].实验力学,2007年8月,第22卷第3-4期: 372—378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700