用户名: 密码: 验证码:
Toll样受体介导角膜真菌感染炎症反应的作用及基因沉寂治疗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:
     TLRs介导的角膜上皮细胞对烟曲霉菌的天然免疫反应
     目的:研究角膜上皮细胞Toll样受体(TLR)2和TLR4分别对配体刺激的免疫反应及其介导角膜上皮细胞对烟曲霉菌炎症反应的作用。
     方法:培养永生化人角膜上皮细胞,利用TLR2配体酵母聚糖、TLR4配体LPS及烟曲霉菌菌丝分别刺激角膜上皮细胞,于不同时间点(1h,3h,6h,12h)收取培养上清进行酶联免疫吸附试验(ELISA)检测细胞因子IL-1β和IL-6水平。分别设计靶向人TLR2、TLR4的siRNA序列,构建表达TLR2-或TLR4-siRNA的质粒,分别转染角膜上皮细胞,利用RT-PCR及Western blot检测TLR2、TLR4表达以评价抑制效果。利用烟曲霉菌菌丝并分别刺激转染siRNA的角膜上皮细胞及未转染对照细胞,于不同时间点(1h,3h,6h,12h)利用ELISA检测上清中细胞因子IL-1β和IL-6水平。
     结果:TLR2配体酵母聚糖、TLR4配体LPS及烟曲霉菌均可刺激永生化人角膜上皮细胞(THCE)分泌炎性细胞因子IL-1β和IL-6。酵母聚糖刺激角膜上皮细胞后6h IL-1β和IL-6水平开始升高,并呈时间依赖性。LPS刺激后12h可见细胞因子显著性升高,但表达水平不如酵母聚糖刺激明显。烟曲霉菌刺激后3h细胞因子水平即明显升高,随刺激时间延长进一步上调。TLR2-或TLR4-siRNA贡粒转染角膜上皮细胞后,TLR2、TLR4 mRNA及蛋白水平表达均受到显著抑制。烟曲霉菌菌丝刺激后对照组IL-1β和IL-6表达明显上调,而TLR2-或TLR4-siRNA处理组IL-1β和IL-6水平均较对照组显著降低。
     结论:TLR2配体和TLR4配体可诱导角膜上皮细胞的天然免疫反应;角膜上皮细胞通过TLR2和TLR4识别烟曲霉菌并介导炎性细胞因子表达。角膜上皮细胞表达的TLR2和TLR4在角膜抗真菌感染天然免疫中发挥重要作用。
     第二部分:
     TLR2介导茄病镰刀菌诱导的人角膜基质细胞抗炎细胞因子表达
     目的:研究TLR2在茄病镰刀菌诱导的人角膜基质细胞促炎细胞因子和抗炎细胞因子表达中的作用。
     方法:设计靶向人TLR2 siRNA序列,连接入p-silencer 2.0 U6载体构建能表达TLR2-siRNA的质粒。分别转染永生化人角膜基质细胞,利用免疫荧光、RT-PCR及Western blot检测TLR2的表达。制备茄病镰刀菌菌丝和孢子刺激液并分别刺激转染siRNA的角膜基质细胞及未转染对照细胞,刺激12h后利用实时荧光定量PCR检测细胞因子IL-1β和IL-10的表达。
     结果:TLR2-siRNA质粒转染人角膜基质细胞后,TLR2 mRNA及蛋白水平表达均明显被抑制,mRNA抑制效率为60%,蛋白抑制效率可达65%左右。对照siRNA转染组、空载体组及空白对照组TLR2表达无显著差异。单纯镰刀菌菌丝和孢子均可刺激人角膜基质细胞IL-10和IL-1β表达明显上调,与对照组有显著差异(P<0.01),其中菌丝刺激组细胞因子表达水平比孢子刺激组高。分别使用茄病镰刀菌菌丝及孢子刺激后,对照组IL-1β及IL-10的表达均明显上调,且菌丝诱导的表达上调比孢子更显著;RNA干扰组,IL-10表达较对照组明显降低,菌丝刺激组IL-10表达下调82%,孢子刺激组下调70%,与未干扰组表达水平比较均具有显著差异(P     结论:TLR2是人角膜基质细胞识别茄病镰刀菌的重要识别受体,它可能通过介导IL-10的表达发挥一种抗炎性作用。这将为探索角膜真菌感染发病机理和免疫防御反应机制提供新的思路。
     第三部分:
     RNA干扰大鼠角膜TLR2表达对角膜真菌感染的影响
     目的:研究RNA干扰大鼠角膜TLR2对角膜烟曲霉菌感染的影响。
     方法:分别合成对照siRNA或TLR2siRNA,与转染试剂混合制备siRNA悬液,于感染前1天给予结膜下注射联合表面点眼。利用角膜接触镜法建立大鼠烟曲霉菌性角膜炎模型,进行裂隙灯检查、临床评分及组织病理学分析评价感染情况。利用免疫荧光技术检测大鼠角膜TLR2表达以评价TLR2 siRNA转染的效率。利用实时定量PCR技术检测炎性细胞因子TNFa, IL-1β, IL-4, IL-6, IL12p40和趋化因子MCP-1和MIP-2表达水平。利用髓过氧化物酶(MPO)法检测多型核白细胞(PMN)浸润。
     结果:TLR2 siRNA转染后,大鼠角膜TLR2表达明显减少,呈区域性、节段性分布。对照siRNA转染组角膜TLR2呈正常表达。对照组大鼠角膜给予烟曲霉菌接种后,角膜炎呈进行性发展,第1天可见角膜上皮呈毛玻璃样水肿,第3天可见明显的黄白色溃疡,边界不清,角膜缘充血明显;病变发展迅速,第4-5天为感染高峰期,溃疡面进一步扩大,表面凹凸不平,角膜中央区坏死组织脱落呈典型的龛状溃疡,可见后弹力层膨出、角膜葡萄肿甚至角膜穿孔。转染组感染后第1天角膜见轻度炎性浸润,第3天角膜浸润较前加重,但未见明显溃疡,第5天浸润开始减轻,面积逐渐局限、缩小,于2周左右完全愈合,仅存小片云翳及新生血管。对照组大鼠角膜炎性细胞因子TNFa, IL-1β, IL-4, IL-6, IL12p40及趋化因子MCP-1、MIP-2表达水平在第1天开始上调,于3-5天达到高峰,第7天开始下降并于2周后恢复至低水平。相比之下,TLR2 siRNA转染组炎性细胞因子TNFa, IL-1β, IL-6, IL12p40及趋化因子MCP-1、MIP-2水平明显降低,IL-4水平未见显著下调。TLR2 siRNA转染组PMN浸润较对照组明显减轻。
     结论:siRNA可通过结膜下注射联合点眼的方式成功转入角膜组织。TLR2是角膜识别烟曲霉菌感染的主要受体,在诱导炎性细胞因子产生和炎性浸润发挥关键作用。TLR2siRNA可通过下调炎性细胞因子及炎性细胞浸润达到抑制角膜过度炎症反应和减少角膜损伤的目的,为探索利用TLR2基因沉寂治疗角膜真菌感染的新方法提供了理论依据。
PartⅠ:
     TLRs-mediated innate responses of corneal epithelial cells against Aspergillus fumigatus challenge
     Purpose. To determine the responses of Toll-like receptor (TLR) 2 and TLR4 to their ligands in corneal epithelial cells and their roles in mediating inflammatory responses against Aspergillus fumigatus challenge.
     Methods. Telomerase-immortalized human corneal epithelial cells (THCE) were challenged by TLR2 ligand zymosan, TLR4 ligand LPS and Aspergillus fumigatus hyphae, respectively. Culture media collected at different time points (1h,3h,6h,12h) was subjected to cytokine ELISA to detect the levels of IL-1βand IL-6. THCEs treated with TLR2- or TLR4-siRNA plasmid to knock down TLR2 and TLR4 expression were challenged with Aspergillus fumigatus hyphae. Culture media were collected at different time points (1h,3h,6h,12h) for ELISA to detect IL-1βand IL-6 levels.
     Results. THCEs responded to the challenge of TLR2 or TLR4 ligand by expressing and secreting inflammatory cytokines IL-1βand IL-6. Zymosan-induced cytokines level began to increase at 6h in a time-dependent manner. LPS caused significant increase of IL-1βand IL-6 at 12h after challenge but exhibit lower levels than that of zymosan. And exposure of THCEs to Aspergillus fumigatus hyphae resulted in the upregulation of IL-1βand IL-6 since 3h after stimulation which continued to increase with prolonged incubation. Knockdown of TLR2 or TLR4 expression by specific siRNA caused a significant decrease in Aspergillus fumigatus-induced production of IL-1βand IL-6.
     Conclusions. THCEs can respond to TLR2 and TLR4 ligands challenge by secreting IL-1βand IL-6. They recognize Aspergillus fumigatus hyphae via TLR2 and TLR4 receptors and initiate innate immune responses against Aspergillus fumigatus challenge. Corneal epithelial cells play a role in innate defense against fungal infection through producing inflammatory cytokines.
     Part II:
     Toll-like receptor 2 mediates anti-inflammatory cytokine expression in human corneal fibroblasts in response to Fusarium solu
     Purpose To determine the role of Toll-like receptor (TLR) 2 in the expression of proinflammatory and anti-inflammatory cytokines in corneal fibroblasts challenged by fungi.
     Methods The sequence of siRNA targeting TLR2 was designed and cloned into the p-silencer 2.0 U6 vector to be a combined expression vector that expresses TLR2-siRNA. The cultured telomerase-immortalized human stroma fibroblasts (THSF) were transfected with the plasmid containing TLR2-siRNA and the expression of TLR2 was assessed by immunocytochemistry, RT-PCR, and Western blotting analyses. The transfected cells were stimulated by hyphae or conidia of Fusarium solu, respectively, and mRNA levels of IL-1βand IL-10 were measured by real time RT-PCR.
     Results THSF transfected with TLR2-siRNA exhibited a reduced level of TLR2 when compared with the control cells transfected with empty plasmid. TLR2-siRNA exhibited a more dramatic reduction in mRNA level of about 60% and TLR2 protein was decreased over controls approximately 65%. There is no difference between the group of control siRNA, empty vector and blank controls. The IL-lbeta and IL-10 levels increased dramatically in blank controls after stimulation of Fusarium solu and the levels induced by hyphae were much higher than by conidia. In contrast, THSF treated with TLR2-siRNA compared with control exhibited reduced levels of IL-1beta and IL-10 after fungi stimulation. After RNA interference, IL-10 level significantly decreased over controls approximately 82% in hyphae stimulation (P<0.01) and 70% in conidia stimulation(P<0.01). IL-lbeta level showed a reduction of 60%(P<0.01) in hyphae stimulation and 54% (P<0.01) in conidia stimulation, respectively. Fusarium solu-stimulated IL-10 production by THSF transfected with TLR2-siRNA was severely impaired while IL-iβproduction was partially inhibited.
     Conclusions TLR2 appears to be a major pattern recognition receptor to detect Fusarium solu in vitro and may play the anti-inflammatory role through the induction of IL-10. This may lead to a better understanding of the pathogenesis of fungal infections in cornea and may help in designing more efficient strategies in inhibiting the fungi-triggered inflammatory reaction.
     PartⅢ:
     Effect of RNA interfering of Toll-like receptor (TLR) 2 in rat cornea on Aspergillus fumigatus keratitis
     Purpose To investigate the effect of RNA interfering of Toll-like receptor (TLR) 2 in rat cornea on Aspergillus fumigatus keratitis.
     Methods The rat corneas were wounded and Aspergillus fumigatus strain was applied to the cornea surface. Slit lamp, clinical scoring and histopathological analysis were performed to monitor disease. Control or TLR2 siRNA was injected subconjunctively before infection and applied topically to cornea. TLR2 expression was measured by immunofluorescence staining to determine the feasibility and efficiency of TLR2 siRNA delivery. Production of inflammatory cytokines such as TNFa, IL-1β,IL-4, IL-6, IL12p40 and chemokines such as MCP-1 and MIP-2 were determined by real time quantitative PCR. PMN infiltration was assessed by myeloperoxidase (MPO) activity assay.
     Results Rat corneas treated with TLR2 siRNA showed a significant reduction of TLR2 expression which distributed in clusters through the corneal epithelium. Keratitis occurred and developed progressively after inoculation of Aspergillus fumigatus. Corneal ulcers were evident at day 3 p.i. with rough surface and obscure boundary. The ulceration expanded deeper and larger at day 4-5 p.i. accompanied by the destruction and degradation of cornea tissue. Descementocele, corneal staphyloma and perforation were observed in several cases. In contrast, TLR2 siRNA-treated corneas displayed mild infiltration at 1-3 days p.i. and only slight corneal opacity at day 5 p.i. with preserved corneal integrity. Compared to the control siRNA-treated corneas, mRNA levels of inflammatory cytokines TNFa, IL-1β, IL-6, IL12p40 and chemokines MCP-1, MIP-2 in the corneas of TLR2 siRNA-treated rats was dramatically reduced whereas IL-4 level was unchanged. While there was no measurable MPO activity in non-infected corneas (data not shown), MPO activity was detected in Aspergillus fumigatus-infected corneas at day 1 p.i. and upregulated at day 3 and 5 p.i. in the control corneas. This increase in PMN infiltration, however, was dramatically attenuated by TLR2 siRNA treatment, suggesting an enhanced resolution of inflammation.
     Conclusions TLR2 siRNA treatment reduces inflammation of Aspergillus fumigatus keratitis by the downregulation of inflammatory cytokines and cell infiltration, which may suggest a novel avenue to control infection and reduce damage caused by excessive inflammation.
引文
1. Iyer SA, Tuli SS, Wagoner RC. Fungal keratitis:emerging trends and treatment outcomes. Eye Contact Lens 2006; 32:267-71.
    2. Sun XG, Zhang Y, Li R, Wang ZQ, Luo SY, Jin XY, Zhang WH. Etiological analysis on ocular fungal infection in the period of 1989-2000. Chin Med J (Engl) 2004; 117:598-600.
    3. Thomas PA, Geraldine P. Infectious keratitis. Curr Opin Infect Dis 2007; 20: 129-41.
    4. Streilein JW. Ocular immune privilege:therapeutic opportunities from an experiment of nature.Nat Rev Immunol.2003 Nov;3(11):879-89.
    5. Kumar A, Yu FS. Toll-like receptors and corneal innate immunity. Curr Mol Med. 2006;6(3):327-37.
    6.张文华,潘志强,王智群,金秀英,罗士运,邹洋,武宇影,李然.化脓性角膜溃疡常见致病菌的变迁.中华眼科杂志,2002,38(1),8-12.
    7.钟文贤,谢立信,史伟云,孙士营.真菌性角膜炎654例感染谱分析.中华医学杂志,2006,86:1681.5.
    8. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805-20.
    9. Barton GM, Medzhitov R. Toll-like receptor signaling pathways. Science 2003; 300: 1524-5.
    10. K. Takeda, T. Kaisho, S. Akira. Toll-like receptors, Annu. Rev. Immunol 2003; 21: 335-76.
    11.Dunne A, O'Neill LA. Adaptor usage and Toll-like receptor signaling specificity.
    FEBS Lett.2005; 579:3330-5.
    12. S. Akira, K. Takeda, Toll-like receptor signalling, Nat. Rev. Immunol 2004; 4: 499-511.
    13.Kumagai N, Fukuda K, Fujitsu Y, Lu Y, Chikamoto N, Nishida T.Lipopolysaccharide-induced expression of intercellular adhesion molecule-1 and chemokines in cultured human corneal fibroblasts.Invest Ophthalmol Vis Sci. 2005; 46:114-20.
    14. Johnson AC, Heinzel FP, Diaconu E, Sun Y, Hise AG, Golenbock D, Lass JH, Pearlman E. Activation of Toll-like receptor (TLR)2, TLR4, and TLR9 in the mammalian cornea induces MyD88-dependent corneal inflammation. Invest Ophthalmol Vis Sci.2005;46:589-95.
    15. Klein Klouwenberg P, Tan L, Werkman W, van Bleek GM, Coenjaerts F. The role of Toll-like receptors in regulating the immune response against respiratory syncytial virus. Crit Rev Immunol.2009;29(6):531-50.
    16.Zhang J, Wu XY, Yu FS. Inflammatory responses of corneal epithelial cells to Pseudomonas aeruginosa infection, Curren Eye Research,2005;30:527-34.
    17. Kumar A, Zhang J, Yu FS. Innate immune response of corneal epithelial cells to Staphylococcus aureus infection:role of peptidoglycan in stimulating proinflammatory cytokine secretion, Invest.Ophthalmol. Vis. Sci.2004; 45:3513-22.
    18 Bals R, Hiemstra PS. Innate immunity in the lung:how epithelial cells fight against respiratory pathogens. Eur. Respir. J.2004;23:327-33.
    19. Anderson KV, Jurgens G, Nusslein-Volhard. Establishment of dorsal-ventral polarity in the Drosophila embryo:genetic studies on the role of the Toll gene product. Cell,1985,42:779-89.
    20. Medzhitov R, Preston-Hurlburt P, Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature,1997,388: 394-7.
    21. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003;21:335-76.
    22. Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Ghosh S. A toll-like receptor that prevents infection by uropathogenic bacteria. Science, 2004; 303:1522-6.
    23. Tabeta K, Georgel P, Janssen E, Du X, Hoebe K, Crozat K, Mudd S, Shamel L, Sovath S, Goode J,Alexopoulou L, Flavell RA, Beutler B. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci USA 2004; 101:3516-21.
    24. Means TK, Golenbock DT, Fenton MJ. The biology of Toll-like receptors. Cytokine Growth Factor Rev,2000,11(3):219-32.
    25. Dunne A, O'Neill LA. Adaptor usage and Toll-like receptor signaling specificity. FEBS Lett.2005;579:3330-3335.
    26. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335-76.
    27. Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ. Peptidoglycan-and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem.1999;274:17406-9.
    28. Means TK, Lien E, Yoshimura A, Wang S, Golenbock DT, Fenton MJ. The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J Immunol.1999;163:6748-55.
    29. Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M, Aderem A. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens (see comments). Nature.1999;401:811-5.
    30. Henneke P, Morath S, Uematsu S, Weichert S, Pfitzenmaier M, Takeuchi O, Miiller A, Poyart C, Akira S, Berner R, Teti G, Geyer A, Hartung T, Trieu-Cuot P, Kasper DL, Golenbock DT. Role of lipoteichoic acid in the phagocyte response to group B streptococcus. J Immunol.2005;174:6449-55.
    31.Takeda K, Takeuchi O, Akira S. Recognition of lipopeptides by Toll-like receptors. J Endotoxin Res.2002;8:459-63.
    32. Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int
    Immunol.2001;13:933-40.
    33. Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, Liu YJ. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med.2001;194:863-9.
    34. Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, Walsh EE, Freeman MW, Golenbock DT, Anderson LJ, Finberg RW. Pattern recognition receptors TLR4 and CD 14 mediate response to respiratory syncytial virus. Nat Immunol.2000;1:398-401.
    35. Rassa JC, Meyers JL, Zhang Y, Kudaravalli R, Ross SR. Murine retro viruses activate B cells via interaction with toll-like receptor 4. Proc Natl Acad Sci USA. 2002;99:2281-6.
    36. Triantafilou K, Triantafilou M. Coxsackievirus B4-induced cytokine production in pancreatic cells is mediated through toll-like receptor 4. J Virol.2004;78:11313-20.
    37. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5.Nature.2001;410:1099-103.
    38. Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ, Skerrett SJ, Beutler B, Schroeder L, Nachman A, Ozinsky A, Smith KD, Aderem A. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to Legionnaires'disease. J Exp Med. 2003; 198:1563-72.
    39. Schuller S, Lucas M, Kaper JB, Giron JA, Phillips AD.The ex vivo response of human intestinal mucosa to enteropathogenic Escherichia coli infection.Cell Microbiol.2009; 11(3):521-30.
    40. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol. 2005;17:1-14.
    41. Guillot L, Le Goffic R, Bloch S, Escriou N, Akira S, Chignard M, Si-Tahar M. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem.2005;280:5571-80.
    42. Sen GC, Sarkar SN. Transcriptional signaling by double-stranded RNA:role of TLR3. Cytokine Growth Factor Rev.2005; 16:1-14.
    43.Crozat K, Beutler B. TLR7:A new sensor of viral infection. Proc Natl Acad Sci USA.2004;101:6835-6.
    44. Hemmi H, Takeuchi 0, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S. A Toll-like receptor recognizes bacterial DNA. Nature.2000;408:740-5.
    45.Chang JH, McCluskey PJ, Wakefield D. Toll-like receptors in ocular immunity and the immunopathogenesis of inflammatory eye disease. Br J Ophthalmol.2006; 90(1):103-8.
    46. Hornef MW, Normark BH, Vandewalle A, Normark S. Intracellular recognition of lipopolysaccharide by toll-like receptor 4 in intestinal epithelial cells. J Exp Med. 2003;198(8):1225-35.
    47. Song PI, Abraham TA, Park Y, Zivony AS, Harten B, Edelhauser HF, Ward SL, Armstrong CA, Ansel JC.The expression of functional LPS receptor proteins CD 14 and toll-like receptor 4 in human corneal cells.Invest Ophthalmol Vis Sci. 2001; 42(12):2867-77.
    48. Ueta M, Nochi T, Jang MH, Park EJ, Igarashi O, Hino A, Kawasaki S, Shikina T, Hiroi T, Kinoshita S, Kiyono H. Intracellularly expressed TLR2s and TLR4s contribution to an immunosilent environment at the ocular mucosal epithelium.J Immunol.2004;173(5):3337-47.
    49. Suzuki M, Hisamatsu T, Podolsky DK. Gamma interferon augments the intracellular pathway for lipopolysaccharide (LPS) recognition in human intestinal epithelial cells through coordinated up-regulation of LPS uptake and expression of the intracellular Toll-like receptor 4-MD-2 complex. Infect Immun. 2003;71:3503-11.
    50. Dillon S, Agrawal S, Banerjee K, Letterio J, Denning TL, Oswald-Richter K, Kasprowicz DJ, Kellar K, Pare J, van Dyke T, Ziegler S, Unutmaz D, Pulendran B. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance.J Clin Invest.2006; 116(4):
    916-28.
    51. Kumar A, Yin J, Zhang J and Yu FS. Modulation of corneal epithelial innate immune response to Pseudomonas Infection by flagellin pretreatment. Invest Ophthalmol Vis Sci.2007;48:4664-70.
    52. Kumar A, Hazlett LD and Yu FS. Flagellin suppresses inflammatory response and enhances bacterial clearance in murine model of Pseudomonas keratitis. Infect Immun.2008;76(1):89-96.
    53. Li Q, Kumar A, Gui JF, Yu FS. Staphylococcus aureus lipoproteins trigger human corneal epithelial innate response through toll-like receptor-2.Microb Pathog. 2008; 44(5):426-34.
    54. Stenzel W, Soltek S, Sanchez-Ruiz M, Akira S, Miletic H, Schluter D, Deckert M.Both TLR2 and TLR4 are required for the effective immune response in Staphylococcus aureus-induced experimental murine brain abscess.Am J Pathol. 2008;172(1):132-45.
    55. Zhang J, Xu K, Ambati B, Yu FS.Toll-like receptor 5-mediated corneal epithelial inflammatory responses to Pseudomonas aeruginosa flagellin.Invest Ophthalmol Vis Sci.2003;44(10):4247-54.
    56. Gillette-Ferguson I, Daehnel K, Hise AG, Sun Y, Carlson E, Diaconu E, McGarry HF, Taylor MJ, Pearlman E.Toll-like receptor 2 regulates CXC chemokine production and neutrophil recruitment to the cornea in Onchocerca volvulus/Wolbachia-induced keratitis.Infect Immun.2007;75(12):5908-15.
    57. Brattig NW, Bazzocchi C, Kirschning CJ, Reiling N, Buttner DW, Ceciliani F, Geisinger F, Hochrein H, Ernst M, Wagner H, Bandi C, Hoerauf A.The major surface protein of Wolbachia endosymbionts in filarial nematodes elicits immune responses through TLR2 and TLR4.J Immunol.2004; 173(1):437-45.
    58. Mambula SS, Sau K, Henneke P, Golenbock DT, Levitz SM. Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J Biol Chem 2002; 277: 39320-6.
    59. Netea MG, Van Der Graaf CA, Vonk AG, Verschueren I, Van Der Meer JW, Kullberg BJ.The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis.J Infect Dis.2002;185(10):1483-9.
    60. Jin X, Qin Q, Lin Z, Chen W, Qu J. Expression of toll-like receptors in the Fusarium solani infected cornea. Curr Eye Res.2008;33(4):319-24.
    61. Gewirtz AT, Simon PO Jr, Schmitt CK, Taylor LJ, Hagedorn CH, O'Brien AD, Neish AS, Madara JL. Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J Clin Invest. 2001;107:99-109.
    1. Iyer SA, Tuli SS, Wagoner RC. Fungal keratitis:emerging trends and treatment outcomes. Eye Contact Lens,2006,32(6):267-71.
    2. Sun XG, Zhang Y, Li R, Wang ZQ, Luo SY, Jin XY, Zhang WH. Etiological analysis on ocular fungal infection in the period of 1989-2000. Chin Med J (Engl), 2004,117:598-600.
    3.张文华,潘志强,王智群,等.化脓性角膜溃疡常见致病原的变迁.中华眼科杂志,2002,38(1):8-12.
    4. Barton GM, Medzhitov R. Toll-like receptor signaling pathways. Science,2003, 300:1524-5.
    5. K. Takeda, T. Kaisho, S. Akira. Toll-like receptors, Annu. Rev. Immunol,2003, 21:335-76.
    6. C.A. Janeway Jr., R. Medzhitov. Innate immune recognition, Annu. Rev. Immunol, 2002,20:197-216.
    7. S. Akira, K. Takeda. Toll-like receptor signalling, Nat. Rev. Immunol,2004, 4:499-511.
    8. Mambula SS, Sau K, Henneke P, Golenbock DT, Levitz SM. Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J Biol Chem 2002, 277(42):39320-6.
    9. Wu XY, Gao JL, Ren MY. Expression profiles and function of Toll-like receptors in human corneal epithelia. Chin Med J (Engl),2007,120(10):893-7.
    10.高建鲁,吴欣怡.人角膜上皮细胞Toll样受体介导的炎性细胞因子的表达.中华眼科杂志,2006,42(7):628-33.
    11. Zhao J, Wu XY. Aspergillus fumigatus antigens activate immortalized human corneal epithelial cells via toll-like receptors 2 and 4. Curr Eye Res. 2008;33(5):447-54.
    12. Guo H, Wu XY. Innate responses of corneal epithelial cells against Aspergillus fumigatus challenge. FEMS Immunol Med Microbiol,2009;56:88-93.
    13. Netea MG, Warris A, Van der Meer JW, Fenton MJ, Verver-Janssen TJ, Jacobs LE, Andresen T, Verweij PE,& Kullberg BJ. Aspergillus fumigatus evades immune recognition during germination through loss of toll-like receptor-4-mediated signal transduction. J Infect Dis,2003,188(2):320-6.
    14. Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity. Biochem Biophys Res Commun.2009;388(4):621-5.
    15. Seya T, Shime H, Ebihara T, Oshiumi H, Matsumoto M.Pattern recognition receptors of innate immunity and their application to tumor immunotherapy. Cancer Sci.2010; 101 (2):313-20.
    16. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197-216.
    17. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499-511.
    18. Opitz B, Eitel J, Meixenberger K, Suttorp N. Role of Toll-like receptors, NOD-like receptors and RIG-I-like receptors in endothelial cells and systemic infections. Thromb Haemost.2009; 102(6):1103-9.
    19. Iwasaki A, Medzhitov R.Regulation of adaptive immunity by the innate immune system. Science.2010; 327:291-5.
    20. Zhang J, Xu K, Ambati B, Yu FS. Toll-like receptor 5-mediated corneal epithelial inflammatory responses to Pseudomonas aeruginosa flagellin. Invest Ophthalmol Vis Sci.2003;44:4247-54.
    21. Chang JH, McCluskey P, Wakefield D. Expression of toll-like receptor 4 and its associated lipopolysaccharide receptor complex by resident antigen-presenting cells in the human uvea.Invest Ophthalmol Vis Sci.2004;45:1871-8.
    22. Kumar A, Zhang J, Yu FS. Innate immune response of corneal epithelial cells to Staphylococcus aureus infection:role of peptidoglycan in stimulating proinflammatory cytokine secretion. Invest Ophthalmol Vis Sci. 2004;45:3513-22.
    23. Ueta M, Hamuro J, Kiyono H, Kinoshita S. Triggering of TLR3 by polyI:C in human corneal epithelial cells to induce inflammatory cytokines. Biochem Biophys Res Commun.2005;331:285-94.
    24. Kumagai N, Fukuda K, Fujitsu Y, Lu Y, Chikamoto N, Nishida T. Lipopolysaccharide-induced expression of intercellular adhesion molecule-1 and chemokines in cultured human corneal fibroblasts. Invest Ophthalmol Vis Sci. 2005;46:114-20.
    25. Johnson AC, Heinzel FP, Diaconu E, Sun Y, Hise AG, Golenbock D, Lass JH, Pearlman E. Activation of Toll-like receptor (TLR)2, TLR4, and TLR9 in the mammalian cornea induces MyD88-dependent corneal inflammation. Invest Ophthalmol Vis Sci.2005;46:589-95.
    26. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335-76.
    27. Zhang J, Wu XY, Yu FS, Inflammatory responses of corneal epithelial cells to Pseudomonas aeruginosa infection, Curren Eye Res.2005,30:527-34.
    28. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature.2001;413:732-8.
    29. Tran MT, Tellaetxe-Isusi M, Elner V, Strieter RM, Lausch RN, Oakes JE. Proinflammatory cytokines induce RANTES and MCP-1 synthesis in human corneal keratocytes but not in corneal epithelial cells. Beta-chemokine synthesis in corneal cells. Invest Ophthalmol Vis Sci 1996;37:987-96.
    30. Kumagai N, Fukuda K, Fujitsu Y, Lu Y, Chikamoto N, Nishida T.
    Lipopolysaccharide-induced expression of intercellular adhesion molecule-1 and chemokines in cultured human corneal fibroblasts. Invest Ophthalmol Vis Sci 2005;46:114-20.
    31. Netea MG, Van Der Graaf CA, Vonk AG, Verschueren I, Van Der Meer JW, Kullberg BJ. The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis.J Infect Dis.2002; 185(10):1483-9.
    32. Xie L, Zhong W, Shi W, et al. Spectrum of fungal keratitis in north China. Ophthalmology 2006,113(11):1943-8.
    33. Dong X, Shi W, Zeng Q, et al. Roles of adherence and matrix metalloproteinases in growth patterns of fungal pathogens in cornea. Curr Eye Res.2005,30:613-20.
    34. Popov A, Driesen J, Abdullah Z, Wickenhauser C, Beyer M, Debey-Pascher S, Saric T, Kummer S, Takikawa O, Domann E, Chakraborty T, Kronke M, Utermohlen O, Schultze JL.ocytogenes leads to the suppression of T cell function by multiple inhibitory mechanisms.Infection of myeloid dendritic cells with Listeria monocytogenes leads to the suppression of T cell function by multiple inhibitory mechanisms.J Immunol.2008;181(7):4976-88.
    35. Redecke V, Hacker H, Datta SK, et al. Activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J. Immunol 2004, 172(5):2739-43.
    36. Sing A, Rost D, Tvardovskaia N, Roggenkamp A, Wiedemann A, Kirschning CJ, Aepfelbacher M, Heesemann J. Yersinia V-antigen exploits Toll-like receptor 2 and CD14 for interleukin-10-mediated immunosuppression. J. Exp. Med 2002, 196(8):1017-24.
    37. N Netea MG, Sutmuller R, Hermann C, Van der Graaf CA, Van der Meer JW, van Krieken JH, Hartung T, Adema G, Kullberg BJ. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 2004,172(6):3712-8.
    38. Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM. Collaborative induction of inflammatory responses by dectin-1 and Toll like receptor 2. J. Exp.
    Med 2003,197:1107-1117.
    39. Takeuchi 0, Hoshino K, Akira S. Cutting edge:TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection.J Immunol.2000;165(10):5392-6.
    40. Suzuki N, Suzuki S, Duncan GS, Millar DG, Wada T, Mirtsos C, Takada H, Wakeham A, Itie A, Li S, Penninger JM, Wesche H, Ohashi PS, Mak TW, Yeh WC. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature,2002; 416:750-6.
    41. Seki E, Tsutsui H, Tsuji NM, Hayashi N, Adachi K, Nakano H, Futatsugi-Yumikura S, Takeuchi O, Hoshino K, Akira S, Fujimoto J, Nakanishi K.Critical roles of myeloid differentiation factor 88-dependent proinflammatory cytokine release in early phase clearance of Listeria monocytogenes in mice.J Immunol.2002;169(7):3863-8.
    42. Ferwerda G, Kullberg BJ, de Jong DJ, Girardin SE, Langenberg DM, van Crevel R, Ottenhoff TH, Van der Meer JW, Netea MG. Mycobacterium paratuberculosis is recognized by Toll-like receptors and NOD2.J Leukoc Biol.2007;82(4):1011-8.
    43. Bellocchio S, Montagnoli C, Bozza S, Gaziano R, Rossi G, Mambula SS, Vecchi A, Mantovani A, Levitz SM, Romani L.The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo.J Immunol.2004 Mar 1;172(5):3059-69.
    44. Sukhumavasi W, Egan CE, Warren AL, Taylor GA, Fox BA, Bzik DJ, Denkers EY.TLR adaptor MyD88 is essential for pathogen control during oral toxoplasma gondii infection but not adaptive immunity induced by a vaccine strain of the parasite.J Immunol.2008;181(5):3464-73.
    45. Revaz-Breton M, Ronet C, Ives A, Torre YH, Masina S, Tacchini-Cottier F, Launois P.The MyD88 protein 88 pathway is differently involved in immune responses induced by distinct substrains of Leishmania major.Eur J Immunol. 2010 Mar 23. [Epub ahead of print]
    46. Picard C, Puel A, Bonnet M, Ku CL, Bustamante J, Yang K, Soudais C, Dupuis S, Feinberg J, Fieschi C, Elbim C. Pyogenic bacterial infections in humans with
    IRAK-4 deficiency.Science.2003; 299(5615):2076-9.
    47. Ku CL, von Bernuth H, Picard C, Zhang SY, Chang HH, Yang K, Chrabieh M, Issekutz AC, Cunningham CK. Selective predisposition to bacterial infections in IRAK-4-deficient children:IRAK-4-dependent TLRs are otherwise redundant in protective immunity. J Exp Med.2007;204(10):2407-22.
    48. Re F, Strominger JL. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells.J Biol Chem.2001;276(40):37692-9.
    49. Agrawal S, Agrawal A, Doughty B, Gerwitz A, Blenis J, Van Dyke T, Pulendran B.Cutting edge:different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos.J Immunol. 2003 Nov 15;171(10):4984-9.
    50. Abdollahi-Roodsaz S, Joosten LA, Koenders MI, Devesa I, Roelofs MF, Radstake TR, Heuvelmans-Jacobs M, Akira S, Nicklin MJ, Ribeiro-Dias F, van den Berg WB. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J Clin Invest.; 118(1):205-16.
    51. Koedel U, Angele B, Rupprecht T, Wagner H, Roggenkamp A, Pfister HW, Kirschning CJ.Toll-like receptor 2 participates in mediation of immune response in experimental pneumococcal meningitis.J Immunol.2003; 170(1):438-44.
    52. Alvarez GR, Zwilling BS, Lafuse WP.Mycobacterium avium inhibition of IFN-gamma signaling in mouse macrophages:Toll-like receptor 2 stimulation increases expression of dominant-negative STAT1 beta by mRNA stabilization.J Immunol.2003;171(12):6766-73.
    53. van der Kleij D, Latz E, Brouwers JF, Kruize YC, Schmitz M, Kurt-Jones EA, Espevik T, de Jong EC, Kapsenberg ML, Golenbock DT, Tielens AG, Yazdanbakhsh M.A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates toll-like receptor 2 and affects immune polarization. J Biol Chem.2002;277(50):48122-9.
    1. K. Takeda, T. Kaisho, S. Akira. Toll-like receptors, Annu. Rev. Immunol 2003; 21: 335-76.
    2. S. Akira, K. Takeda, Toll-like receptor signalling, Nat. Rev. Immunol 2004; 4: 499-511.
    3. Kumagai N, Fukuda K, Fujitsu Y, Lu Y, Chikamoto N, Nishida T. Lipopolysaccharide-induced expression of intercellular adhesion molecule-1 and chemokines in cultured human corneal fibroblasts.Invest Ophthalmol Vis Sci. 2005; 46:114-20.
    4. Luther K, Torosantucci A, Brakhage AA, Heesemann J, Ebel F.Phagocytosis of Aspergillus fumigatus conidia by murine macrophages involves recognition by the dectin-1 beta-glucan receptor and Toll-like receptor 2.Cell Microbiol.2007 Feb;9(2):368-81.
    5. Gil ML, Gozalbo D. Role of Toll-like receptors in systemic Candida albicans infections.Front Biosci.2009;14:570-82.
    6. Buckland KF, O'Connor E, Murray LA, Hogaboam CM. Toll like receptor-2 modulates both innate and adaptive immune responses during chronic fungal asthma in mice. Inflamm Res.2008;57(8):379-87.
    7. Yauch LE, Mansour MK, Shoham S, Rottman JB, Levitz SM. Involvement of CD14, toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect Immun 2004; 72:5373-82.
    8. Biondo C, Midiri A, Messina L, Tomasello F, Garufi G, Catania MR, Bombaci M, Beninati C, Teti G, Mancuso G. MyD88 and TLR2, but not TLR4, are required for host defense against Cryptococcus neoformans. Eur J Immunol 2005; 35:870-8.
    9. Wu XY, Gao JL, Ren MY. Expression profiles and function of Toll-like receptors in human corneal epithelia. Chin Med J (Engl) 2007; 120:893-897.
    10. Zhao J, Wu XY.Triggering of toll-like receptors 2 and 4 by Aspergillus fumigatus conidia in immortalized human corneal epithelial cells to induce inflammatory cytokines.Chin Med J (Engl).2008;121(5):450-4.
    11. Zhao J, Wu XY. Aspergillus fumigatus antigens activate immortalized human
    corneal epithelial cells via toll-like receptors 2 and 4.Curr Eye Res.2008; 33(5):447-54.
    12. Guo H, Wu XY, Yu FS, Zhao J. Toll-like receptor 2 mediates the induction of IL-10 in corneal fibroblasts in response to Fusarium solu. Immunology and Cell Biology,2008,86:271-6.
    13. Guo H, Wu XY. Innate responses of corneal epithelial cells against Aspergillus fumigatus challenge. FEMS Immunology and Medical Microbiology,2009, 56(1):88-93.
    14.高建鲁,吴欣怡.人角膜上皮细胞Toll样受体介导的炎性细胞因子的表达.中华眼科杂志,2006,42(7):628—34.
    15.高建鲁,吴欣怡.Toll样受体在人眼角膜上皮和永生化人角膜上皮细胞系的表达及功能研究.中华医学杂志,2005,85(32):2269-73.
    16. Netea MG, Ferwerda G, van der Graaf CA, Van der Meer JW, Kullberg BJ. Recognition of fungal pathogens by toll-like receptors. Curr Pharm Des,2006, 12(32):4195-201.
    17. Roeder A, Kirschning CJ, Rupec RA, Schaller M, Weindl G, Korting HC. Toll-like receptors as key mediators in innate antifungal immunity. Med Mycol, 2004,42(6):485-98.
    18. Uprichard SL, Boyd B, Althage A, Chisari FV. Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs. Proc Natl Acad Sci USA 2005,102:773-8.
    19. Sorensen DR, Leirdal M, Sioud M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol 2003,327:761-6.
    20. Tolentino MJ, Brucker AJ, Fosnot J, Ying GS, Wu IH, Malik G, Wan S, Reich SJ. Intravitreal injection of vascular endothelial growth factor small interfering RNA inhibits growth and leakage in a nonhuman primate, laser-induced model of choroidal neovascularization. Retina,2004,24:132-8.
    21. Nakamura H, Siddiqui SS, Shen X, Malik AB, Pulido JS, Kumar NM, Yue BY. RNA interference targeting transforming growth factor-beta type Ⅱ receptor suppresses ocular inflammation and fibrosis. Mol Vis 2004,10:703-11.
    22. Michel U, Malik I, Ebert S, Bahr M, Kugler S. Long-term in vivo and in vitro AAV-2-mediated RNA interference in rat retinal ganglion cells and cultured primary neurons. Biochem Biophys Res Commun,2005,326:307-12.
    23. Macrae IJ, Li F, Zhou K, Cande WZ, Doudna JA. Structure of Dicer and mechanistic implications for RNAi. Cold Spring Harb Symp Quant Biol,2006, 71:73-80.
    24. Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short interfering RNAs and hairpin RNA in mammalian cells. Proc Natl Acad Sci USA, 2002,9:6047-52.
    25. Dorsett Y, Tuschl T. siRNAs:applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov,2004,3:318-29.
    26. Xia H, Mao Q, Paulson HL, Davidson BL. siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol,2002,20:1006-10.
    27. Song E, Lee SK, Wang J, Ince N, Ouyang N, Min J, Chen J, Shankar P, Lieberman J. RNA interference targeting Fas protects mice from fulminant hepatitis.Nat Med.2003;9(3):347-51.
    28. Zender L, Hutker S, Liedtke C, Tillmann HL, Zender S, Mundt B, Waltemathe M, Gosling T, Flemming P, Malek NP, Trautwein C, Manns MP, Kuhnel F, Kubicka S. Caspase 8 small interfering RNA prevents acute liver failure in mice.Proc Natl Acad Sci U S A.2003,100(13):7797-802.
    29. Masuda I, Matsuo T, Yasuda T, Matsuo N. Gene transfer with liposomes to the intraocular tissues by different routes of administration.Invest Ophthalmol Vis Sci. 1996,37(9):1914-20.
    30. Reich SJ, Fosnot J, Kuroki A, Tang W, Yang X, Maguire AM, Bennett J, Tolentino MJ. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis.2003,9:210-6.
    31. Li S, Huang L. Nonviral gene therapy:promises and challenges. Gene Ther,2000, 7:31-34.
    32. Avunduk AM, Beuerman RW, Varnell ED, Kaufman HE. Confocal microscopy of aspergillus fumigatus keratitis. Br J Ophthalmol,2003,87:4092-101
    33. Schreiber W, Olbrisch A, Vorwerk CK, Konig W, Behrens-Baumann W. Combined topical fluconazole and corticosteroid t reatment for experimental Candida albicans keratomycosis. Invest Ophthalmol Vis Sci,2003,44 26342-431.
    34. O'Day DM, Head WS, Robinson RD, Yang R, Shetlar D, Wang MX. Contact lens2induced infection-a new model of Candida albicans keratitis. Invest Ophthalmol Vis Sci,1999,40:1607-11.
    35. O'Day DM, Head WS, Csank C, Shetlar DJ, Robinson RD, McCollum GW, Yang R, Zhu TL, Wang MX. Differences in virulence between two Candida albicans st rains in experimental keratitis. Invest Ophthalmol Vis Sci,2000,41:1116-1121.
    36.曾庆延,董晓光,史伟云,等.真菌孢子黏附和基质金属蛋白酶在角膜感染中的作用.中华眼科杂志,2004,40:774-6.
    37. Wu TG, Wilhelmus KR, Mitchell BM. Experimental keratomycosis in a mouse model. Invest Ophthalmol Vis Sci,2003,44:210-216.
    38. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature,2000,406:782-7.
    39. L.D. Hazlett, Corneal response to Pseudomonas aeruginosa infection, Prog Retin Eye Res 2004; 23:1-30.
    40. Jie Zhao, Xinyi Wu. Activation of Toll-like receptor 2 and 4 in Aspergillus fumigatus keratitis. Innate Immun.2009; 15(3):155-68.
    41. Power MR, Peng Y, Maydanski E, Marshall JS, Lin TJ. The development of early host response to Pseudomonas aeruginosa lung infection is critically dependent on myeloid differentiation factor 88 in mice. J Biol Chem.2004,279(47):49315-22.
    42. Kobayashi SD, Voyich JM, Burlak C, DeLeo FR. Neutrophils in the innate immune response. Arch. Immunol. Ther. Exp. (Warsz).,2005,53,505-17.
    43. Hazlett LD. Corneal response to Pseudomonas aeruginosa infection. Prog. Retin. Eye. Res,2004,23,1-30.
    44. Kobayashi SD, Voyich JM, DeLeo FR. Regulation of the neutrophil-mediated inflammatory response to infection. Microbes. Infect.,2003,5,1337-44.
    45. Ramaiah SK, Jaeschke H. Role of neutrophils in the pathogenesis of acute inflammatory liver injury. Toxicol. Pathol.,2007,35,757-66.
    46. Deng X, Luyendyk JP, Zou W, Lu J, Malle E, Ganey PE, Roth RA. Neutrophil interaction with the hemostatic system contributes to liver injury in rats cotreated with lipopolysaccharide and ranitidine. J. Pharmacol. Exp. Ther.,2007,322, 852-61.
    1. Ladage PM. What does overnight lens wear do to the corneal epithelium?:is corneal refractive therapy different? Eye Contact Lens 2004;30:194-197.
    2. Suzuki K, Saito J, Yanai R, Yamada N, Chikama T, Seki K, Nishida T. Cell-matrix and cell-cell interactions during corneal epithelial wound healing. Prog Retin Eye Res,2003;22:113-133.
    3. Zhang J, Wu XY, Yu FS. Inflammatory responses of corneal epithelial cells to Pseudomonas aeruginosa infection. Curr Eye Res 2005;30:527-534.
    4. Zaidi T, Mowrey-McKee M, Pier GB. Hypoxia increases corneal cell expression of CFTR leading to increased Pseudomonas aeruginosa binding, internalization, and initiation of inflammation. Invest Ophthalmol Vis Sci 2004;45:4066-4074.
    5. Xue ML, Willcox MD, Lloyd A, Wakefield D, Thakur A. Regulatory role of IL-lbeta in the expression of IL-6 and IL-8 in human corneal epithelial cells during Pseudomonas aeruginosa colonization. Clin Exp Ophthalmol 2001;29:171-174.
    6. Johnson AC, Heinzel FP, Diaconu E, Sun Y, Hise AG, Golenbock D, Lass JH, Pearlman E. Activation of toll-like receptor (TLR)2, TLR4, and TLR9 in the mammalian cornea induces MyD88-dependent corneal inflammation. Invest Ophthalmol Vis Sci 2005;46:589-595.
    7. Zhang J, Xu K, Ambati B, Yu FS. Toll-like receptor 5-mediated corneal epithelial inflammatory responses to Pseudomonas aeruginosa flagellin. Invest Ophthalmol Vis Sci 2003;44:4247-4254.
    8. Kumar A, Zhang J, Yu FS. Innate immune response of corneal epithelial cells to Staphylococcus aureus infection:role of peptidoglycan in stimulating proinflammatory cytokine secretion. Invest Ophthalmol Vis Sci 2004;45:3513-3522.
    9. Sack RA, Nunes I, Beaton A, Morris C. Host-defense mechanism of the ocular surfaces.Biosci Rep 2001;21(4):463-80.
    10. Ruan X, Chodosh J, Callegan MC, Booth MC, Lee TD, Kumar P, Gilmore MS, Pereira HA. Corneal expression of the inflammatory mediator CAP37. Invest Ophthalmol Vis Sci 2002;43:1414-1421.
    11. Pereira HA, Ruan X, Gonzalez ML, Tsyshevskaya-Hoover I, Chodosh J. Modulation of corneal epithelial cell functions by the neutrophil-derived inflammatory mediator CAP37.Invest Ophthalmol Vis Sci,2004;45:4284-4292.
    12. Nassif, KF. Infections of the eye. New York, N.Y.:Little, Brown and Company; 1996.
    13. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003;21:335-376.
    14. Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Ghosh S. A toll-like receptor that prevents infection by uropathogenic bacteria. Science,2004;303:1522-1526.
    15. Tabeta K, Georgel P, Janssen E, Du X, Hoebe K, Crozat K, Mudd S, Shamel L, Sovath S, Goode J,Alexopoulou L, Flavell RA, Beutler B. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci USA 2004;101:3516-3521.
    16. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 2001;1:135-145.
    17. Dunne A, O'Neill LA. Adaptor usage and Toll-like receptor signaling specificity. FEBS Lett.2005;579:3330-3335.
    18. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335-376.
    19. Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ.Peptidoglycan-and lipoteichoic acid-induced cell activation ismediated by toll-like receptor 2. J Biol Chem.1999;274:17406-17409.
    20. Means TK, Lien E, Yoshimura A, Wang S, Golenbock DT, Fenton MJ. The CD 14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J Immunol.1999;163:6748-6755.
    21. Underhill DM, Ozinsky A, Hajjar AM, et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens (see comments). Nature.1999;401:811-815.
    22. Henneke P, Morath S, Uematsu S, Weichert S, Pfitzenmaier M, Takeuchi 0, Muller A, Poyart C, Akira S, Berner R, Teti G, Geyer A, Hartung T, Trieu-Cuot P, Kasper DL, Golenbock DT. Role of lipoteichoic acid in the phagocyte response to group B streptococcus. J Immunol.2005; 174:6449-55.
    23.Takeda K, Takeuchi 0, Akira S. Recognition of lipopeptides by Toll-like receptors. J Endotoxin Res.2002;8:459-463.
    24. Takeuchi 0, Kawai T, Muhlradt PF, et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol.2001;13:933-940.
    25. Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, Liu YJ. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med.2001; 194:863-69.
    26. Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, Walsh EE, Freeman MW, Golenbock DT, Anderson LJ, Finberg RW. Pattern recognition receptors TLR4 and CD 14 mediate response to respiratory syncytial virus. Nat Immunol.2000; 1:398-401.
    27. Rassa JC, Meyers JL, Zhang Y, Kudaravalli R, Ross SR. Murine retroviruses activate B cells via interaction with toll-like receptor 4. Proc Natl Acad Sci USA. 2002;99:2281-2286.
    28. Triantafilou K, Triantafilou M. Coxsackievirus B4-induced cytokine production in pancreatic cells is mediated through toll-like receptor 4. J Virol. 2004;78:11313-11320.
    29. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature.2001;410:1099-1103.
    30. Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ, Skerrett SJ, Beutler B, Schroeder L, Nachman A, Ozinsky A, Smith KD, Aderem A. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to Legionnaires'disease. J Exp Med.2003; 198:1563-1572.
    31. Tallant T, Deb A, Kar N, Lupica J, de Veer MJ, DiDonato JA. Flagellin acting via TLR5 is the major activator of key signaling pathways leading to NF-kappa B and proinflammatory gene program activation in intestinal epithelial cells. BMC Microbiol.2004;4:33.
    32. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol. 2005;17:1-14.
    33. Guillot L, Le Goffic R, Bloch S, Escriou N, Akira S, Chignard M, Si-Tahar M. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem.2005;280:5571-80.
    34. Sen GC, Sarkar SN. Transcriptional signaling by double-stranded RNA:role of TLR3. Cytokine Growth Factor Rev.2005; 16:1-14.
    35. Crozat K, Beutler B. TLR7:A new sensor of viral infection. Proc Natl Acad Sci USA.2004;101:6835-6836.
    36. Hemmi H, Takeuchi 0, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S. A Toll-like receptor recognizes bacterial DNA. Nature.2000;408:740-5.
    37. Akira S, Takeda K, Kaisho T. Toll-like receptors:critical proteins linking innate and acquired immunity. Nat Immunol 2001;2:675-80.
    38. Beutler B. Innate immunity:an overview. Mol Immunol 2004;40:845-59.
    39. Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature.2004;430:257-63.
    40. Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T, Hoshino K, Takeuchi 0, Kobayashi M, Fujita T, Takeda K, Akira S. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 2002;420:324-9.
    41. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 2003;301:640-3.
    42. Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K, Akira S. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 2003;4:1144-50.
    43. Burns K, Martinon F, Esslinger C, Pahl H, Schneider P, Bodmer JL, Di Marco F, French L, Tschopp J. MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem 1998;273:12203-9.
    44. Song HY, Regnier CH, Kirschning CJ, Goeddel DV, Rothe M. Tumor necrosis factor (TNF)-mediated kinase cascades:bifurcation of nuclear factor-kappaB and c-jun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2. PNAS 1997;94:9792-6.
    45. Blais DR, Vascotto SG, Griffith M, Altosaar I. LBP and CD14 secreted in tears by the lacrimal glands modulate the LPS response of corneal epithelial cells. Invest Ophthalmol Vis Sci 2005;46:4235-44.
    46. Ueta M, Hamuro J, Kiyono H, Kinoshita S. Triggering of TLR3 by polyI:C in human corneal epithelial cells to induce inflammatory cytokines. Biochem Biophys Res Commun 2005;331:285-94.
    47. Li H, Zhang J, Kumar A, Zheng M, Atherton SS, Yu FSX. Herpes simplex virus 1 infection induces the expression of proinflammatory cytokines, interferons and TLR7 in human corneal epithelial cells. Immunology 2006; 117:167-76. 48. Ganz T. Defensins:antimicrobial peptides of vertebrates. C R Biol 2004; 327: 539-49.
    49. Ganz T. Defensins:antimicrobial peptides of innate immunity. Nat Rev Immunol 2003;3:710-20.
    50. Mc NN, Van R, Tuchin OS, Fleiszig SM. Ocular surface epithelia express mRNA for human beta defensin-2. Exp Eye Res 1999;69:483-90.
    51. McDermott AM, Redfern RL, Zhang B, Pei Y, Huang L, Proske RJ. Defensin expression by the cornea:multiple signalling pathways mediate IL-1beta stimulation of hBD-2 expression by human corneal epithelial cells. Invest Ophthalmol Vis Sci,2003;44:1859-65.
    52. Burns K, Janssens S, Brissoni B, Olivos N, Beyaert R, Tschopp J. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med 2003;197:263-8.
    53. Wald D, Qin J, Zhao Z, Qian Y, Naramura M, Tian L, Towne J, Sims JE, Stark GR, Li X. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol 2003;4:920-7.
    54. Burns K, Clatworthy J, Martin L, Martinon F, Plumpton C, Maschera B, Lewis A, Ray K, Tschopp J, Volpe F. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat Cell Biol 2000;2:346-51.
    55. Liew FY, Liu H, Xu D. A novel negative regulator for IL-1 receptor and Toll-like receptor 4. Immunol Lett 2005;96:27-31.
    56. Abreu MT, Arnold ET, Thomas LS, Gonsky R,Zhou Y, Hu B, Arditi M. TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells. J Biol Chem,2002;277:20431-7.
    57. Otte JM, Cario E, Podolsky DK. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology 2004; 126:1054-70.
    58. Garlanda C, Riva F, Polentarutti N, Buracchi C, Sironi M, De Bortoli M, Muzio M, Bergottini R,Scanziani E, Vecchi A, Hirsch E, Mantovani A. Intestinal inflammation in mice deficient in Tir8, an inhibitory member of the IL-1 receptor family. PNAS 2004;101:3522-6.
    59. Shimosato T, Kitazawa H, Katoh S, Tohno M, Iliev ID, Nagasawa C, Kimura T, Kawai Y, Saito T. Augmentation of T(H)-1 type response by immunoactive AT oligonucleotide from lactic acid bacteria via Toll-like receptor 9 signaling. Biochem Biophys Res Commun 2005;326:782-7.
    60. Huang Q, Liu D, Majewski P, Schulte LC, Korn JM, Young RA, Lander ES, Hacohen N. The plasticity of dendritic cell responses to pathogens and their components. Science 2001;294:870-5.
    61.Dieu MC, Vanbervliet B, Vicari A, Bridon JM, Oldham E, Ait-Yahia S, Briere F, Zlotnik A,Lebecque S, Caux C. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 1998;188:373-86.
    62. Forster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I, Wolf E, Lipp M. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 1999;99:23-33.
    63. Hazlett LD. Pathogenic mechanisms of P. aeruginosa keratitis:a review of the role of T cells, Langerhans cells, PMN, and cytokines. DNA Cell Biol 2002;21:383-90.
    64. Hazlett LD, McClellan SA, Rudner XL, Barrett RP. The role of Langerhans cells in Pseudomonas aeruginosa infection. Invest Ophthalmol Vis Sci 2002;43:189-97.
    1 Iyer SA, Tuli SS, Wagoner RC. Fungal keratitis:emerging trends and treatment outcomes. Eye Contact Lens 2006; 32:267-271.
    2 Sun XG, Zhang Y, Li R, Wang ZQ, Luo SY, Jin XY, Zhang WH. Etiological analysis on ocular fungal infection in the period of 1989-2000. Chin Med J (Engl) 2004; 117:598-600.
    3 Zhang W, Pan Z, Wang Z, Jin X, Luo S, Zou Y et al, The variance of pathogenic organisms of purulent ulcerative keratitis. Zhonghua Yan Ke Za Zhi 2002; 38:8-12.
    4 Thomas PA, Geraldine P. Infectious keratitis. Curr Opin Infect Dis 2007; 20: 129-141.
    5 Barton GM, Medzhitov R. Toll-like receptor signaling pathways. Science 2003; 300: 1524-1525.
    6 K. Takeda, T. Kaisho, S. Akira. Toll-like receptors, Annu. Rev. Immunol 2003; 21: 335-376.
    7 C.A. Janeway Jr., R. Medzhitov, Innate immune recognition, Annu. Rev. Immunol 2002; 20:197-216.
    8 S. Akira, K. Takeda, Toll-like receptor signalling, Nat. Rev. Immunol 2004; 4: 499-511.
    9 Mambula SS, Sau K, Henneke P, Golenbock DT, Levitz SM. Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J Biol Chem 2002; 277: 39320-39326.
    10 Wu XY, Gao JL, Ren MY. Expression profiles and function of Toll-like receptors in human corneal epithelia. Chin Med J(Engl) 2007; 120:893-897.
    11 Gao JL, Wu XY. Aspergillus fumigatus activate human corneal epithelial cells via Toll-like receptor 2 and 4. Zhonghua Yan Ke Za Zhi 2006; 42:628-633.
    12 Netea MG, Warris A, Van der Meer JW, Fenton MJ, Verver-Janssen TJ, Jacobs LE et al. Aspergillus fumigatus evades immune recognition during germination through loss of toll-like receptor-4-mediated signal transduction. J Infect Dis 2003; 188: 320-326.
    13 S Rodriguez-Martinez, M E Cancino-Diaz, J C Cancino-Diaz. Expression of CRAMP via PGN-TLR-2 and of a-defensin-3 via CpG-ODN-TLR-9 in corneal fibroblasts. Br J Ophthalmol 2006; 90:378-382.
    14 A.Kumar, J.Zhang, F.S.Yu. Innate immune response of corneal epithelial cells to Staphylococcus aureus infection:role of peptidoglycan in stimulating proinflammatory cytokine secretion. Invest Ophthalmol Vis Sci 2004; 45: 3513-3522.
    15 W.J.Nadeau, T.GPistole, B.A.McCormick. Polymorphonuclear leukocyte migration across model intestinal epithelia enhances Salmonella typhimurium killing via the epithelial derived cytokine IL-6. Microbes Infect.2002; 4: 1379-1387.
    16 R.Bals, P.S.Hiemstra. Innate immunity in the lung:how epithelia cells fight against respiratory pathogens. Eur.Respir.J2004;23:327-333.
    17 Netea MG, Ferwerda G, van der Graaf CA, Van der Meer JW, Kullberg BJ. Recognition of fungal pathogens by toll-like receptors. Curr Pharm Des 2006; 12: 4195-4201.
    18 Roeder A, Kirschning CJ, Rupec RA, Schaller M, Weindl G, Korting HC. Toll-like receptors as key mediators in innate antifungal immunity. Med Mycol 2004; 42: 485-498.
    19 Kumar A, Zhang J, Yu FS. Toll-like receptor 2-mediated expression of
    beta-defensin-2 in human corneal epithelial cells. Microbes Infect 2006; 8: 380-389.
    20 Netea MG, Van Der Graaf CA, Vonk AG, Verschueren I, Van Der Meer JW, Kullberg BJ. The role of Toll-like receptors in the defense against disseminated candidiasis. J Infect Dis 2002; 185:1483-1489.
    21 Xie L, Zhong W, Shi W, Sun S. Spectrum of fungal keratitis in north China. Ophthalmology 2006; 113:1943-1948.
    22 Re F, Strominger JL. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human denderitic cells. J. Biol. Chem 2001; 276:37692-37699.
    23 Redecke V, Hacker H, Datta SK, Fermin A, Pitha PM, Broide DH et al. Activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J. Immunol 2004; 172:2739-2743.
    24 Sing A, Rost D, Tvardovskaia N, Wiedemann A, Kirschning CJ, Aepfelbacher M et al. Yersinia V-antigen exploits Toll-like receptor 2 and CD14 for interleukin-10-mediated immunosuppression. J. Exp. Med 2002; 196:1017-1024.
    25 Netea MQ Sutmuller R, Hermann C, Van der Graaf CA, Van der Meer JW, van Krieken JH et al. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 2004; 172: 3712-3718.
    26 Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM. Collaborative induction of inflammatory responses by dectin-1 and Toll like receptor 2. J. Exp. Med 2003; 197:1107-1117.
    27 Uprichard SL, Boyd B, Althage A, Chisari FV. Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs. Proc Natl Acad Sci USA 2005; 102:773-778.
    28 Sorensen DR, Leirdal M, Sioud M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol 2003; 327:761-766.
    29 Nakamura H, Siddiqui SS, Shen X, Malik AB, Pulido JS, Kumar NM et al. RNA interference targeting transforming growth factor-beta type Ⅱ receptor suppresses ocular inflammation and fibrosis. Mol Vis 2004; 10:703-711.
    Akashi S, Shimazu R, Ogata H, Nagai Y, Takeda K, Kimoto M,& Miyake K (2000). Cutting edge:cell surface expression and lipopolysaccharide signaling via the toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J Immunol 164:3471-3475.
    Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, Klimpel GR, Godowski P & Zychlinsky A (1999) Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science.285:736-739.
    Barton GM & Medzhitov R (2003) Toll-like receptor signaling pathways. Science 300: 1524-1525.
    Carvalho A, Pasqualotto AC, Pitzurra L, Romani L, Denning DW & Rodrigues F (2008) Polymorphisms in toll-like receptor genes and susceptibility to pulmonary aspergillosis. J Infect Dis 197:618-621.
    Chang JH, McCluskey PJ & Wakefield D (2006) Toll-like receptors in ocular immunity and the immunopathogenesis of inflammatory eye disease. Br J Ophthalmol 90:103-108.
    Dunne A & O'Neill LA (2005) Adaptor usage and Toll-like receptor signaling specificity. FEBS Lett 579:3330-3335.
    Gillette-Ferguson I, Daehnel K, Hise AG, Sun Y, Carlson E, Diaconu E, McGarry HF, Taylor MJ,& Pearlman E (2007). Toll-like receptor 2 regulates CXC chemokine production and neutrophil recruitment to the cornea in Onchocerca volvulus/Wolbachia-induced keratitis. Infect. Immun 75:5908-5915.
    Iyer SA, Tuli SS & Wagoner RC (2006) Fungal keratitis:emerging trends and treatment outcomes. Eye Contact Lens 32:267-271.
    Janeway CA Jr. & Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197-216.
    Johnson AC, Heinzel FP, Diaconu E, Sun Y, Hise AG, Golenbock D, Lass JH & Pearlman E (2005) Activation of toll-like receptor (TLR)2, TLR4, and TLR9 in the mammalian cornea induces MyD88-dependent corneal inflammation. Invest Ophthalmol. Vis Sci 46:589-595.
    Kumar A, Zhang J & Yu FS (2004) Innate immune response of corneal epithelial cells to Staphylococcus aureus infection:role of peptidoglycan in stimulating proinflammatory cytokine secretion. Invest Ophthalmol. Vis Sci 45:3513-3522.
    Kumar A, Zhang J & Yu FS (2006) Toll-like receptor 2-mediated expression of beta-defensin-2 in human corneal epithelial cells. Microbes Infect 8:380-389.
    Mambula SS, Sau K, Henneke P, Golenbock DT & Levitz SM (2002) Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J Biol Chem 277: 39320-39326.
    Netea MG, Van Der Graaf CA, Vonk AG, Verschueren I, Van Der Meer JW & Kullberg, BJ (2002) The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J Infect Dis 185:1483-1489.
    Netea MG, Warris A, Van der Meer JW, Fenton MJ, Verver-Janssen TJ, Jacobs LE, Andresen T, Verweij PE,& Kullberg BJ (2003) Aspergillus fumigatus evades
    immune recognition during germination through loss of toll-like receptor-4-mediated signal transduction. J Infect Dis 188:320-326.
    Pini M, Gove ME, Sennello JA, van Baal JW, Chan L & Fantuzzi G (2008) Role and regulation of adipokines during zymosan-induced peritoneal inflammation in mice. Endocrinology 149:4080-4085.
    Song PI, Abraham TA, Park Y, Zivony AS, Harten B, Edelhauser HF, Ward SL, Armstrong CA,& Ansel JC (2001). The expression of functional LPS receptor proteins CD 14 and toll-like receptor 4 in human corneal cells. Invest Ophthalmol Vis Sci 42:2867-2877.
    Stenzel W, Soltek S, Sanchez-Ruiz M, Akira S, Miletic H, Schluter D & Deckert M (2008) Both TLR2 and TLR4 are required for the effective immune response in Staphylococcus aureus-induced experimental murine brain abscess. Am J Pathol 172:132-145.
    Streilein JW (2003) Ocular immune privilege:therapeutic opportunities from an experiment of nature. Nat Rev Immunol 3:879-889.
    Suzuki M, Hisamatsu T & Podolsky DK (2003) Gamma interferon augments the intracellular pathway for lipopolysaccharide (LPS) recognition in human intestinal epithelial cells through coordinated up-regulation of LPS uptake and expression of the intracellular Toll-like receptor 4-MD-2 complex. Infect Immun 71:3503-3511.
    Tarabishy AB, Aldabagh B, Sun Y, Imamura Y, Mukherjee PK, Lass JH, Ghannoum MA,& Pearlman E (2008) MyD88 regulation of Fusarium keratitis is dependent on TLR4 and IL-1R1 but not TLR2. J Immunol 181:593-600.
    Thomas P A & Geraldine P (2007) Infectious keratitis. Curr Opin Infect Dis 20: 129-141.
    Ueta M, Hamuro J, Kiyono H & Kinoshita S (2005). Triggering of TLR3 by polyI:C in human corneal epithelial cells to induce inflammatory cytokines. Biochem Biophys Res Commun 331:285-294.
    Ueta M, Nochi T, Jang MH, et al. (2004) Intracellularly expressed TLR2s and TLR4s contribution to an immunosilent environment at the ocular mucosal epithelium. J
    Immunol 173:3337-3347.
    Wu XY, Gao JL & Ren MY (2007) Expression profiles and function of Toll-like receptors in human corneal epithelia. Chin Med J (Engl).120:893-897.
    Yauch LE, Mansour MK, Shoham S, Rottman JB & Levitz SM (2004) Involvement of CD 14, toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect Immun 72:5373-5382.
    Yu FS & Hazlett LD (2006) Toll-like receptors and the eye. Invest Ophthalmol Vis Sci 47:1255-1263.
    Zhang J, Wu XY & Yu FS (2005) Inflammatory responses of corneal epithelial cells to Pseudomonas aeruginosa infection. Curr Eye Res 30:527-534.
    Zhao J & Wu XY (2008) Aspergillus fumigatus antigens activate immortalized human corneal epithelial cells via toll-like receptors 2 and 4. Curr Eye Res 33:447-454.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700