用户名: 密码: 验证码:
动态环境下多UCAV分布式在线协同任务规划技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多无人作战飞机(Unmanned Combat Aerial Vehicle, UCAV)协同任务规划技术是实现多UCAV在复杂战场环境中协同作战,提高多UCAV协同作战效能的关键技术之一。论文以多UCAV协同执行压制敌防空系统(Suppression of EnemyAnti-air Defense, SEAD)任务为背景,主要围绕有人机管理多UCAV协同执行SEAD和多UCAV自主协同执行SEAD两种典型任务模式,重点研究了多UCAV在线协同任务规划问题的建模及优化方法,并开展了仿真与实验验证。主要工作及创新点如下:
     (1)分析了动态环境下多UCAV协同执行SEAD任务的作战过程,建立了作战任务执行过程及相应规划过程中涉及的相关要素模型,提出了两种典型SEAD任务模式下多UCAV协同系统的分布式体系结构。
     从多UCAV协同SEAD任务的执行过程出发,在深入分析多UCAV协同SEAD任务独特性的基础上,对其执行及规划过程中涉及的各种任务要素进行形式化描述,建立了包括UCAV平台、任务载荷、战场威胁实体在内的多要素形式化模型。针对多UCAV协同SEAD的两种典型任务模式,提出了面向有人机管理下多UCAV协同SEAD的分布式体系结构以及面向多UCAV自主协同SEAD的分布式体系结构。基于该体系结构构建的多UCAV协同系统具有良好的伸缩性、鲁棒性和高可靠性,具备对环境的快速反应能力和灵活的系统重构能力,能够更好地适应未来高度动态化战场环境下的多UCAV协同作战的需求。
     (2)基于并行计算技术和协同进化思想,在异质多种群蚁群算法的框架下,面向多主体协同问题,提出了协进化多种群蚁群算法(Co-EvolutionaryMulti-Ant-Colony-Algorithm, COE-MACA)。
     在全面分析蚁群优化方法的基本原理、算法模型、优化特性、研究现状以及同质/异质多种群蚁群算法运行机制的基础上,根据多主体协同问题的特点,以异质多种群蚁群算法框架为基础,应用并行计算思想,将自然界多生物群落间的协同进化策略引入多个蚂蚁种群的迭代演化过程中,提出了协进化多种群蚁群算法。研究并设计了算法框架中的多种群系统结构、并行推进及信息交换策略、基于协进化机制的问题解性能评价。从提高算法优化能力的角度,引入了基于扩散机制的信息素更新机制。以多UCAV协同航迹规划问题为例,通过仿真实验对算法有效性进行验证,实验结果表明:经过算法要素的具体设计,协进化多种群蚁群算法可有效描述多主体之间的各类协同关系,通过种群演化,实现问题的快速迭代优化,且与进化算法相比,在实验想定条件下,其优化收敛速度提高了10%以上。
     (3)针对有人机管理多UCAV协同执行SEAD任务过程中的分布式在线协同航迹规划问题,基于分布式自适应模型预测控制(Distributed Adaptive ModelPredictive Control, DA-MPC)框架,建立了多UCAV在线协同航迹规划局部优化模型,提出了求解该模型的多UCAV分布式在线协同航迹规划算法。
     对多UCAV分布式协同航迹规划中的多平台协同约束进行了分析,建立了基于协同系数的多UCAV协同航迹代价模型;基于分布式模型预测控制(DistributedModel Predictive Control, DMPC)思想,结合任务自身特点,提出了基于代价势场的UCAV航迹终端罚函数及相应的代价势场生成算法,从理论上证明了所构建代价势场不存在局部极小值的特性,有效解决了传统势场构建方法中存在的“死锁”问题;以此为基础,建立了多UCAV在线协同航迹规划的分布式局部优化模型,将多UCAV协同系统大规模复杂优化问题分解为对应于各UCAV子系统的较小规模局部优化问题,从系统层面缩减问题空间;针对该局部优化模型的求解问题,提出了基于COE-MACA和滚动优化机制的局部优化算法,将多UCAV协同航迹规划问题在系统层和时间层上进行分解和优化,实现了多UCAV的分布式在线航迹规划。仿真实验结果表明:所提出的分布式局部优化模型及其求解算法能够实现原问题在不同层面的分解,降低多UCAV在线协同航迹规划的计算复杂度,减少规划时间,在所进行的实验统计中,论文提出的算法规划时间约为分布式条件下全局优化方法的10%,为集中式条件下局部优化方法的40%;同时,该算法能根据规划的具体需要,在时间性能和解的最优性之间进行权衡,对诸如突发威胁规避、突发威胁压制、威胁状态变化、任务目标变化等动态环境因素具有较好的适应能力。
     (4)面向多UCAV自主协同SEAD任务,建立了基于DMPC的多UCAV任务协调局部优化模型,提出了基于COE-MACA和滚动优化机制的多UCAV分布式在线任务协调局部优化算法。
     基于分层递阶思想,将多UCAV自主协同SEAD任务中的任务规划分解为任务协调层和航迹规划层两部分。针对多UCAV协同系统的在线任务协调问题,建立了基于灰色理论的任务目标评估模型和基于加权有向图的任务转移代价估计模型,设计了各UCAV子系统的规划窗口构造与更新机制,建立了基于DMPC的多UCAV任务协调局部优化模型,综合COE-MACA和滚动优化机制提出了多UCAV分布式在线任务协调局部优化算法。仿真实验结果表明:分布式在线任务协调局部优化算法能够有效地处理多UCAV多任务之间的协同关系,通过滚动优化机制的引入实现了复杂问题的分解,能够对新增目标、目标取消、UCAV故障或战损等动态因素进行合理响应,满足动态环境下多UCAV在线协同任务规划的要求。
Cooperative mission planning for multiple Unmanned Combat Aerial Vehicles(UCAVs) is one of the key technologies to realize the cooperative operation for multipleUCAVs in complicated battlefield environment and enhance the efficiency ofmulti-UCAVs cooperation. This dissertation focuses on the online mission planningproblem of typical multi-UCAVs SEAD mission in dynamic battle fields, in terms ofmulti-UCAVs cooperative SEAD under the management of manned fighters andmulti-UCAVs independent cooperative SEAD, builds mathematical model, researchesand designs optimization algorithm, and carries out simulation and experiments. Themain work and the creative contribution are as follows:
     (1) The processes of multi-UCAVs cooperative SEAD mission are analyzed, themodels of elements which are related to the mission executing processes and planningprocesses are built, and the distributed structure of multi-UCAVs cooperative systemsfor two typical SEAD mission modes are presented.
     According to the processes of multi-UCAVs cooperative SEAD mission, therelated elements are described, the formalized model including UCAV platforms,mission payloads, menace entities are presented based on the characteristics ofmulti-UCAVs cooperative SEAD. Aiming at the two typical modes of multi-UCAVsSEAD, the distributed structures for multi-UCAVs cooperative SEAD under themanagement of manned fighters and multi-UCAVs independent cooperative SEAD arepresented. The multi-UCAVs system based on the presented structures is highly robustand credible, and has sensitive reaction to the environments, flexible ability of systemrebuilding; therefore, it can satisfy the requirement of multi-UCAVs cooperativeoperation in highly dynamic battle fields.
     (2) Based on the parallel computing technology and the idea of co-evolutionary,the Co-Evolutionary Multi-Ant-Colony-Algorithm (COE-MACA) is proposed under theframework of multi-difference-ant-colony algorithm to solve the cooperation problemswith multiple behavior units.
     With considerations on the basic principle, algorithm model, characteristics ofoptimization, current situation of ant colony optimization research, and functionalmechanism of multi-ant-colony algorithm, the Co-EvolutionaryMulti-Ant-Colony-Algorithm is proposed under the framework ofmulti-difference-ant-colony algorithm. The algorithm is designed according to thecharacteristics of cooperation problem with multiple behavior units, the parallelcomputing technology is used to guide the design of COE-MACA, and theco-evolutionary strategy is introduced to the evolvement of multiple ant colonies. Themultiple colonies structure, strategies of parallel progress and information exchange, results evaluation based on co-evolutionary mechanism is studied, and the pheromonediffusion mechanism is used to improve the optimization capability of COE-MACA.The simulation of multi-UCAVs cooperative path planning using COE-MACA iscarried out to confirm the efficiency of the proposed algorithm, the experimental resultsindicate that the COE-MACA has good performance in describing the cooperativerelations between multiple behavior units by designing the elements of algorithm, andthe solution can be optimized rapidly through the evolution of ant colony. Compared tothe evolutionary algorithm, the convergence speed of COE-MACA increases at least10%in specific experimental scenario.
     (3) Based on the framework of Distributed Adaptive Model Predictive Control(DA-MPC), the local optimization model of multi-UCAVs online cooperative pathplanning is presented to solve the online cooperative path planning of multi-UCAVscooperative SEAD under the management of manned fighters, and the distributed onlinecooperative path planning algorithm to solve this model is proposed.
     The cooperative constraints in multi-UCAVs distributed cooperative online pathplanning are analyzed, and the cost model of multi-UCAVs cooperative path based oncooperative coefficient is presented; based on the distributed model predictive control,the UCAV path terminal penalty function based on the cost field and its generatingalgorithm is proposed. It is proofed that the cost field has only one local minimal pointat the specific target point. Then the local optimization model of multi-UCAVs onlinecooperative path planning is proposed. In this model, the complex optimization problemof multi-UCAVs cooperative system is decomposed into several local optimizationproblems corresponding to each UCAV, which can reduce the complexity of originalplanning problem on the system level. To solve the proposed model, the localoptimization algorithm based on COE-MACA and RHC is presented. The algorithmseparates and optimizes the original planning problem on the levels of system as well astime, which makes multi-UCAVs distributed online path planning easier to realize.Simulation results indicates that the proposed model and algorithm can separates theoriginal problem on different level, reduces the complexity and time cost ofmulti-UCAVs online cooperative path planning, in statistics of the simulation results,the planning time of proposed algorithm is10%of the distributed global optimizationalgorithm, and40%of the centralized local optimization algorithm, and furthermore, theproposed algorithm can balance the weight between time cost and optimized solution,and has good performance in response to dynamic environment such as avoiding suddenmenaces, suppressing sudden menaces, menaces states change, targets change and soon.
     (4) To solve the online cooperative mission planning problem of multi-UCAVsindependent cooperative SEAD, a local optimization model for multi-UCAVs missioncoordination is proposed based on DMPC, and a distributed local optimization algorithm to solve the local optimization model is presented based on COE-MACA andRHC.
     Based on the hierarchical control, multi-UCAVs independent cooperative SEADmission planning is divided into mission coordination and path planning. To solvemulti-UCAVs mission coordination problem, the mathematical models of mission/targetevaluation and transfer cost estimation between different missions are studied based onthe grey system theory and weighted oriented graph. The strategies to construct andupdate UCAV planning windows are designed, an mathematical local optimizationmodel is proposed and the distributed local optimization algorithm for multi-UCAVsmission coordination is presented under the framework of COE-MACA and RHC.Simulation results shows that the mentioned algorithm can manage the cooperativeconstraints between different UCAVs and missions effectively, the introduction of RHCdecomposes the original problem to reduce the complexity, and the algorithm caneffectively response to the dynamic event such as target increasing, target cancelled,UCAV failure or damage quickly, so that the mentioned model and algorithm cansatisfy the requirement of multi-UCAVs online mission coordination in dynamicenvironment.
引文
[1] Fahlstrom Paul G., Gleason Thomas J.著,吴汉平等译.无人机系统导论.电子工业出版社,2003.
    [2]陈哨东,孙隆和.先进无人战斗机(UCAV)系统概念[J].火力指挥与控制.March2003,28(6):10-13.
    [3] Flach J M, Eggleston R G, Kuperman G G.无人作战飞机的未来作战用途[J].国际航空.2003,(7).
    [4] Office of the Secretary of Defense. Unmanned Aircraft Systems Roadmap2005-2030[R]. Department of Defense, Washington DC,2005.
    [5] Ousingsawat A, Campbell M E. Multiple Vehicle Team Tasking for CooperativeEstimation[C]. In Proceedings of the American Control Conference.2004.
    [6] Kim J, Hespanha J P. Cooperative Radar Jamming for Groups of Unmanned AirVehicles[C]. In Proceedings of the43rd Conference on Decision and Control.2004, Vol.1:632-637.
    [7] Eun Y, Bang H. Cooperative Control of Multiple UCAVs for Suppression ofEnemy Air Defense[C]. In Proceedings of the AIAA3rd“Unmanned Unlimited”Technical Conference Chicago, Illinois,2004.
    [8] Lua C A, Altenburg K, Nygard K E. Synchronized Multi-Point Attack byAutonomous Reactive Vehicles with Simple Local Communication[C]. InProceedings of the IEEE Swarm Intelligence Symposium. Indianapolis, Indiana,2003.
    [9] Banda Siva, Doyle John, Murray Richard. Research Needs in Dynamics andControl for Uninhabited Aerial Vehicle(UAVs).1997.
    [10]樊长虹,陈卫东,席裕庚.动态未知环境下一种Hopfield神经网络路径规划方法[J].控制理论与应用,2004,3:345-350.
    [11] Col Earl Wyatt. DARPA/USAF Unmanned Combat Air Vehicle SystemDemonstration Program[EB/OL]. www.darpa.mil/ucav.2003.
    [12]美国海军筹划X-47B无人战斗机验证.航空工业科技信息中心2003-6-16.
    [13] Johnson Christopher L. Inverting the Control Ratio: Human Control of Large Au-tonomous Teams[C]. In Proceedings of the the International Conference onAutonomous Agents and Multi-Agent Systems. Melbourne, Australia,2003.
    [14] Michael Ownby. Mixed Initiative Control of Automa-teams(MICA)-A ProgressReport[C]. In Proceedings of the AIAA3rd“Unmanned Unlimited” TechnicalConference. Chicago,2004.
    [15] Autonomous Negotiating Teams Program (ANT)[EB/OL]. http://www.if.afrl.af.mil/div/iftb/ants.html/.
    [16] Schumacher C, Chandler P R, Rasmussen S J. Task Allocation for Wide AreaSearch Munitions via Iterative Networkflow[C]. In Proceedings of the AIAAGuidance, Navigation, and Control Conference and Exhibit. Monterey, California,2002.
    [17] Nygard K E, Chandler P R, Pachter M. Dynamic Network Flow OptimizationModels for Air Vehicle Resource Allocation[C]. In Proceedings of the AmericanControl Conference. Arlington, VA, USA.2001:1853-1858.
    [18] Chandler P R, Pachter M, Rasmussen S. UAV Cooperative Control[C]. InProceedings of the American Control Conference. Arlington, VA, USA.2001:50-55.
    [19] Sengupta R, Godbole D. Architectures for UCAV and results on multi-agentcoordination [EB/OL]. http://robotics.eecs.berkeley.edu/~sastry/ppt.files/ONR/prog-rep.ppt.1998.
    [20] Sastry S S. ONR UCAV Project Overview [EB/OL]. http://robotics.eecs.berkeley.edu/~sastry/ppt.files/ONR/year1.ppt.1998.
    [21] Ryan A, Zennaro M, Howell A, et al. An overview of emerging results incooperative UAV control [C]. In Proceedings of the IEEE Conference onDecision and Control.2004:602-607.
    [22] Campbell M., Andrea R. D., Schneider D., Chaudhry A. RoboFlag Games usingSystems Based, Hierarchical Control. American Control Conference.2003,661-666.
    [23] Shamma J. Cooperative Control of Distributed Autonomous Vehicles inAdversarial Environments[EB/OL]. http://www.seas.ucla.edu/coopcontrol/.2006-08-14/2007-10-04.
    [24] Butenko S, Murphey R, Pardalos P. Cooperative Control: Models, Applicationsand Algorithms[M]. Kluwer Press,2006:96-111.
    [25] COMETS project offcial web page [EB/OL]. http://www.comets-uavs.org/.
    [26] Networked Embedded Systems: EC-SAFEMOBIL [EB/OL]. http://www.nes.uni-due.de/research/projects/ec-safemobil/.
    [27] Ramos F T. Recognizing, Representing and Mapping Natural Features inUnstructured Environments[D]. The University of Sydney,2007.
    [28] Secrest B R. Traveling Salesman Problem for Surveillance Mission UsingParticel Swarm Optimization[D]. Air Force Institute of Technology,2003.
    [29] Philemon Sakamoto. UAV Mission Planning Under Uncertainty[D].Massachusetts Institute of Technology,2006.
    [30] Alighanbari M. Task Assignment Algorithms for Teams of UAVs in DynamicEnvironments[D]. Massachusetts Institute of Technology,2004.
    [31] Alighanbari M, How J P. Decentralized Task Assignment for Unmanned AerialVehicles[C]. In Proceedings of the44th IEEE Conference on Decision andControl, Seville, Spain,2005:5668-5673.
    [32] Kevin P. O'Rourke. Dynamic Unmanned Aerial Vehicle (UAV) Routing with aJava-Encoded Reactive Tabu Search Metaheuristic[D]. Air Force Institute ofTechnology.1999.
    [33] Robert W Harder. A Java Universal Vehicle Router in Support of RoutingUnmanned Aerial Vehicles AIR Missions[D]. Air Force Institute of Technology.2000.
    [34] Darin T. Brown. Routing Unmanned Aerial Vehicles While Considering GeneralRestricted Operating Zones[D]. Air Force Institute of Technology,2001.
    [35] Darrah M. A., Niland W. M., Stolarik B. M. Multiple UAV Dynamic Task Allocationusing Mixed Integer Linear Programming in a SEAD Mission. AIAAInfotech@Aerospace Conference, AIAA2005-7164,. Alexandria, VA,2005.
    [36] Alighanbari M, How J P. Cooperative Task Assignment of Unmanned AerialVehicles in Adversarial Environments[C]. In Proceedings of the AmericanControl Conference. Portland, OR, USA.2005:4661-4666.
    [37] Schumacher C, Chandler P R, Pachter M, Pachter L S. UAV Task Assignmentwith Time Constraints[C]. In Proceedings of the AIAA Guidance, Navigation,and Control Conference and Exhibit. Austin, Texas,2003.
    [38] Schumacher C, Chandler P R, Pachter M, Pachter L S. Constrained Optimizationfor UAV Task Assignment[C]. In Proceedings of the AIAA Guidance,Navigation, and Control Conference and Exhibit. Providence, Rhode Island,2004.
    [39] Shima T, Rasmussen S J, Sparks A G, Passino K M. Multiple Task Assignmentsfor Cooperating Uninhabited Aerial Vehicles Using Genetic Algorithms[J].Computers and Operations Research,2006,33(11):3252-3269.
    [40] Olsv Bangs, M. Julia Flores, Finn V. Jensen. Play&Play Object OrientedBayesian Networks. CAEPIA-TTIA,2004:457-467.
    [41] Karaman S, Rasmussen S, Kingston D, Frazzoli E. Specification and Planning ofUAV Missions: a Process Algebra Approach[C]. In Proceedings of the AmericanControl Conference,2009,6:1442-1447.
    [42] Vijay K. Shetty, Moises Sudit, Rakesh Nagi. Priority-based Assignment andRouting of a Fleet of Unmanned Combat Aerial Vehicles[J]. Computers&Operations Research,2008,35(6):1813-1828.
    [43] Gruz JB J, Chen Ge, et al. Particle Swarm Optimization for Resource Allocationin UAV Cooperative Control[C]. In Proceedings of the AIAA Guidance,Navigation, and Control Conference and Exhibit. Chicago, Illinois,2004.
    [44] Marjorie A. Darrah, William M. Niland, Brian M. Stolarik. Increasing UAV TaskAssignment Performance Through Parallelized Genetic Algorithms[C]. InProceedings of the AIAA Infotech@Aerospace2007Conference and Exhibit,2007.
    [45] Resmussen S, Chandler P R. Optimal vs. Heuristic Assignment of CooperativeAutonomous Unmanned Aerial Vehicles[C]. In Proceedings of the AIAAGuidance, Navigation, and Control Conference and Exhibit. Austin, Texas.AIAA-2003-5586.2003.
    [46] Gray B Lamont. UAV Swarm Mission Planning and Routing Using Multi-ObjectEvolutionary Algorithms[C]. In Proceedings of the IEEE Symposium onComputational Intelligence in Multicriteria Decision Masking.2007:10-20.
    [47] Manathara Joel, Sujit P, Beard Randal. Multiple UAV Coalitions for a Search andProsecute Mission[J]. Journal of Intelligent and Robotic Systems.2011,62(1):125-158.
    [48] Ghalenoei M R, Hajimirsadeghi H, Lucas C. Discrete Invasive WeedOptimization Algorithm: Application to Cooperative Multiple Task Assignmentof UAVs[C]. In Proceedings of the48thIEEE Conference on Decision andControl.2009:1665-1670.
    [49] Yang Y L, Polycarpou M M, Minai A A. Multi-UAV Cooperative Search Usingan Opportunistic Learning Method[J]. ASME Journal of Dynamic Systems,Measurement, and Control.2007,129(5):716-728.
    [50] Gürdal Arslan, Jason R. Marden, Jeff S. Shamma. Autonomous Vehicle-TargetAssignment: A Game-Theoretical Formulation[J]. ASME Journal of DynamicSystems, Measurement, and Control.2007,129:584-596.
    [51] Atkinson M L. Contract Nets for Control of Distributed Agents in Unmanned AirVehicles[C]. In Proceedings of the2ndAIAA “Unmanned Unlimited” Systems,Technologies, and Operations. San Diego, California. AIAA-2003-6532.2003
    [52] Dionne D, Rabbath C A. Multi-UAV Decentralized Task Allocation withIntermittent Communications: the DTC algorithm[C]. In Proceedings of the2007American Control Conference. New York City, USA.2007:5406-5411.
    [53] PB Sujit, JB Sousa. Multi-UAV Task Allocation with Communication Faults[C].In Proceedings of the2012American Control Conference(ACC). Mentral, QC,USA,2012,6:3724-3729.
    [54] Parunak H V, Purcell M, Connell P O. Digital Pheromones for AutonomousCoordination of Swarming UAVs[C]. In Proceedings of the1stAIAA UnmannedAerospace Vehicles, Systems, Technologies, and Operations Conference.AIAA-2002-3446,2002.
    [55] Shen W M, Will P, Galstyan A, et al. Hormone-Inspired Self-Organization andDistributed Control of Robotic Swarms[J]. Autonomous Robots.2004,17(1):93-105.
    [56] Price I C. Evolving Self-Organized Behavior for Homogeneous andHeterogeneous UAV or UCAV Swarms[D]. Air Force Institute of Technology.Ohio,2006.
    [57] Beard R. W., McLain T. W., Goodrish M., Anderson E. P. Coordinated TargetAssignment and Intercept for Unmanned Air Vehicles. IEEE Transactions onRobotics and Austomation. December2002,18(3):911-922.
    [58] McLain T. W., Chandler P. R., Pachter M. A Decomposition Strategy forOptimal Coordination of Unmanned Air Vehnicles[C]. In Proceedingings of theAmerican Control Conference. Chicago,2000:369-373.
    [59] McLain T. W., Chandler P. R., et al. Cooperative Control of UAVRendezvous[C]. In Proceedings of the American Control Conference.2001:2309-2314.
    [60] Bellingham J., Tillerson M., Richards A., How J. P. Multi-Task Allocation andPath Planning for Cooperative UAVs[M]. Cooperative Control: Models,Applications and Algorithms. Denver, CO,2003:23-41.
    [61] Kuwata Y., How J. P. Three Dimensional Receding Horizon Control forUAVs[C]. In Proceedings of the AIAA Guidance, Navigation and ControlConference and Exhibit.2004.
    [62] Pettersson P.O., Doherty P. Probabilistic Roadmap Based Path Planning for anAutonomous Unmanned Aerial Vehicle. The Workshop on Connecting Planningand Theory with Practice.2004.
    [63] Kavraki L., Sevestka P., Latombe J-C, et al. Probabilistic Roadmaps for PathPlanning in High Dimensional Configuration Spaces[J]. IEEE Transactions onRobotics and Automation.1996,12(4):566-580.
    [64] Szczerba R J. et al. Robust Algorithm for Real-time Route Planning[J]. IEEETransaction on Aerospace and Electronic System,2000,36(3):869-878.
    [65] M.C.Bartholomew-Biggs, S.C.Parkhurst, S.P.Wilson. Using DIRECT to Solve anAircraft Routing Problem[J]. Computational Optimization and Applications,2002,21(3):311-323.
    [66] D. Lebedev, J. Steil, H. Ritter. A Neural Network Model that Calculates DynamicDistance Transform for Path Planning and Exploration in a ChangingEnvironment[C]. In Proceedings of the International Conference on Robotics andAutomation, Taipei, Taiwan,2003:4209-4214.
    [67] Isil Hasircioglu, Haluk Rahmi Topcuoglu, Murat Ermis.3-D Path Planning forthe Navigation of Unmanned Aerial Vehicles by Using EvolutionaryAlgorithms[C]. In Proceedings of the10thAnnual Conference on Genetic andEvolutionary Computation,2008:1499-1506.
    [68] Gotoand Y, Stentz A. Mobile Robot Navigation: The CMU System[J]. IEEEExpert.1987,2(4):44-45.
    [69] LaValle S M. Planning Algorithms[M]. Cambridge: University Press,2006.
    [70] Korf R. Real-time Heuristic Search: Research Issues[J]. Artificial Intelligence.1990,42(2):189-211.
    [71] Juan Carlos Rubio, Juris Vagners, Rolf Rysdyk. Adaptive Path Planning forAutonomous UAV Oceanic Search Missions[C]. In Proceedings of the AIAA1stIntelligent System Technical Conference, Chicago, Illinois,2004,9.
    [72] McLain T. W., Beard R. W. Trajectory Planning for Coordinated Rendevous ofUnmanned Air Vehicles[C]. In Proceedings of the AIAA Guidance, Navigation,and Control Conference and Exhibit. Denver, Colorado,2000.
    [73] Chandler P. R., Rasmussen S., Pachter M. UAV Cooperative Path Planning[C].In Proceedings of the AIAA Guidance, Navigation, and Control Conference andExhibit. Denver, Colorado,2000.
    [74] Alighanbari M., Kuwata Y., How J. P. Coordination and Control of MultipleUAVs with Timing Constraints and Loiterings[C]. In Proceedings of theAmerican Control Conference. Denver, Colorado,2003:5311-5316.
    [75] PB Sujit, Randy Beard. Multiple UAV Path Planning Using AnytimeAlgorithms[C]. In Proceedings of the American Control Conference,2009,6:2987-2983.
    [76] Foo J, Knutzon J, Oliver J, Winer E. Three-dimensional Path Planning ofUnmanned Aerial Vehicles Using Particle Swarm Optimization[C]. InProceedings of the11thAIAA/ISSMO Multidisciplinary Analysis andOptimization Conference,2006:992-1001.
    [77] Tom S. Safe Trajectory Planning of Autonomous Vehicle[D]. Ph.D. thesis,Massachusetts Institute of Technology, USA,2005.
    [78]严平.无人飞行器航迹规划与任务分配方法研究[D].武汉:华中科技大学,2006.
    [79] ZHOU Deyun, LI Zhaoqiang, WANG Qian. A Kind of UCAV Attack DecisionArithmetic Based on Entropy of Avail Value[C]. In Proceedings of the2010International Conference on Computational and Information Sciences,2010:1107-1109.
    [80]李炜,张伟.基于粒子群算法的多无人机任务分配方法[J].控制与决策.2010,25(9):1359-1363.
    [81]柳长安,王和平,李为吉.攻击无人机的协同航路规划[J].西北工业大学学报.2003,21(6):707-710.
    [82] Xia Chen, Ting Tang, Lin Li. Study on the Real-time Task Assignment ofMulti-UCAV in Uncertain Environment Based on Genetic Algorithm[C]. InProceedings of the2011IEEE Conference on Robotics, Automation andMechatronics.2011:73-76.
    [83]曹攀峰,崔升.考虑信息延迟的无人机分布式协同搜索算法[J].电光与控制.2010,17(3):27-29.
    [84]刘跃峰,张安.有人机/无人机编队协同任务分配方法[J].系统工程与电子技术.2010,32(3):584-588.
    [85]潘峰,陈杰,任智平,王光辉.基于计算智能方法的无人机任务指派约束优化模型研究[J].兵工学报,2009,30(12):140-147.
    [86]郭文强,高晓光,任佳,肖秦琨.基于图模型自主优化的多无人机多目标攻击[J].系统工程与电子技术.2010,32(3):574-578.
    [87] Zhu Mingjian, Qin Zheng, Xing Jiankuan. Task Assignment Scheme ofMulti-UAV Based on Single-Unit Combinatorial Auction[C]. In Proceedings ofthe2010International Conference on Electrical and Control Engineering(ICECE),2010,6:2232-2235.
    [88] Shi Zhi-fu, Yang Bo, Liu Hai-yan. Modeling and Simulation of UCAV SwarmCooperative Task Assignment[C]. In Proceedings of the3rdInternationalConference on Information and Computing, Wuxi, Jiang Su, China,2010,6.
    [89]龙国庆,祝小平,董世友.基于聚类算法的多无人机系统任务分配[J].火力指挥与控制.2011,36(12):54-59.
    [90] Wang Guodong, Li Ming, Deng Zhidong, Yang Bo, Yao Wentao. A NewApproach to Solve the Mission Assignment Problem for Cooperative UCAVsUsing Immune Particle Swarm Optimizations[C]. In Proceedings of the10thWorld Congress on Intelligent Control and Automation (WCICA2012),2012,6:549-554.
    [91] Cao Lu, Zhang An, Guo Fengjuan. Cooperative Target Allocation for UCAVTeam Air-to-ground Attack Based on Decision Graph Bayesian OptimizationAlgorithm[C]. In Proceedings of the2011International Conference on AdvancedMaterials and Engineering Materials (ICAMEM2011),2011,11:655-662.
    [92]孟波波,高晓光.信息联网下的多无人作战飞机多任务规划[J].飞行力学.2010,4(28):95-98.
    [93]田阔,符小卫,高晓光.威胁联网下无人机路径在线规划[J].西北工业大学学报,2011,29(3):367-373.
    [94]高晓光,符小卫,宋绍梅.多UCAV航迹规划研究[J].系统工程理论与实践.2004,25(9):485-489.
    [95]徐正军,唐硕.基于改进遗传算法的飞行航迹规划[J].宇航学报.2008,29(5):1540-1545.
    [96]周锐,成晓静,余舟毅,池沛,陈宗基.智能化战术飞行轨迹规划方法研究[J].控制与决策.2005,20(2):222-225.
    [97] Xia Chen, Dong Liu, Ting Tang. Path Planning for UCAV in Dynamic andUncertain Environment Based on Focused D*Algorithm[C]. In Proceedings ofthe2011Fourth International Symposium on Computational Intelligence andDesign.2011:55-58.
    [98]赵启程,袁锁中,陈金宇.基于合同机制的多UCAV的任务和航迹规划[C].中国航空学会控制与应用第十三届学术年会,2008,7.
    [99]严平,丁明跃,郑昌文.基于Nash均衡与进化计算的协调航迹规划[J].航空学报(英文版).2006,19(1):20-25.
    [100]张煜,陈璟,沈林成. UCAV空面多目标攻击三维轨迹规划技术[J].国防科技大学学报.2012,34(5):107-114.
    [101]鲁艺,吕跃,罗燕等.基于改进遗传算法的UAV航迹规划[J].电光与控制.2012,19(1):30-33.
    [102]唐上钦,黄长强,胡杰,吴文超.基于威胁等效和改进PSO算法的UCAV实时航路规划方法[J].系统工程与电子技术.2010,32(8):1706-1710.
    [103]叶媛媛.多UCAV协同任务规划方法研究[D].长沙:国防科学技术大学,2005.
    [104]龙涛.多UCAV协同任务控制中分布式任务分配与任务协调技术研究[D].长沙:国防科学技术大学,2006.
    [105]龙涛,沈林成,朱华勇,牛轶峰.面向协同任务的多UCAV分布式任务分配与协调技术[J].自动化学报,2007,7:731-737.
    [106]陈岩.蚁群算法在无人机战术任务控制中的应用研究[D].长沙:国防科学技术大学,2007.
    [107] HUO Xiaohua, SHEN Lincheng, LONG Tao. Particle Swarm Optimization for aMulti-UCAV Cooperative Task Scheduling[C]. In Proceedings of the1stInternational Conference on Advances in Hybrid Information Technologu,2007:302-311.
    [108]霍霄华,陈岩,朱华勇,沈林成.多UCAV协同控制中的任务分配模型及算法研究[J].国防科技大学学报.2006,28(3):83-88.
    [109]霍霄华,沈林成.多UCAV协同控制中的任务调度问题研究[J].系统仿真学报.2007,19(16):3623-3626.
    [110]霍霄华.多UCAV动态协同任务规划建模与滚动优化方法研究[D].长沙:国防科学技术大学.2007.
    [111]彭辉,沈林成,朱华勇.基于分布式模型预测控制的多UAV协同区域搜索[J].2010,31(3):593-601.
    [112]彭辉.分布式多无人机协同区域搜索中的关键问题研究[D].长沙:国防科学技术大学,2009.
    [113] PENG Hui, et.a.l. Hormone-Inspired Cooperative Control for Multiple UAVsWide Area Search[C]. In Proceedings of the4thInternational Conference. onIntelligent Computing. Shanghai, LNCS5226, Springer,2008:808-816.
    [114]彭辉,张庆杰,李远,沈林成.多UAV协同区域搜索中的环境信息一致性研究[C].2009中国控制与决策会议论文集.
    [115]彭辉,王林,沈林成.区域目标搜索中基于改进RRT的UAV实时航迹规划方法[J].国防科技大学学报,2009,31(5):86-91.
    [116]陈洪主编.美国空军战役作战研究[M].空军指挥学院出版,2000.
    [117] Hathaway David C. Germinating a New SEAD: The Implications of Executingthe SEAD Mission in a UCAV. June2001.
    [118]于长江.航空兵战术[M].空军指挥学院出版.
    [119]朱华勇,张庆杰,沈林成.提高无人作战飞机协同作战能力的关键技术[J].控制工程.2010, s1.
    [120]李莹,黄沛霖,武哲.基于不同角域RCS均值的雷达探测模型[J].北京航空航天大学学报.2008,34(6):627-629.
    [121]苏东林,曾国奇,刘焱,王国玉.运动目标RCS特性分析[J].北京航空航天大学学报.2006,32(12):1413-1417.
    [122]马东立,韩莹.航空综合体对地攻击作战效能评估方法[J].北京航空航天大学学报.2000,26(2):198-200.
    [123]郝佳新,甘斌.复杂电磁环境下防空雷达的探测模型研究[J].计算机仿真.2009,26(6):33-36.
    [124]刘己斌,关祥辰,路建伟,张艺.复杂电磁环境下雷达探测能力分析及仿真[J].系统工程理论与实践.2008,28(5):142-147.
    [125]张成斌,游雄,李云龙.基于叠置分析的雷达网发现概率模型及应用[J].测绘科学技术学报.2007,24:25-28.
    [126]李光明,唐业敏,蒋苏蓉.雷达网反隐身性能评估——雷达网综合发现概率[J].现代雷达.2006,28(1):23-25.
    [127]孙晓峰,龚春林.地基相控阵雷达对空间目标的探测概率研究[J].宇航学报.2008,29(5):1648-1651.
    [128]王中杰,李侠,陆小星,周俊威.雷达网实际探测概率分布模型与仿真算法[J].火力与指挥控制.2009,34(4):88-91.
    [129]丁鹭飞,陈建春.雷达原理[M].电子工业出版社,2009.
    [130]航空兵模拟技术[M].航空工业出版社.
    [131]杨涛.组网雷达系统“四抗”效能评估方法研究[D].长沙:国防科学技术大学,2008.
    [132]张中南,马雷挺,陈思达.舰空导弹对空中目标命中概率的仿真分析[J].战术导弹技术.2007,(3):86-88.
    [133] Slater G. L. Cooperative between UAVs in a Search and Destroy Mission[C]. InProceedings of the AIAA Guidance, Navigation, and Contrl Conference andExhibit. Astin, Texas,2003.
    [134] Legras F. A Robust Cooperation Architecture for Teams of UCAVs[C]. InProceedings of the1stInternational Joint Conference on Autonomous Agents andMulti-Agent Systems. Bologna, Italy,2002:499-500.
    [135] Sousa J B, Varaiya P, Imek T. Distributed Control of Teams of Unmanned AirVehicles[C]. In Proceedings of the15thInternational Symposium ofMathematical Theory of Networks and Systems.2004.
    [136] Rabbath C A, Gagnon E, Lauzon M. On the Cooperative Control of MultipleUnmanned Aerial Vehicles[J]. IEEE Canadian Review,2004(46):15-19.
    [137] Pongpunwattana A. Real-time Planning for Teams of Autonomous Vehicles inDynamic Uncertain Environments[D]. University of Washington,2004.
    [138] Wei Li, Christos G. Cassandras. Centralized and Distributed CooperativeReceding Horizon Control of Autonomous Vehicle Missions[J]. Mathmatical andComputer Modelling.2006,43:1208-1228.
    [139] Kevin M. Milam. Evolution of Control Programs for A Swarm of AutonomousUnmanned Aerial Vehicles[D]. Air Force Institute of Technology, USA,2004.
    [140]潘长鹏,叶文,陈洁,郭久智.多UCAV协同航路规划的协同控制[C]. InProceedings of the8thWorld Congress on Intelligent Control and Automation,Jinan, China,2010:5259-5263.
    [141]张亮,鲁艺,徐安等.基于EMRP算法的多UAV协同航迹规划[J].电光与控制.2011,18(2):34-38.
    [142]叶文,朱明,李海军,鞠传文.基于小生境克隆选择算法的单UCAV多航路规划[C].2010中国制导、导航与控制学术会议(CGNCC2010).2010年10月16~18日,中国,上海.
    [143] Istas F. Nusyirwan, Cees Bil. Effect of Uncertainties on UCAV TrajectoryOptimisation Using Evolutionary Programming [C]. In Proceedings of the2007Information, Decision and Control,2007:219-223.
    [144] Qianhi Mal, Xiujuan Lei. Application of Artifcial Fish School Algorithm inUCAV Path Planning[C]. In Proceedings of the2010IEEE5thInternationalConference on Bio-Inspired Computing: Theories and Applications (BIC-TA),2010:555-559.
    [145]李士勇等.蚁群算法及其应用[M].哈尔滨工业大学出版社,2004.
    [146] V. Maniezzo, A. Colorni, and M. Dorigo. The Ant System Applied to theQuadratic Assignment Problem[R]. Technical Report IRIDIA/94-28, UniversiteLibre de Bruxelles, Belgium,1994.
    [147] D. Costa and A. Hertz. Ants can Color Graphs[J]. Journal of the OperationalResearch Society,1997,48(3):295-305.
    [148] B. Bullnbeimer, R. F. Hard, and C. Strauss. Applying the Ant System to theVehicle Routing Problem[J]. Meta-Heuristics: Advances and Trends in LocalSearch Paradigms for Optimization, Kluwer Academics,1999,285-296.
    [149] T White, et al. Ant-based Load Balancing in Telecommunications Networks[J].Adaptive Behavior,1996,5(2):169~207.
    [150] E Bonabeau, et al. Routing in Telecommunication Networks with “Smart”Ant-Like Agents Telecommunication Applications[C]. In Proceedings OfIATA’98Second Int. Work Shop on Intelligent Agents for TelecommunicationApplications. Lectures Notes in AI vol. Springer Verlag,1998.
    [151] G Di Caro, M Dorigo. Extending AntNet for Best-effort Quality-of-ServiceRouting[C]. In Proceedings of the ANTS’98-First International Workshop onAnt Colony Optimization. Brussels, Belgium,1998:15~16.
    [152]段海滨.蚁群算法原理及应用[M].科学出版社,2005,12.
    [153]杨沛,古德祥.蚁群的信息系统[J].昆虫知识,2001,38(1):23-25.
    [154] Colorni A, Dorigo M, Maniezzo V. Distributed Optimization by Ant Colonies[C].In Proceedings of the1stEuropean Conf Artificial Life Plans. France: Elsevier,1991:134-142.
    [155] M. Dorigo, V Maniezzo, and A. Colomi. The Ant System: Optimization by aColony of Cooperating Agents[J]. IEEE Transactions on Systems, Man, andCybemetics-Part B,1996,26(1):29-41.
    [156] B. Bullnheimer, R. R Hard, and C. Strauss. A New Rank-Based Version of TheAnt System: A Computational Study [J]. Central European Journal for OperationsResearch and Economics,1999,7(l):25-38.
    [157] T. Stutzle and H. Hoos. The MAX-MIN Ant System And Local Search for TheTraveling Salesman Problem[C]. In Proceedings of the IEEE InternationalConference on Evolutionary Computation and Evolutionary ProgrammingConference.1997:309-314.
    [158]王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33.
    [159]章春芳,陈凌,陈娟.求解频率分配问题的自适应的多种群蚁群算法[J].小型微型计算机系统,2006,27(5):837-841.
    [160]陈凌,秦岭,陈宏建,徐晓华.具有感觉和知觉特征的蚁群算法[J].系统仿真学报,2003,15(10):1418-1425.
    [161]吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J].计算机研究与发展,1999,36(10).
    [162] E-G. Talbi, O. Roux, C. Fonlupt. Parallel Ant Colonies for CombinatorialOptimization Problems[J]. Parallel and distributed Processing.1999,239-247.
    [163] B. Bullnheimer, G. Kotsis, C. Strauss. Parallelization Strategies for the AntSystem[J]. High Performance Algorithms and Software in NonlinearOptimization,1998,24:87-100.
    [164]徐精明,曹先彬,王煦法.多态蚁群算法[J].中国科学技术大学学报,2005,35(1):59-65.
    [165]万旭,林健良.基于移动代理的多类蚂蚁算法在路由中的应用[J].计算机应用,2004,24(12):70-72.
    [166]张素兵. IP网与通信网中的QoS路由研究[D].北京:北京邮电大学,2001.
    [167] Rene Michel, Martin Middendorf. An Island Model Based Ant System withLookahead for the Shortest Supersequence Problem[C]. In Proceedings of the5thInternational Conference on Parallel Problem Solving from Nature.1998:692-701.
    [168] Martin Middendorf, Frank Reischle, Hartmut Schmeck. Information Exchange inMulti Colony Ant Algorithms[C]. In Proceedings of the15thIPDPS2000Workshops on Parallel and Distributed Processing.2000:645-652.
    [169]焦李成,刘静,钟伟才.协同进化计算与多智能体系统[M].科学出版社.2006.
    [170] Fasano G, Accardo D, Moccia A, et al. Multisensor based Fully AutonomousNon-Cooperative Collision Avoidance System for UAVs[C]. In Proceedings ofthe AIAA Infotech@Aerospace Conference and Exhibit. Rohnert Park, California.AIAA-2007-2847.2007.
    [171]周宏志,王伊卿,樊长虹.基于神经网络的移动机器人路径规划[J].计算机工程与科学.2005,27(12):72-75.
    [172]冀俊中,刘椿年,黄振.蚁群算法中信息素增量和扩散模型的研究[J].计算机科学与探索.2007,1(1):87-94.
    [173]陈圣,李翔.一种基于信息素扩散的蚁群聚类算法[J].科学技术与工程.2009,9(16):4657-4661.
    [174]冀俊中,黄振,刘椿年.一种快速求解旅行商问题的蚁群算法[J].计算机研究与发展.2009,46(6):968-978.
    [175] Boyd J R. The Essence of Winning and Losing [EB/OL]. http://www.chetrichards.com/modern_business_strategy/boyd/essence/eowl_frameset.htm.2006-08-12/2009-09-13.
    [176] Grant T. Comparing OODA&Other Models as Operational View C2Architecture[C]. In Proceedings of the10thInternational Command and ControlResearch and Technology Symposium. Washington, DC, USA,2005.
    [177] John Bellingham, Arthur Richards, Jonathan P. How. Receding Horizon Controlof Autonomous Aerial Vehicles[C]. In Proceedings of the American ControlConference. Anchorage, AK,2002:8-10.
    [178] Dennis Bruijnen, Jeroen van Helvoort, Rene van de Molengraft. Realtime MotionPath Generation Using Subtargets in a Rapidly Changing Environment[J].Robotics and Autonomous Systems.2007,55:470-479.
    [179] Tsitsiklis J, Athans M. Distributed Optimization Algorithms withCommunications[R]. Laboratory for Information and Decision Systems,Massachusetts Institute of Technology.1983.
    [180]倪庆剑,张志政,王蓁蓁,邢汉承.一种基于可变多簇结构的动态概率粒子群优化算法[J].软件学报.2009,20(2):339-349.
    [181] Arthur Richards, Jonathan How. Decentralized Model Predictive Control ofCooperating UAVs[C]. In Proceedings of the43rdIEEE Conference on Decisionand Control.2004:4286-4291.
    [182] M. Dorigo, L. M. Gambardella. Ant Colony System: A Cooperative LearningApproach to The Traveling Salesman Problem[J]. IEEE Transactions onEvolutionary Computation,1997,1(1):53-66.
    [183] Nash J. Non Cooperative Games[J]. Annals of Mathematics.1951,54(2):286-295.
    [184] YAN Ping, DING Ming-yue, ZHENG Chang-wen. Coordinated Route Planningvia Nash Equilibrium and Evolutionary Computation[J]. Chinese Journal ofAeronautics.2006,19(1):18-23.
    [185] L. Giovaani, J. Balderud. R. Katebi. Autonomous Decentralized MissionPlanning for Clusters of UUV[C]. In Proceedings of the UKACC Control MiniSymposia.2006:133-143.
    [186] Air Force Pamphlet14-210. USAF Intelligence Targeting Guide[M]. DOD,1998.
    [187] Baum M L, Passino K M. A Search-Theoretic Approach to Cooperative Controlfor Uninhabited Air Vehicles[C]. In Proceedings of the AIAA Conference onGuidance, Navigation, and Control. California,2002:1-8.
    [188]航空武器装备效能评估[M].航空工业出版社,2009.
    [189]鲁华,周德云.基于灰色分析的对地多目标攻击战术规划研究[J].计算机工程与应用.2011,47(4):239-241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700