用户名: 密码: 验证码:
植物基因组LTR反转录转座子注释和比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可转座元件(TE)存在于几乎所有真核生物中,是许多基因组,特别是植物基因组的重要甚至主要成分。LTR反转录转座子是一类通过“复制.粘贴”模式进行转座的TE。它们的活动提供了植物基因组结构与功能进化的重要机制:已经知道,它们参与塑造基因组的组织结构与大小,影响基因的调控与变异和引起新基因的起源,同时它们还是分子生物学突变诱导的重要工具。研究LTR反转录转座子在理论和应用方面都有重大意义。
     随着测序技术的发展,一个迫切的问题是如何有效地从未经注释的基因组序列数据中发现LTR反转录转座子。本文首次建立起一套全基因组LTR反转录转座子注释的框架。该框架整合了从头算起,比较基因组学和同源搜索.拷贝数验证三个独立的功能模块,形成了完整的LTR反转录转座子预测流程。
     从头算起模块称为LTR_FINDER,该程序利用LTR反转录转座子的一般结构特征,在单个基因组上搜索满足这些特征的区域。该程序通过四步来发现一个全长LTR反转录转座子:第一步采用后缀矩阵数据结构来定位和存贮基因组中的所有精确匹配序列对;第二步以精确匹配序列对为种子,通过连接相邻种子来构造可能的LTR区域;第三步通过序列联配发现最可能的转座子边界;第四步利用LTR转座子内部的结构特征序列确认全长转座子的存在。
     第二个模块LTR_INSERT引入比较基因组学方法,同时分析转座子复制插入在基因组上留下的序列信号和转座子的结构特征,在两个基因组之间实现可靠的LTR反转录转座子预测。首先,LTR_INSERT构造全基因组联配并将联配分为同源区集合和增删区集合两个部分;第二步分析增删区及其邻域,发现基因组分化后插入的全长LTR转座子;第三步则分析同源区以预测分化前插入的LTR转座子。
     在以上两个模块的基础上,我们还发展了同源搜索.拷贝数验证模块,该模块以LTR_FINDER或LTR_INSERT的结果为输入,在全基因组上注释与之相关的LTR转座子序列。该模块实现对LTR转座子的边界修正、转座子内部非相关序列的识别和去除、多拷贝数的确认及对LTR反转录转座子分类等功能。LTR_FINDER与LTR_INSERT分别与同源搜索.拷贝数验证模块配合使用,可以分别达到对单基因组与对两个近缘物种基因组中LTR反转录转座子进行有效注释的目的。总之,三个模块分别提供结构,插入和拷贝数三项独立证据来预测LTR转座子,每一个由此流程预测的LTR转座子都有至少两项支持。
     随后我们将所发展的注释方法应用在水稻两个亚种基因组的比较研究中。采用比较基因组模块与同源搜索-拷贝数验证模块相结合的途径,通过构造和搜索亚洲栽培稻籼粳两个亚种的全基因组序列联配,我们共预测到993个全长LTR反转录转座子并在两个基因组中注释了15916条与之相关的拷贝;发现80个水稻LTR转座子的新家族,其中16个与目前已报道的所有家族没有任何匹配。通过对全长LTR转座子的分子进化分析,我们发现水稻两亚种之间在相当近的时期(5万3千年)内存在较大规模的跨亚种遗传物质交流,并证明这种交流是通过亚种间同源非可往复重组(ISNR)实现的。然后,我们对基因组的其它功能或非功能区域作了大规模采样以验证这一事实,并估计此类重组事件涉及占水稻基因组总量至少15.3%的区域。此外,LTR转座子还提供两重独立证据表明籼粳稻基因组的分化发生在距今60万年前。我们还研究了水稻中的LTR转座子家族的进化模式,发现如下特点:1)水稻中反转录转座子在两亚种基因组“背景”分离后仍然处于活跃状态,并且在两个基因组上的活跃程度大致相当;2)绝大部分LTR反转录复制事件是由相当少的家族完成的;3)籼粳分化事件并没有对高活性LTR家族的活动造成显著的影响;4)LTR反转录转座子在基因组上的分布是非随机的,倾向于在着丝粒附近集中。此工作第一次从比较基因组学的角度出发,在全基因组的规模上对水稻亚种间的基因流动与渗入的规模作出了估计与分析。
     结合从头算起模块与同源搜索-拷贝数验证模块,我们在世界上首先对豆科的模式植物蒺藜苜蓿基因组序列做了LTR反转录转座子的大规模描述和分析。在可公开使用的、约占苜蓿基因组总量近一半的序列中,我们发现526个全长LTR反转录转座子和与之相关的17421个拷贝;发现苜蓿基因组LTR反转录转座子至少可分为85个家族,其中66个为本研究首次报道。我们研究了各个家族的PBS使用偏好和内部区域蛋白质组织方式,并讨论了LTR反转录转座子的进化亲缘关系。苜蓿中的全长LTR反转录转座子主要分为Copia和Gypsy两个超家族,后者尽管在家族数量上仅为前者的1/3,但在基因组中却更为活跃。我们分析了LTR反转录转座子的复制和删除并估计了删除对基因组的影响,发现:绝大部分可见的全长转座子都是在近50万年内插入的;全长结构的半衰期为26万年,显著快于在水稻中的79万年;LTR转座子的删除曾经引起基因组中至少10Mb数量级序列被删除。我们还分析了若干特别活跃的LTR反转录转座子新家族的结构,保守性和家族复制的时空模式。这些结果表明,LTR反转录转座子的活动是苜蓿基因组进化的重要力量。最后,我们还对这些家族在同科的百脉根与大豆中的同源LTR序列作了比较研究,结果发现:1)Copia超家族比Gypsy超家族在另两个基因组上活跃得多;2)LTR反转录转座子的活动在科内看是支系高度特异的;3)它们在豆科较大基因组的尺寸进化中可能起到重要作用。
     总之,本研究创建了一套LTR反转录转座子全基因组注释的流程,并开发了使用LTR转座子研究近缘物种的短期进化的新方法。在水稻和蒺藜苜蓿基因组上使用这些方法获得了新的结果。在水稻中的研究使得我们在遗传物质的横向传递对驯化作物基因组的影响方面有了新的认识;同时,对蒺藜苜蓿LTR反转录转座子的分析也深化了我们对LTR转座子本身及其与宿主基因组关系的理解。
Transposable elements(TEs) are DNA fragments that can insert into new chromosome locations.They have been found in virtually all Eukaryotic genomes investigated so far.LTR retrotransposons(LTR elements) are classⅠTEs that transpose in a "copy and paste" mode via RNA intermediates.They are predominant components of large plant genomes and their dynamics has been well established as one of the major forces underlying the remarkable variation of plant genome size.In addition,LTR retrotransposons have been found to participate in gene regulation and other genetic functions. The study of these elements show great value to life science and biotechnology.
     Owning to the great development in sequencing technology,genomic sequences of many organisms are cumulating and this presents a great challenge of rapid identifying LTR retrotransposons in them.However,until today,tools for efficient annotation of LTR elements in large-scale sequences are very limited.The present work has built for the first time a system of whole genome LTR retrotransposon annotation.The annotation system integrates 3 functional units,i.e.ab initio algorithm,comparative genomics and homologous search,to predict reliable LTR elements in raw genomes.The first unit,LTR_FINDER,predicts full-length LTR elements in four main steps.The first step identifies all exactly matched sequence pairs that satisfy distance restrictions based on a linear time suffix-array algorithm,then it tries to merge neighboring exactly matched pairs into longer highly similar pairs.After that,the program finds element boundaries though aligning regions close to boundaries and checking "signal strings" of boundaries.The forth step validates elements by recognizing sequences encoding important TE proteins in their internal domains.At last,the program gathers information and reports possible LTR retrotransposons at different confidence levels.
     The second unit,LTR_INSERT,combines structural and evolutionary information to predict LTR elements with high reliability.It identifies transposition events by comparing alleles in two genomes.The program first constructs whole-genome alignment for two related genomes,then categorizes the alignment into indels of proper size and well-aligned blocks.Next it discovers LTR elements in indels,most of which represent transposable events posterior to the divergence of two genomes.At last the algorithm discovers elements in well-aligned regions by recognizing structural characters of elements. These elements mainly represent insertions prior to divergence.
     We have developed a third program(UnitⅢ) to annotate LTR copies in genome based on results of LTR_FINDER or LTR_INSERT.This program adjusts boundaries of elements predicted by LTR_FINDER,identifies unrelated sequences inside elements, classifies elements into families and discovers all copies for each families.The three units can be used independently or combinatorially.LTR_FINDER plus UnitⅢis used when scanning single genome while LTR_INSERT plus UnitⅢis adopted when two closely related genomes are available.In summary,the three units provide 3 supports (structure characters,insertion signals and multiple copies) for each predicted element.
     By applying LTR_INSERT to two rice genomes,we identify 993 full-length LTR elements,annotate a total of 15916 copies related with them,and discover 80 novel LTR families.We observe two important events in the evolution of Asian cultivated rice through full-length elements:1) two subspecies have extensively interacted through inter-(sub)species nonreciprocal homologous recombination(ISNR) in as recent as 53,000 years,large-scale samplings in protein coding genes,intergenic regions and random sites show that this phenomenon is not restricted to retrotransposons and at least 15%of the genome has been experienced ISNR recently.2) LTR elements provide two independent evidences to confirm that two genomes diverged about 600,000 years ago.At whole-genome level,this work for the first time confirms that very recent ISNR is an important force that mold modern cultivated rice genome and estimates the incidence of such recombination.The investigation of amplification patterns of rice LTR families in time and spacial dimensions shows:1) LTR retrotransposons have been active since their divergence and the activity has been relative balance between two lineages.2)80%post-divergence insertions were driven by 20%highly active families.3) These predominant families had been active in the common ancestor and the divergence event did not significantly altered their activity.4) Distribution of LTR elements is non-random across rice genomes:they tend to cluster in centromeres and 5' ends of chromosomes.The main trend of LTR density is to decrease from centromeric neighborhoods to 5' and 3' ends of chromosomes.
     Combining LTR_FINDER and UnitⅢ,we investigate LTR retrotransposons in medicago truncatula(Mt),a model plant of the Fabaceae family for the first time. We identify 526 full-length elements and annotate 17421 copies related with them. Elements are categorized into 85 families and 66 among them are reported for the first time.We analyze the organization of proteins and PBS usage of LTR families and their phylogenetic relationship.We find that the majority of LTR elements in Mt belong to either Copia or Gypsy superfamily,and that the number of Copia-like families is more than 3 times that of Gypsy-like families but the latter are more active.The analysis of amplification-deletion pattern of Mt LTR elements shows that detectable full-length LTR retrotransposons are relatively young and most of them inserted in as near as 0.52MY.We estimate that tens Mb of Mt DNA has been removed by deletion of LTR elements and the rate of removal was more rapid than in rice.For several important families we describe their structure,amount in genome and sequence conservation. At last,we investigate the activity of homologous elements of Mt LTR families in two other legumes,Lotus japonicus and Glicine max.We find that 1)comparing with elements from Gypsy superfamily,those from Copia superfamily have been more active in both genomes.2)Activity of LTR elements is highly lineage specific.3)It is highly possible that LTR retrotranposons have contributed much in shaping large legume genomes.
引文
郝柏林、张淑誉,2002.生物信息学手册.上海科学技术出版社.
    Adams,M.D.,Celniker,S.E.,Holt,R.A.,Evans,C.A.,Gocayne,J.D.,Amanatides,E G.,Scherer,S.E.,Li,P.W.,Hoskins,R.A.,Galle,R.F.,et al.,2000.The genome sequence of drosophila melanogaster.Science,287(5461):2185-2195.
    Altschul,S.F.,Gish,W.,Miller,W.,Myers,E.W.,and Lipman,D.J.,1990.Basic local alignment search tool.J Mol Biol,215(3):403-10.
    Bao,Z.and Eddy,S.R.,2002.Automated de novo identification of repeat sequence families in sequenced genomes.Genome Res,12(8):1269-1276.
    Baust,C.,Seifarth,W.,Germaier,H.,Hehlmann,R.,and Leib-M(o|¨)sch,C.,2000.Herv-k-t47d-related long terminal repeats mediate polyadenylation of cellular transcripts.Genomics,66(1):98-103.
    Bejerano,G.,Pheasant,M.,Makunin,I.,Stephen,S.,Kent,W.J.,Mattick,J.S.,and Haussler,D.,2004.Ultraconserved elements in the human genome.Science,304(5675):1321-1325.
    Bennetzen,J.L.,2002.Mechanisms and rates of genome expansion and contraction in flowering plants.Genetica,115(1):29-36.
    Bennetzen,J.L.,2005.Transposable elements,gene creation and genome rearrangement in flowering plants.Curr Opin Genet Dev,15(6):621-627.
    Bennetzen,J.L.and Kellogg,E.A.,1997.Do plants have a one-way ticket to genomic obesity?Plant Cell,9(9):1509-1514.
    Bhattacharyya,M.,Gonzales,R.,Kraft,M.,and Buzzell,R.,1997.A copia-like retrotransposon tgmr closely linked to the rpsl-k allele that confers race-specific resistance of soybean to phytophthora sojae.Plant Molecular Biology,34(2):255-264.
    Bingham,P.M.,Kidwell,M.G.,and Rubin,G.M.,1982.The molecular basis of p-m hybrid dysgenesis:the role of the p element,a p-strain-specific transposon family.Cell,29(3):995-1004.
    Brosius,J.,1999.Genomes were forged by massive bombardments with retroelements and retrosequences.Genetica,107(1-3):209-238.
    Caceres,M.,Puig,M.,and Ruiz,A.,2001.Molecular characterization of two natural hotspots in the drosophila buzzatii genome induced by transposon insertions.Genome Res,11(8):1353-1364.
    Cameron, J., Loh, E., and Davis, R., 1979. Evidence for transposition of dispersed repetitive dna families in yeast. Cell, 16(4):739-51.
    
    Charlesworth, B., 1994. The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet Res, 63(3):213-227.
    
    Chavanne, F., Zhang, D., Liaud, M., and Cerff, R., 1998. Structure and evolution of cyclops: a novel giant retrotransposon of the ty3/gypsy family highly amplified in pea and other legume species.Plant Molecular Biology, 37(2):363-375.
    
    Chaw, S.-M., Chang, C.-C., Chen, H.-L., and Li, W.-H., 2004. Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes. J Mol Evol, 58(4):424-441.
    
    Chen, B., 1999. Origin of 8000-year-old cultivated rice in henan's jia lake site. Agric Archaeol,1(1):55-7.
    
    Chen, M. and Bennetzen, J. L., 1996. Sequence composition and organization in the sh2/a1-homologous region of rice. Plant Mol Biol, 32(6):999-1001.
    
    Cheng, C., Motohashi, R., Tsuchimoto, S., Fukuta, Y., Ohtsubo, H., and Ohtsubo, E., 2003. Poly-phyletic origin of cultivated rice: based on the interspersion pattern of sines. Mol Biol Evol,20(1):67-75.
    
    Choi, H.-K., Mun, J.-H., Kim, D.-J., Zhu, H., Baek, J.-M., Mudge, J., Roe, B., Ellis, N., Doyle,J., Kiss, G. B., et al., 2004. Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci U S A, 101(43):15289-15294.
    
    Cohen, S. N. and Shapiro, J. A., 1980. Transposable genetic elements. Sci Am, 242(2).40-49.
    
    Consortium, M. G. S., Waterston, R. H., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J. F.,Agarwal, P., Agarwala, R., Ainscough, R., Alexandersson, M., et al., 2002. Initial sequencing and comparative analysis of the mouse genome. Nature, 420(6915):520-562.
    
    Craig, N., 2002. Mobile DNA II. ASM Press.
    
    Curcio, M. J. and Belfort, M., 2007. The beginning of the end: links between ancient retroelements and modern telomerases. Proc Natl Acad Sci U S A, 104(22):9107-9108.
    
    d'Erfurth, I., Cosson, V., Eschstruth, A., Lucas, H., Kondorosi, A., and Ratet, P., 2003. Efficient transposition of the tnt1 tobacco retrotransposon in the model legume medicago truncatula. Plant J, 34(1):95-106.
    
    Devos, K. M., Brown, J. K., and Bennetzen, J. L., 2002. Genome size reduction through illegitimate recombination counteracts genome expansion in arabidopsis. Genome Res, 12(7): 1075-9.
    
    Doolittle, W. F. and Sapienza, C., 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature, 284(5757):601-603.
    Du, C., Swigonova, Z., and Messing, J., 2006. Retrotranspositions in orthologous regions of closely related grass species. BMC Evol Biol, 6:62.
    
    Durbin, R., Eddy, S., Krogh, A., and Mitchison, G., 1998. Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press.
    
    Edgar, R. C. and Myers, E. W., 2005. Piler: identification and classification of genomic repeats.Bioinformatics, 21 Suppl 1:i152-i158.
    
    Eickbush, T. H., 1994. Origin and evolutionary relationships of retroelements. In Morse, S. S.,editor, The evolutionary biology of viruses, pages 121-157. Raven Press, New York.
    
    Ellinghaus, D., Kurtz, S., and Willhoeft, U., 2008. Ltrharvest, an efficient and flexible software for de novo detection of ltr retrotransposons. BMC Bioinformatics, 9:18.
    
    Ellstrand, N. C, Prentice, H. C, and Hancock, J. F., 1999. Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst, 30:539-63.
    
    Erdmann, P., Lee, R., Bassett, M., and McClean, P., 2002. A molecular marker tightly linked to p,a gene required for flower and seedcoat color in common bean (phaseolus vulgaris 1.), contains the ty3-gypsy retrotransposon tpv3g. Genome, 45(4):728-736.
    
    Faris, J. D., Haen, K. M., and Gill, B. S., 2000. Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics, 154(2):823-835.
    
    Felsenstein, J., 1989. Mathematics vs. evolution: Mathematical evolutionary theory. Science,246(4932):941-942.
    
    Fink, G., Farabaugh, P., Roeder, G., and Chaleff, D., 1981. Transposable elements (ty) in yeast.Cold Spring Harb Symp Quant Biol, 45(Pt 2):575-80.
    
    Finn, R. D., Mistry, J., Schuster-Bockler, B., Griffiths-Jones, S., Hollich, V., Lassmann, T., Moxon,S., Marshall, M., Khanna, A., Durbin, R., et al., 2006. Pfam: clans, web tools and services.Nucleic Acids Res, 34(Database issue):D247-D251.
    
    Finnegan, D. J., 1989. Eukaryotic transposable elements and genome evolution. Trends Genet,5(4):103-107.
    
    Flavell, R. B., 1986. Repetitive dna and chromosome evolution in plants. Philos Trans R Soc Lond B Biol Sci, 312(1154):227-42.
    
    Flavell, R. B., Bennett, M. D., Smith, J. B., and Smith, D. B., 1974. Genome size and the proportion of repeated nucleotide sequence dna in plants. Biochem Genet, 12(4):257-269.
    
    Franchini, L. F, Ganko, E. W., and McDonald, J. F., 2004. Retrotransposon-gene associations are widespread among d. melanogaster populations. Mol Biol Evol, 21(7):1323-1331.
    Fu, H. and Dooner, H. K., 2002. Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci U S A, 99(14):9573-9578.
    
    Fu, H., Park, W., Yan, X., Zheng, Z., Shen, B., and Dooner, H. K., 2001. The highly recombinogenic bz locus lies in an unusually gene-rich region of the maize genome. Proc Natl Acad Sci U S A,98(15):8903-8908.
    
    Ganko, E. W., Bhattacharjee, V., Schliekelman, P., and McDonald, J. F., 2003. Evidence for the contribution of ltr retrotransposons to c. elegans gene evolution. Mol Biol Evol, 20(11): 1925-31.
    
    Ganko, E. W., Fielman, K. T., and McDonald, J. F., 2001. Evolutionary history of cer elements and their impact on the c. elegans genome. Genome Res, 11(12):2066-74.
    
    Gao, L., McCarthy, E. M., Ganko, E. W., and McDonald, J. F., 2004. Evolutionary history of oryza sativa ltr retrotransposons: a preliminary survey of the rice genome sequences. BMC Genomics,5(1):18.
    
    Garber, K., Bilic, I., Pusch, O., Tohme, J., Bachmair, A., Schweizer, D., and Jantsch, V., 1999. The tpv2 family of retrotransposons of phaseolus vulgaris: structure, integration characteristics, and use for genotype classification. Plant Molecular Biology, 39(4):797-807.
    
    Gladyshev, E. A. and Arkhipova, I. R., 2007. Telomere-associated endonuclease-deficient penelope-like retroelements in diverse eukaryotes. Proc Natl Acad Sci U S A, 104(22):9352-9357.
    
    Goff, S. A., Ricke, D., Lan, T.-H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions,A., Oeller, P., Varma, H., et al., 2002. A draft sequence of the rice genome (oryza sativa 1. ssp.japonica). Science, 296(5565):92-100.
    
    Graham, P. and Vance, C., 2003. Legumes: importance and constraints to greater use. Plant Physiol,131(3):872-877.
    
    Gregory, T. R., 2005. The Evolution of The Genome. Elsevier/Academic Press.
    
    Gribbon, B. M., Pearce, S. R., Kalendar, R., Schulman, A. H., Paulin, L., Jack, P., Kumar, A., and Flavell, A. J., 1999. Phylogeny and transpositional activity of ty1-copia group retrotransposons in cereal genomes. Mol Gen Genet, 261(6):883-891.
    
    Gupta, S., Gallavotti, A., Stryker, G. A., Schmidt, R. J., and Lal, S. K., 2005. A novel class of helitron-related transposable elements in maize contain portions of multiple pseudogenes. Plant Mol Biol, 57(1):115-127.
    
    Han, J. S. and Boeke, J. D., 2005. Line-1 retrotransposons: modulators of quantity and quality of mammalian gene expression? Bioessays, 27(8):775-784.
    
    Handler, A. M., 2001. A current perspective on insect gene transformation. Insect Biochem Mol Biol, 31(2):111-128.
    Havecker, E. R., Gao, X., and Voytas, D. F., 2004. The diversity of ltr retrotransposons. Genome Biol, 5(6):225.
    
    Holligan, D., Zhang, X., Jiang, N., Pritham, E. J., and Wessler, S. R., 2006. The transposable element landscape of the model legume lotus japonicus. Genetics, 174(4):2215-2228.
    
    Initiative, A. G., 2000. Analysis of the genome sequence of the flowering plant arabidopsis thaliana.Nature, 408(68l4):796-815.
    
    Jiang, N., Bao, Z., Temnykh, S., Cheng, Z., Jiang, J., Wing, R. A., McCouch, S. R., and Wessler,S. R., 2002a. Dasheng: a recently amplified nonautonomous long terminal repeat element that is a major component of pericentromeric regions in rice. Genetics, 161(3):1293-1305.
    
    Jiang, N., Bao, Z., Zhang, X., Eddy, S. R., and Wessler, S. R., 2004. Pack-mule transposable elements mediate gene evolution in plants. Nature, 431(7008):569-573.
    
    Jiang, N., Jordan, I. K., and Wessler, S. R., 2002b. Dasheng and rire2. a nonautonomous long terminal repeat element and its putative autonomous partner in the rice genome. Plant Physiol,130(4):1697-1705.
    
    Jin, Y. K. and Bennetzen, J. L., 1989. Structure and coding properties of bs1, a maize retrovirus-like transposon. Proc Natl Acad Sci U S A, 86(16):6235-6239.
    
    Jin, Y. K. and Bennetzen, J. L., 1994. Integration and nonrandom mutation of a plasma membrane proton atpase gene fragment within the bsl retroelement of maize. Plant Cell, 6(8):1177-1186.
    
    Jordan, I. K., Rogozin, I. B., Glazko, G. V., and Koonin, E. V., 2003. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet, 19(2):68-72.
    
    Joshi, S. P., Gupta, V. S., Aggarwal, R. K., Ranjekar, P. K., and Brar, D. S., 2000. Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (issr) polymorphism in the genus oryza. Theor Appl Genet, 100(8):1311-20.
    
    Kalendar, R., Tanskanen, J., Immonen, S., Nevo, E., and Schulman, A. H., 2000. Genome evolution of wild barley (hordeum spontaneum) by bare-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci U S A, 97(12):6603-6607.
    
    Kalendar, R., Vicient, C. M., Peleg, O., Anamthawat-Jonsson, K., Bolshoy, A., and Schulman,A. H., 2004. Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes. Genetics, 166(3): 1437-1450.
    
    Kalyanaraman, A. and Aluru, S., 2006. Efficient algorithms and software for detection of full-length ltr retrotransposons. J Bio inform Comput Biol, 4(2): 197-216.
    
    Kapitonov, V. V. and Jurka, J., 1999a. The long terminal repeat of an endogenous retrovirus induces alternative splicing and encodes an additional carboxy-terminal sequence in the human leptin receptor. J Mol Evol, 48(2):248-51.
    Kapitonov, V. V. and Jurka, J., 1999b. Molecular paleontology of transposable elements from arabidopsis thaliana. Genetica, 107(l-3):27-37.
    
    Keller, B. and Feuillet, C, 2000. Colinearity and gene density in grass genomes. Trends Plant Sci,5(6):246-251.
    
    Kent, W. J., 2002. Blat-the blast-like alignment tool. Genome Res, 12(4):656-64.
    
    Khush, G. S., 1997. Origin, dispersal, cultivation and variation of rice. Plant Mol Biol, 35(1-2):25-34.
    
    Khush, G. S., 2001. Green revolution: the way forward. Nat Rev Genet, 2(10):815-22.
    
    Kidwell, M. G., 2002. Transposable elements and the evolution of genome size in eukaryotes.Genetica, 115(1) .49-63.
    
    Kim, J. M., Vanguri, S., Boeke, J. D., Gabriel, A., and Voytas, D. F., 1998. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete saccharomyces cerevisiae genome sequence. Genome Res, 8(5):464-78.
    
    Klinakis, A. G., Zagoraiou, L., Vassilatis, D. K., and Savakis, C., 2000. Genome-wide insertional mutagenesis in human cells by the drosophila mobile element minos. EMBO Rep, 1(5):416-421.
    
    Ko, P. and Aluru, S., 2003. Space efficient linear time construction of suffix arrays. In Baeza-Yates,R., editor, Proceedings of the 14th Annual Symposium, Combinatorial Pattern Matching, LNCS,pages 200-210.
    
    Kohany, O., Gentles, A. J., Hankus, L., and Jurka, J., 2006. Annotation, submission and screening of repetitive elements in repbase: Repbasesubmitter and censor. BMC Bioinformatics, 7:474.
    
    Kreahling, J. and Graveley, B. R., 2004. The origins and implications of alternative splicing.Trends Genet, 20(1):1-4.
    
    Kumar, A. and Bennetzen, J. L., 1999. Plant retrotransposons. Annu Rev Genet, 33:479-532.
    
    Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C., and Salzberg,S. L., 2004. Versatile and open software for comparing large genomes. Genome Biol, 5(2):R12.
    
    Lai, J., Li, Y., Messing, J., and Dooner, H. K., 2005. Gene movement by helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci U S A, 102(25):9068-9073.
    
    Lall, I. and Upadhyaya, K., 2002. Panzee, a copia-like retrotransposon from the grain legume,pigeonpea (Cajanus cajan L.). Molecular Genetics and Genomics, 267(3):271-280.
    
    Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar,K., Doyle, M., FitzHugh, W., et al., 2001. Initial sequencing and analysis of the human genome.Nature, 409(6822):860-921.
    Laten, H., Majumdar, A., and Gaucher, E., 1998. Sire-1, a copia/ty1-like retroelement from soybean,encodes a retroviral envelope-like protein. Proceedings of the National Academy of Sciences,95(12):6897.
    
    Laten, H. M. and Morris, R. O., 1993. Sire-1, a long interspersed repetitive dna element from soybean with weak sequence similarity to retrotransposons: initial characterization and partial sequence. Gene, 134(2):153-159.
    
    Lee, D., Ellis, T., Turner, L., Hellens, R., and Cleary, W., 1990. A copia-like element in pisum demonstrates the uses of dispersed repeated sequences in genetic analysis. Plant Molecular Biology, 15(5):707-722.
    
    Lewin, B., 2004. Genes VIII. Pearson Prentice Hall Upper Saddle River, NJ.
    
    Li, H., Gao, L., Fang, L., Liu, T., Li, H. H., Li, Y., Fang, L. J., Xie, H. M., Zheng, W. M., Liu, J. S.,et al., 2005a. Test data sets and evaluation of gene prediction programs on the rice genome. J.Comput. Sci. & Technol., 20(4):446-53.
    
    Li, R., Ye, J., Li, S., Wang, J., Han, Y., Ye, C., Wang, J., Yang, H., Yu, J., Wong, G. K.-S., et al.,2005b. Reas: Recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun. PLoS Comput Biol, 1(4):e43.
    
    Li, W. H., 1997. Molecular Evolution. Sinauer Associates, Sunderland Massachusetts.
    
    Li, W. H., Gu, Z., Wang, H., and Nekrutenko, A., 2001. Evolutionary analyses of the human genome. Nature, 409(6822):847-849.
    
    Londo, J. P., Chiang, Y. C., Hung, K. H., Chiang, T. Y., and Schaal, B. A., 2006. Phylogeography of asian wild rice, oryza rufipogon, reveals multiple independent domestications of cultivated rice,oryza sativa. Proc Natl Acad Sci U S A, 103(25):9578-83.
    
    Long, M., 2001. Evolution of novel genes. Curr Opin Genet Dev, 11(6):673-680.
    
    Long, M. and Langley, C. H., 1993. Natural selection and the origin of jingwei, a chimeric processed functional gene in drosophila. Science, 260(5104):91-95.
    
    Lowe, T. M. and Eddy, S. R., 1997. trnascan-se: a program for improved detection of transfer rna genes in genomic sequence. Nucleic Acids Res, 25(5):955-964.
    
    Lu, B. R., Zheng, K. L., Qian, H. R., and Zhuang, J. Y., 2002. Genetic differentiation of wild relatives of rice as assessed by rflp analysis. Theor Appl Genet, 106(1):101-6.
    
    Ma, J. and Bennetzen, J. L., 2004. Rapid recent growth and divergence of rice nuclear genomes.Proc Natl Acad Sci U S A, 101(34):12404-10.
    
    Ma, J., Devos, K. M., and Bennetzen, J. L., 2004. Analyses of ltr-retrotransposon structures reveal recent and rapid genomic dna loss in rice. Genome Res, 14(5):860-9.
    Mager, D. L., Hunter, D. G., Schertzer, M., and Freeman, J. D., 1999. Endogenous retroviruses provide the primary polyadenylation signal for two new human genes (hhla2 and hhla3). Genomics,S9(3):255-263.
    
    Malik, H. S., Henikoff, S., and Eickbush, T. H., 2000. Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res, 10(9):1307—1318.
    
    Mao, L., Begum, D., Goff, S. A., and Wing, R. A., 2001. Sequence and analysis of the tomato jointless locus. Plant Physiol, 126(3):1331-1340.
    
    Marin, I. and Llorens, C, 2000. Ty3/gypsy retrotransposons: description of new arabidopsis thaliana elements and evolutionary perspectives derived from comparative genomic data. Mol Biol Evol, 17(7):1040-1049.
    
    Matsuoka, Y. and Tsunewaki, K., 1999. Evolutionary dynamics of ty1-copia group retrotransposons in grass shown by reverse transcriptase domain analysis. Mol Biol Evol, 16(2):208-217.
    
    McCarthy, E. M., Liu, J., Lizhi, G., and McDonald, J. F., 2002. Long terminal repeat retrotransposons of oryza sativa. Genome Biol, 3(10):RESEARCH0053.
    
    McCarthy, E. M. and McDonald, J. R, 2003. Ltr_struc: a novel search and identification program for ltr retrotransposons. Bioinformatics, 19(3):362-7.
    
    McCarthy, E. M. and McDonald, J. R, 2004. Long terminal repeat retrotransposons of mus musculus. Genome Biol, 5(3):R14.
    
    McDonald, J. P., 1993. Evolution and consequences of transposable elements. Curr Opin Genet Dev, 3(6):855-864.
    
    Meyers, B. C, Tingey, S. V., and Morgante, M., 2001. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res, 11(10):1660-76.
    
    Mihaescu, R., Levy, D., and Pachter, L., 2007. Why neighbor-joining works.
    
    Miyao, A., Tanaka, K., Murata, K., Sawaki, H., Takeda, S., Abe, K., Shinozuka, Y., Onosato, K.,and Hirochika, H., 2003. Target site specificity of the tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome.Plant Cell, 15(8):1771-1780.
    
    Nei, M. and Kumar, S., 2000. Molecular Evolution and Phylogenetics. Oxford University Press,USA.
    
    Nekrutenko, A. and Li, W. H., 2001. Transposable elements are found in a large number of human protein-coding genes. Trends Genet, 17(11):619—621.
    
    Neumann, P., Pozarkova, D., Koblizkova, A., and Macas, J., 2005. Pigy, a new plant envelope-class ltr retrotransposon. Mol Genet Genomics, 273(1):43-53.
    Neumann, P., Pozarkova, D., and Macas, J., 2003. Highly abundant pea ltr retrotransposon ogre is constitutively transcribed and partially spliced. Plant Molecular Biology, 53(3):399-410.
    
    Oka, H. and Morishima, H., 1997. Science of the rice plant, volume 3, chapter Wild and cultivated rice, pages 88-111. Nobunkyo, Tokyo.
    
    Oka, H. I., 1988. Origin of cultivated rice. Development in crop species. Japan Scientific Societies Press, Tokyo.
    
    Ono, R., Nakamura, K., Inoue, K., Naruse, M., Usami, T., Wakisaka-Saito, N., Hino, T., Suzuki-Migishima, R., Ogonuki, N., Miki, H., et al., 2006. Deletion of peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet, 38(1):101-106.
    
    Orel, N. and Puchta, H., 2003. Differences in the processing of dna ends in arabidopsis thaliana and tobacco: possible implications for genome evolution. Plant Mol Biol, 51(4):523-531.
    
    Orgel, L. E. and Crick, F. H., 1980. Selfish dna: the ultimate parasite. Nature, 284(5757):604-607.
    
    Paces, J., Pavlicek, A., and Paces, V., 2002. Hervd: database of human endogenous retroviruses.Nucleic Acids Res, 30(1):205-206.
    
    Pereira, V., 2004. Insertion bias and purifying selection of retrotransposons in the arabidopsis thaliana genome. Genome Biol, 5(10):R79.
    
    Petrov, D. A., 2001. Evolution of genome size: new approaches to an old problem. Trends Genet,17(1):23-8.
    
    Pevzner, P. A., 2001. Assembling puzzles from preassembled blocks. Genome Res, 11(9):1461-1462.
    
    Piegu, B., Guyot, R., Picault, N., Roulin, A., Saniyal, A., Kim, H., Collura, K., Brar, D. S., Jackson, S., Wing, R. A., et al., 2006. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in oryza australiensis, a wild relative of rice.Genome Res, 16(10):1262-1269.
    
    Polavarapu, N., Bowen, N. J., and McDonald, J. F., 2006. Identification, characterization and comparative genomics of chimpanzee endogenous retroviruses. Genome Biol, 7(6):R51.
    
    Prak, E. T. and Kazazian, H. H., 2000. Mobile elements and the human genome. Nat Rev Genet,1(2):134-144.
    
    Price, A. L., Jones, N. C, and Pevzner, P. A., 2005. De novo identification of repeat families in large genomes. Bioinformatics, 21 Suppl 1:i351-i358.
    
    Project, I. R. G. S., 2005. The map-based sequence of the rice genome. Nature, 436(7052):793-800.
    Purugganan, M. and Wessler, S., 1992. The splicing of transposable elements and its role in intron evolution. Genetica, 86(1-3):295-303.
    
    Quesneville, H., Nouaud, D., and Anxolabehere, D., 2002. Detection of new transposable element families in drosophila melanogaster and anopheles gambiae genomes. J Mol Evol, 57 Suppl 1:S50-S59.
    
    Rensing, S. A., Lang, D., Zimmer, A. D., Terry, A., Salamov, A., Shapiro, H., Nishiyarna, T.,Perroud, P.-F., Lindquist, E. A., Kamisugi, Y., et al., 2008. The physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science, 319(5859):64-69.
    
    Rho, M., Choi, J. H., Kim, S., Lynch, M., and Tang, H., 2007. De novo identification of ltr retro-transposons in eukaryotic genomes. BMC Genomics, 8:90.
    
    Rostoks, N., Park, Y.-J., Ramakrishna, W., Ma, J., Druka, A., Shiloff, B. A., SanMiguel, P. J., Jiang,Z., Brueggeman, R., Sandhu, D., et al., 2002. Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley. Funct Integr Genomics, 2(1-2):51-59.
    
    Sabot, F. and Schulman, A. H., 2006. Parasitism and the retrotransposon life cycle in plants: a hitchhiker's guide to the genome. Heredity, 97(6):381-388.
    
    Saito, N. and Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phy-logenetic trees. Mol. Biol. Evol, 4:406-425.
    
    Sandhu, D. and Gill, K. S., 2002. Gene-containing regions of wheat and the other grass genomes.Plant Physiol, 128(3): 803-811.
    
    Sang, T. and Ge, S., 2007. The puzzel of rice domestication. Journal of Integrative Plant Biology,49(6):760-68.
    
    SanMiguel, P., Gaut, B. S., Tikhonov, A., Nakajima, Y., and Bennetzen, J. L., 1998. The paleontology of intergene retrotransposons of maize. Nat Genet, 20(1):43-5.
    
    SanMiguel, P., Tikhonov, A., Jin, Y. K., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A.,Springer, P. S., Edwards, K. J., Lee, M., Avramova, Z., et al., 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science, 274(5288):765-8.
    
    SanMiguel, P. J., Ramakrishna, W., Bennetzen, J. L., Busso, C. S., and Dubcovsky, J., 2002. Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5a(m).Funct Integr Genomics, 2(1-2):70-80.
    
    Sasaki, T. and Burr, B., 2000. International rice genome sequencing project: the effort to completely sequence the rice genome. Curr Opin Plant Biol, 3(2):138—141.
    
    Sato, S., Kaneko, T., Nakamura, Y., Asamizu, E., Kato, T., and Tabata, S., 2001. Structural analysis of a lotus japonicus genome. i. sequence features and mapping of fifty-six tac clones which cover the 5.4 mb regions of the genome. DNA Res, 8(6):311-318.
    Schueler, M. G., Higgins, A. W., Rudd, M. K., Gustashaw, K., and Willard, H. F., 2001. Genomic and genetic definition of a functional human centromere. Science, 294(5540):109-115.
    
    Second, G., 1982. Origin of the genetic diversity of cultivated rice (oryza spp.): study of the polymorphism scored at 40 isozyme loci. Jap J Genet, 57:25-57.
    
    Seelamgari, A., Maddukuri, A., Berro, R., de la Fuente, C, Kehn, K., Deng, L., Dadgar, S., Bottazzi,M. E., Ghedin, E., Pumfery, A., et al., 2004. Role of viral regulatory and accessory proteins in hiv-1 replication. Front Biosci, 9:2388-2413.
    
    Shirasu, K., Schulman, A. H., Lahaye, T., and Schulze-Lefert, P., 2000. A contiguous 66-kb barley dna sequence provides evidence for reversible genome expansion. Genome Res, 10(7):908-915.
    
    Siebert, R. and Puchta, H., 2002. Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. Plant Cell, 14(5): 1121-1131.
    
    Smit, A. F. and Riggs, A. D., 1995. Mirs are classic, trna-derived sines that amplified before the mammalian radiation. Nucleic Acids Res, 23(1):98-102.
    
    Smit, A. F. A., Hubley, R., and Green, P., 1996-2004. Repeatmasker open-3.0.
    
    Sun, Q., Wang, K., Yoshimura, A., and Doi, K., 2002. Genetic differentiation for nuclear, mitochondrial and chloroplast genomes in common wild rice ( oryza rufipogon griff.) and cultivated rice (oryza sativa l.). Theor Appl Genet, 104(8):1335-1345.
    
    Tam, S. M., Causse, M., Garchery, C., Burck, H., Mhiri, C., and Grandbastien, M.-A., 2007. The distribution of copia-type retrotransposons and the evolutionary history of tomato and related wild species. J Evol Biol, 20(3): 1056-1072.
    
    Tamura, K., Dudley, J., Nei, M., and Kumar, S., 2007. Mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol, 24(8): 1596-9.
    
    Tang, J., Xia, H., Cao, M., Zhang, X., Zeng, W., Hu, S., Tong, W., Wang, J., Wang, J., Yu, J., et al.,2004. A comparison of rice chloroplast genomes. Plant Physiol, 135(1):412-20.
    
    Tanskanen, J. A., Sabot, F., Vicient, C., and Schulman, A. H., 2007. Life without gag: the bare-2 retrotransposon as a parasite's parasite. Gene, 390(1-2):166—174.
    
    Team, R. D. C., 2007. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
    
    Temin, H. M., 1980. Origin of retroviruses from cellular moveable genetic elements. Cell,21(3):599-600.
    
    Thomas, C. A., 1971. The genetic organization of chromosomes. Annu Rev Genet, 5:237-256.
    Thompson, J. D., Higgins, D. G., and Gibson, T. J., 1994. Clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 22(22):4673-80.
    
    Tian, X., Zheng, J., Hu, S., and Yu, J., 2006. The rice mitochondrial genomes and their variations.Plant Physiol, 140(2):401-10.
    
    Tikhonov, A. P., SanMiguel, P. J., Nakajima, Y., Gorenstein, N. M., Bennetzen, J. L., and Avramova,Z., 1999. Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc NatlAcadSci U S A, 96(13):7409-7414.
    
    Tubio, J. M., Naveira, H., and Costas, J., 2005. Structural and evolutionary analyses of the ty3/gypsy group of ltr retrotransposons in the genome of anopheles gambiae. Mol Biol Evol, 22(1):29-39.
    
    Tuskan, G. A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N.,Ralph, S., Rombauts, S., Salamov, A., et al., 2006. The genome of black cottonwood, populus trichocarpa (torr. & gray). Science, 313(5793):1596-1604.
    
    Vicient, C. M., Suoniemi, A., Anamthawat-Jonsson, K., Tanskanen, J., Beharav, A., Nevo, E., and Schulman, A. H., 1999. Retrotransposon bare-1 and its role in genome evolution in the genus hordeum. Plant Cell, 11(9):1769-1784.
    
    Vitte, C. and Bennetzen, J. L., 2006. Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci U S A,103(47):17638-17643.
    
    Vitte, C., Ishii, T., Lamy, F., Brar, D., and Panaud, O., 2004. Genomic paleontology provides evidence for two distinct origins of asian rice (oryza sativa l.). Mol Genet Genomics, 272(5):504-511.
    
    Vitte, C. and Panaud, O., 2003. Formation of solo-ltrs through unequal homologous recombination counterbalances amplifications of ltr retrotransposons in rice oryza sativa 1. Mol Biol Evol,20(4):528-540.
    
    Vitte, C., Panaud, O., and Quesneville, H., 2007. Ltr retrotransposons in rice (oryza sativa, l.):recent burst amplifications followed by rapid dna loss. BMC Genomics, 8:218.
    
    Voytas, D. F. and Ausubel, F. M., 1988. A copia-like transposable element family in arabidopsis thaliana. Nature, 336(6196):242-244.
    
    Wang, H. and Liu, J. S., 2008. Ltr retrotransposons of medicago truncatula.
    
    Wang, H., Xu, Z., and Yu, H. J., 2008. Ltr retrotransposons reveal recent extensive inter-subspecies nonreciprocal recombination in asian cultivated rice.
    Wang, W., Zheng, H., Fan, C., Li, J., Shi, J., Cai, Z., Zhang, G., Liu, D., Zhang, J., Vang, S., et al.,2006. High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell,18(8):1791-1802.
    
    Wei, F., Gobelman-Werner, K., Morroll, S. M., Kurth, J., Mao, L., Wing, R., Leister, D., Schulze-Lefert, P., and Wise, R. P., 1999. The mla (powdery mildew) resistance cluster is associated with three nbs-lrr gene families and suppressed recombination within a 240-kb dna interval on chromosome 5s (1hs) of barley. Genetics, 153(4): 1929-1948.
    
    Wicker, T., Guyot, R., Yahiaoui, N., and Keller, B., 2003. Cacta transposons in triticeae. a diverse family of high-copy repetitive elements. Plant Physiol, 132(1):52-63.
    
    Wicker, T. and Keller, B., 2007. Genome-wide comparative analysis of copia retrotransposons in triticeae, rice, and arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res, 17(7):1072-81.
    
    Wicker, T., Sabot, R, Hua-Van, A., Bennetzen, J. L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P.,Morgante, M., Panaud, O., et al., 2007. A unified classification system for eukaryotic transpos-able elements. Nat Rev Genet, 8(12):973-982.
    
    Wicker, T., Stein, N., Albar, L., Feuillet, C., Schlagenhauf, E., and Keller, B., 2001. Analysis of a contiguous 211 kb sequence in diploid wheat (triticum monococcum 1.) reveals multiple mechanisms of genome evolution. Plant J, 26(3):307-16.
    
    Witherspoon, D. J., 1999. Selective constraints on p-element evolution. Mol Biol Evol, 16(4):472-478.
    
    Witte, C. P., Le, Q. H., Bureau, T., and Kumar, A., 2001. Terminal-repeat retrotransposons in miniature (trim) are involved in restructuring plant genomes. Proc Natl Acad Sci U S A, 98(24): 13778-83.
    
    Wright, D. A. and Voytas, D. F., 1998. Potential retroviruses in plants: Tat1 is related to a group of arabidopsis thaliana ty3/gypsy retrotransposons that encode envelope-like proteins. Genetics,149(2):703-715.
    
    Wright, D. A. and Voytas, D. F., 2002. Athila4 of arabidopsis and calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res, 12(1): 122-131.
    
    Xu, Z. and Wang, H., 2007. Ltr_finder: an efficient tool for the prediction of full-length ltr retrotransposons. Nucleic Acids Res, 35(Web Server issue):W265-8.
    
    Yamanaka, S., Nakamura, I., Nakai, H., and Sato, Y., 2003. Dual origin of the cultivated rice based on molecular markers of newly collected annual and perennial strains of wild rice species, oryza nivara and o. rufipogon. Genetic Resources and Crop Evolution, 50(5):529-538.
    Yoder, J. A., Walsh, C. P., and Bestor, T. H., 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet, 13(8):335-340.
    
    Young, N., Cannon, S., Sato, S., Kim, D., Cook, D., Town, C, Roe, B., and Tabata, S., 2005.Sequencing the genespaces of medicago truncatula and lotus japonicus. Plant Physiology,137(4):1174.
    
    Yu, J., Wang, J., Lin, W., Li, S., Li, H., Zhou, J., Ni, P., Dong, W., Hu, S., Zeng, C., et al., 2005.The genomes of oryza sativa: a history of duplications. PLoS Biol, 3(2):e38.
    
    Zhu, Q. and Ge, S., 2005. Phylogenetic relationships among a-genome species of the genus oryza revealed by intron sequences of four nuclear genes. New Phytol, 167(1):249-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700