用户名: 密码: 验证码:
一个新的小麦黄化突变体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究材料为西农1718高代品系自发黄化突变体,是较为稀有的种质材料,在研究小麦叶绿素合成代谢过程、叶绿体发育机制、光合膜与光合功能系统建成、叶绿体发育相关基因的表达、调控和克隆等方面具有非常重要的价值。本研究从形态特征、主要农艺性状、光合特性、遗传规律、叶绿体超微结构、色素蛋白及叶绿素生物合成主要中间产物等方面对该黄化突变体进行了研究,主要结果如下:
     1.小麦黄化突变体自出苗即表现出黄色,随着发育黄化程度加深,极端黄化类型(金黄株)植株矮小,早衰死亡;黄-绿中间型茎、叶、穗呈不同程度的黄绿色,发育期较对照晚6~8d,苗相显弱,能结实,但结实率和粒重有所降低。花粉母细胞减数分裂观察发现,减数分裂行为正常,突变体染色体数目均为42条,即该黄化突变体未发生染色体数目和结构变异。花粉活性观察结果表明,黄化突变体花粉活力正常。
     2.对突变体的叶绿素含量、光合速率及叶绿素荧光动力学参数进行比较分析。结果显示:突变体叶绿素含量(Chl)、类胡萝卜素(Caro)含量均显著低于突变亲本,金黄株、绿黄株、黄绿株叶绿素含量分别为突变亲本的17%、24%和58%,类胡萝卜素含量分别为突变体的53%、55%和83%,叶绿素含量降低幅度显著大于类胡萝卜素,表明该突变体为叶绿素缺乏突变体。金黄株净光合速率非常低,孕穗期、开花期仅为突变亲本的5.7%、2.4%;绿黄株净光合速率显著低于突变亲本,为突变亲本的57.7%、43.3%;而叶绿素含量仅为突变亲本一半的黄绿株,其净光合速率接近突变亲本,表明该黄化突变体叶绿素含量在一定范围内降低,单位叶绿素含量的光合效率提高。突变体Fo均显著低于突变亲本,金黄株、绿黄株的Fm,Fv, qP,qN均显著低于突变亲本,金黄株Fv/Fm、Fv/F0比值显著低于突变亲本,而绿黄株、黄绿株Fv/Fm、Fv/F0比值高于突变亲本,黄绿株Fm,Fv, qP,qN与突变亲本均无明显差异。结果表明,金黄株PSⅡ电子传递能力、QA的还原能力、PSII活性、PSII天线色素捕获光能效率及热耗散均大幅度降低,由此推测,金黄株光系统和叶绿体结构可能已遭到严重损伤;而黄绿株、绿黄株仍保持较高的PSII活性和光化学效率。
     3.通过多年连续自交、与突变亲本回交以及与其它基因型进行正反交试验表明,突变体自交后代表现为,1金黄株:2黄-绿中间型:1绿株;突变体与突变亲本回交,后代表现为,1黄-绿中间型:1绿株。表明该小麦黄化突变体是由一对核基因控制的不完全显性遗传,其中,绿株和金黄株是纯合体,金黄株纯合致死,黄-绿中间型为杂合体。该黄化突变性状是能够稳定遗传的,突变性状的传递不仅可发生在亲子代之间,还可发生在不同基因型之间,且在不同遗传背景下,性状表现一致。
     4.叶绿体观察发现:突变体叶绿体的数目、形态与突变亲本无明显差异;黄绿植株叶绿体超微结构与突变亲本无明显差异,都表现为类囊体膜系统发达,基质类囊体与基粒类囊体高度分化,构成基粒的垛叠层数较多,基粒数目也较多,且排列整齐,有少量嗜锇颗粒;绿黄株叶绿体结构存在一定缺陷,虽然能看到基粒片层与基质片层,但基粒数目明显少于突变亲本,且排列不规则,有淀粉粒及嗜锇颗粒;金黄株叶绿体结构存在严重缺陷,几乎所有的叶绿体内部均未见高度组织化的内膜系统,无基粒,而基质片层清晰可见,叶绿体内有淀粉粒和嗜锇颗粒,且嗜锇颗粒明显多于绿黄株、黄绿株及突变亲本。
     5.利用SDS-尿素-聚丙烯酰胺凝胶电泳对突变体及突变亲本叶绿体类囊体色素蛋白组成进行比较研究,发现,突变体低分子量区多肽变化幅度大于高分子量区多肽,60~64kD多肽(主要为PSI反应中心蛋白)和42~54 kD多肽(主要为PSII反应中心天线蛋白),黄绿株与突变亲本无明显差别,而绿黄株和金黄株显著降低,且金黄株降低幅度大于绿黄株;33~35 kD多肽(主要为PSII反应中心蛋白),黄绿株、绿黄株表达量明显低于突变亲本,且绿黄株降低幅度大于黄绿株,23、27kD的多肽(主要为捕光色素蛋白),其变化最为显著,金黄株缺失,在黄绿株和绿黄株中,其降幅也极大;16~19kD多肽(主要为细胞色素b6f复合体和PSII光合放氧有关的多肽),其变化规律为,随黄化程度加深,其含量大幅度降低,黄绿株与突变亲本无明显差异,金黄株和绿黄株大幅度降低。
     6.对叶绿素生物合成的一系列主要前体物质累积量进行测定分析,结果表明,金黄株、绿黄株和黄绿株中间产物ALA、PBG、UrogenIII、Coprogen和ProtoⅨ的含量均高于突变亲本,且随突变体黄化程度加深而递增,与叶绿素含量变化趋势相反,尤其ProtoⅨ累积更为显著,金黄株的含量达到突变亲本的210%,分离绿株与突变亲本无差别;而金黄株、绿黄株和黄绿株自ProtoⅨ以后的中间产物Mg-Proto、Pchlide均显著低于突变亲本,且随突变体黄化程度加深而递减,与叶绿素含量的变化一致,分离绿株与突变亲本无明显差异。由此判断,该黄化突变体叶绿素合成受阻,且受阻位点发生在ProtoⅨ到Mg-Proto部位。镁螯合酶催化了由ProtoⅨ到Mg-Proto,因此推断,该黄化突变体为镁螯合酶活性降低而导致叶绿素合成受阻。
1.A novel spontaneous aurea mutation of wheat (Triticum aestivum L.) was first described in this paper. It was find from a winter wheat culture genotype (Xinong 1718) in 1999-2000. When grown in the greenhouse and in the field, the mutant plants could be clearly distinguished from the green ones at any stage from seedling to near maturity. When the mutant plant selfed, three types offsprings couled be seen: green plant, intermediate of yellow-greenplants and yellow plant(aurea). The aurea plants died at the seedling stage for plants grown in soil, and the intermediate plants are viable but less vigorous and later development than the green plant. The mutant causes accumulation of chlorophyll reduce, resulting in a yellow color in the plant in different degreed. There were no significient differences in some agronomy traits between wild-type and yellownish-green plants, while the greenish-yellow mutant plants performed worse compared to the wild type in the field, with decreases in seed production of up to 70%.
     2.The chlorophyll content and the fluorescence parameters (Fo,Fm,Fv,Fv /Fm, qP,qN )were measured to evaluate the mutant. The result showed that the mutant wheat were shown to have a greatly diminished rate of chlorophyll accumulation compared to the wild type, and the ratio of Chl a / Chl b in the mutated plants were smaller than that in the wild type, and it tended to decrease as the etiolation degree increased. The net photosynthesis rate during booting stage and blooming stage in the golden types were only 5.7% and 2.4%, respectively, of that in the wilt type; while in the greenish-yellow type, it was about one-half (57.7% and 43.3%) of that in the wild type; and in the yellowish-green type, they were close to that in the wild type. The value of Fo in mutated plants were decreased significantly. The values of Fm,Fv,qP,qN in aurea type and greenish-yellow type, were decreased significantly. The values of Fm,Fv,qP,qN in yellowish-green type, have no significant difference with wild type. The value of Fv /Fm,Fv/F0 were decreased significantly in aurea type and in the greenish-yellow and yellowish-green plants, they were higher than that of the wild type.
     3.The aurea mutant wheat were analyzed genetically after inbreds and crosses with normal green plants. Selfing the M1 plant(chlorina) results in 1:2:1 segregation ratio of aurea : chlorina : green plants. The progeny of M1 green plants were all green. The test cross between a chlorina plant and a normal plant (as male or female) gave a 1 normal green: l yellow-green ratio. The result can be explained on the assumption that the aurea is homozygous for Au and the chlorina heterozygous for Au. It is concluded that the semi-dominant mutant is controlled by a single nucleus gene.This is the genetic constitution of the segregants being Au/Au, normal, Au/au, yellow-green, au/au, aurea.
     4.In order to better understand the mechanism of aurea mutant, comparative study on chloroplast ultrastructure was conducted between aurea mutant and its wild type(Xinong1718) under the electromicroscope. Using morphometrical measurements, the mutants chloroplast numbers, shape, size and the distribution in cell were similar with those of the parent of mutant. In contrast, the ultrastructure of chloroplasts among three phenotype types and the parent of mutant were markedly differences: in the yellowish-green mutant, a well-organized thylakoid system, differentiated into grana and intergrana thylakoids, resembled the parent of mutant; in the greenish-yellow chloroplasts, their thylakoid systems appeared to be disorganized, and the grana contained fewer lamellae, the number of grana per chloroplast section was reduced; in the golden type, the development of chloroplast was the most bad among the mutants, no grana but the stroma thylakoid were clearly, accumulation of osmiophilic droplet and starch granules were more than those of other phenotype types and wild type. The thylakoid morphology is more nearly wild type in appearance.
     5. The precursors of tetrapyrrole synthesis,δ-aminolevulinic acid (ALA), porphobilinogen (PBG), uroporphyrinogen(Urogen), Coprogen, ProtoⅨ, Mg-Proto and Pchlide were over accumulated in mutant wheat, while protoporphyrin IX(MgPP and MgPme were investigated. The result showed that the content of ALA、PBG、UrogenIII、Coprogen and ProtoⅨw ere all over to the wild type; in contrast, Mg-Proto and Pchlide were all decreased than wild type. This result indicated Coprogen and protoporphyrin accumulated in the mutant, and the rate of conversion of ProtoⅨto Mg- Proto was very low than that of wild type. It is concluded that, the mutation brings about a restriction in the rate of conversion of protoporphyrin to magnesium protoporphyrin; and in the mutant, the enzymes converting protoporphyrin into Mg- Proto are most likely absent or damaged. Mg-Chelatase catalyses this step.
     6. The pigment protein complexes are separated as shown by fully denaturing SDS-PAGE electrophoresis. Eleven chlorophyll-protein complexes of wheat were resolved in wild type. As compared with mutant parent wheat, in all type mutant, there were no significant changes in the composition of 60~64 kD polypeptide, which are mainly reaction center chlorophyll-protein complexes of PS I and 42~54 kD polypeptide, which are mainly PSII reaction center antenna protein. In contrast, a deficiency in 23~35 kD polypeptides, which are mainly light harvesting chlorophyll protein (LHCP) complex and reaction center chlorophyll-protein complexes of PSII, had been noted in all kinds of mutant wheat, particularly the two major polypeptides of LHCII, 23kD and 27kD polypeptides, were greatly diminished in amount in greenish-yellow and yellowish-green plants, and it had been absent in aurea plant. These data led to the suggestion that the LHCP complexes were more sensitivity to chlorophyll-deficiency than the other chlorophyll-protein complexes.
引文
[1] Granick S.Photosynthesis in Plants[M]. Ames:Iowa State College Press, 1949. 113.
    [2] Nasyrov Y S. Genetic control of photosynthesis and improving of crop productivity[J]. Ann. Rev. Plant Physiol, 1978, 29: 215-237.
    [3] Nott A, Jung H S, Koussevitzky S,Chory J. Plastid-to-Nucleus Retrograde Signaling[J]. Annu. Rev. Plant Biol.,2006,57:739-759.
    [4] King J. The chlorophyll b-deficient mutants[M]. Oxford University Press, Inc, 1991.153-166.
    [5] Grimm, B. Novel insights in the control of tetrapyrrole metabolism of higher plants[J]. Curr. Opin. Plant Biol. , 1998, 1: 245 -250.
    [6] Larkin R. M., Alonso J. M., Ecker J. R., et al. GUN4, a regulator of chlorophyll synthesis and intracellular signalling[J]. Science,2003, 299:902-906.
    [7] Demmig-Adams B,Adams WWIII. Photoprotection and other responses of plant to high light stress[J]. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43:599-626.
    [8] 龚红兵, 陈亮明, 刁立平, 等. 水稻叶绿素 b 减少突变体的遗传分析及其相关特性[J].中国农业科学, 2001, 34(6): 686- 689.
    [9] 邵继荣,王玉忠,刘永胜,等.水稻温敏型突变体叶片间断失绿的超微结构[J]. 植物学报,1999,41(1):20-24.
    [10] 胡忠,彭丽萍,蔡永华.一个黄绿色水稻细胞核突变体[J].遗传学报,1981,8 ( 3 ): 256-261.
    [11] 吴殿星,舒庆尧,夏英武,等.60Co-γ 射线诱发的籼型温敏核不育水稻叶色突变系变异分析[J].作物学报,1999, 25(1):64-69.
    [12] 陶华,薛庆中,田振涛.淡绿叶标记光-温敏核不育水稻叶色及育性的遗传分析[J].作物学报,2005,31 (4 ): 438-43.
    [13] 黄晓群,赵海新,董春林,等. 水稻叶绿素合成缺陷突变体及其生物学研究进展[J].西北植物学报,2005, 25 (8): 1685-1691.
    [14] 孙敬三,王敬驹,朱至清.水稻白化苗质体的亚显微结构[J].中国科学学, 1974, (6):627-634.
    [15] 戴新宾,曹树青, 许晓明,等. 低叶绿素 b 高产水稻突变体及其光合特性的研究[J]. 植物学报,2000, 42 (2): 1289-1294.
    [16] 林植芳,彭长连,徐信兰,等. 两个新的水稻缺叶绿素 b 突变体光合作用的热稳定性[J]. 中国科学(C 辑),2004,34 (5): 395-401.
    [17] 何瑞峰,丁毅,余金洪.水稻温敏叶绿素突变体叶片蛋白的双向电泳分析[J].作物学报,2001,27(6):875-890.
    [18] 许晓明, 张荣铣, 唐运来.低叶绿素含量对水稻突变体吸收光能分配特性的影响[J].中国农业科学, 2004,7(3):339-343.
    [19] Jung K H, Hur J, Ryu C H,et al.Characterization of a rice chlorophyll deficient mutant using the T-DNA gene-trap system[J].Plant Cell Physiol, 2003,44 (5):463-472.
    [20] Wu DX, Shu QY, Xia YW. In vitro mutagenesis induced novel thermo/photoperiod-sensitive genic male sterile indica rice with green-revertible xanthan leaf color marker[J]. Euphytica, 2002,123:195-202.
    [21] Tomoko A, Tomoki M,Shigeko S,et al.Chlorophyll-deficient mutants of rice demonstrated the deletion of a DNA fragment by heavy-ion irradiation[J].J.Radlat.Res., 2002,43:157-161.
    [22] Wang C,He B,Xun M,et al.Tagging and mapping of a gene controlling yellowish-green leaf[J].Rice Genetics Newsletter,2003,20:35-35.
    [23] Maekawa M,Tanaka A,Shikazono N,et al.Somatic reversion induced by ion beam irradiation in stable yellow leaf mutant of rice[J].Rice Genetics Newsletter,2001,18:36-36.
    [24] Lin ZF, Lin GZ, Peng CL,et al.Alteration of chlorophyll-protein complex components and distribution of excitation energy between two photosystems in two new rice chlorophyll b-less mutants[J].Photosynthetica, 2003, 41 (4):589-595.
    [25] Haitao Zhang, Jinjie Li, Jeong-Hoon Yoo, et al. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development[J]. Plant Mol Biol, 2006, 62:325–337.
    [26] Henningsen K W, Boynton J E, von Wettstein D. Mutants at xantha and albina loci in relation to chloroplast biogenesis in barley(Hodeum vulgare L. ) [J]. Royal Dan. Acad Sci Lett Biol Skrifter,1993, 42:1-349.
    [27] Hansson A., Willows R.D., Roberts T.H, et al. Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers[J]. Proc. Natl Acad. Sci. USA, 2002, 99, 13944–13949.
    [28] Hansson A., Kannangara C.G., von Wettstein, et al. Molecular basis for semidominance of missense mutations in the XANTHA-H (42-kDa) subunit of magnesium chelatase[J]. Proc. Natl Acad. Sci. USA,1999, 96, 1744–1749.
    [29] Mariana K, Michael I S, Norman P A. Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll b-less barley mutant[J]. Plant Physiol, 1995; 107(3): 873-883.
    [30] Arkadii B. Rudoi, Rostislav A. Shcherbakov. Analysis of the chlorophyll biosynthetic system in a chlorophyll b-less barley mutant[J]. Photosynthesis Research, 1998, 58: 71-80.
    [31] Holm, G.; Fr?st, S.: Thin layer chromatographic studies of phenolic compounds in radiation induced chlorophyll mutations in barley[J]. Hereditas, 1972,70, 15–20 .
    [32] Gough S. Defective synthesis of porphyrins in barley plastids caused by mutation in nuclear genes[J]. Biochim Biophys Acta,1972, 286(1):36–54.
    [33] 林宏辉,杜林方,贾勇炯,等.野生和黄化大麦类囊体膜色素蛋白的分离和比较[J].西北植物学报, 1997,17(1):34-38.
    [34] 林宏辉,何军贤,梁厚果, 等.叶绿素缺乏大麦突变体 PSⅡ色素蛋白复合物的研究[J]. 生物化学与生物物理学报, 1998, 30(50): 530-532.
    [35] 李玉湘,耿玉轩.大麦叶绿体突变体中叶绿素蛋白质复合体的研究[J].遗传学报,1983, 10(3): 197-202.
    [36] 谭新星,许大全,汤泽生. 叶绿素缺乏的大麦突变体 PSII 光化学效率较高的原因[J]. 植物生理学报,1997,23 (3): 251-256.
    [37] 谭新星,许大全,汤泽生.叶绿素缺乏的大麦突变体的光合作用和叶绿素荧光[J].植物生理学报, 1996, 22(1):5l-57.
    [38] Olsson U, Sirijovski N, Hansson M. Characterization of eight barley xantha-f mutants deficient inmagnesium chelatase[J]. Plant Physiology and Biochemistry , 2004, 42 557-564.
    [39] Hansson A., Willows R.D., Roberts T.H. Hansson M. Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers[J]. Proc. Natl. Acad. Sci. USA ,2002,99: 13944–13949.
    [40] Yaronskaya E, Ziemann V, Walter G, et al. Metabolic control of the tetrapyrrole biosynthetic pathway for porphyrin distribution in the barley mutant albostrians[J].Plant J, 2003,35 (4):512-522.
    [41] Krol M, Spangfort MD, Huner NP, et al.Chlorophyll a/b-binding proteins,pigment conversions,and early light-induced proteins in a chlorophyll b-less barley mutant[J].Plant Physiol, 1995,107 (3):873-883.
    [42] Li J G, Li YX, Geng Y X, et al. Studies on the chlorophyll-protein complexes and the chloroplast ultrastracture of the barley mutant[J]. Plant Science Letters, 1983, 30: 321-326.
    [43] Petersen B.L., M?ller M.G., Jensen P.E, et al. Identification of the Xan-g gene and expression of the Mg-chelatase encoding genes Xan-f -g and -h in mutant and wild-type barley (Hordeum vulgare L.) [J]. Hereditas, 1999, 131, 165–170.
    [44] Kannangara CG, Vothknecht UC, Hansson M, et al. Magnesium chelatase: association with ribosomes and mutant complementation studies identify barley subunit xantha-G as a functional counterpart of Rhodobacter subunit BCH D[J]. Mol Gen Genet. 1997,254:85–92.
    [45] Klindworth D.L, Klindworth M M, Williams N D. Telosomic Mapping of Four Genetic Markers in Durum Wheat[J]. The Journal of Heredity, 1997, 88(3): 229-232.
    [46] Kjemtrup S., Sampson K.S., Peele C.G., et al. Gene silencing from plant DNA carried by a Geminivirus[J]. Plant J. , 1998, 14, 91- 100.
    [47] 王保莉,郭蔼光,汪沛洪. 小麦突变体返白系返白阶段叶绿素代谢的变化[J].植物学报, 1996,38(7):557-562.
    [48] 郭蔼光,王振锐,王保莉,等.小麦返白系返白阶段叶片蛋白质变化与叶绿素含量的关系[J].植物学报,1996, 22 (2): 130-136.
    [49] 许耀奎,邹信康,刘素兰,等.化学诱变剂 EMS 处理春小麦获得的一个黄绿色突变系的遗传分析[J].吉林农业大学学报,1987, 9(2):1-5.
    [50] 赵琦,唐崇钦,彭德川, 匡廷云,等.叶片阶段性白化小麦的叶绿体激发能分配和荧光动力学特征[J].生物物理学报,1996,12(4):703-708.
    [51] 赵琦,唐崇钦,彭德川,匡廷云,等叶片阶段性白化小麦的叶绿体激发能分配和荧光动力学特征[J]. 生物物理学报, 1996, 12(4):703-708.
    [52] Tanya G. Falbel, Janet B. Meehl, Andrew Staehelin. Severity of Mutant Phenotype in a Series of Chlorophyll-Deficient Wheat Mutants Depends on Light lntensity and the Severity of the Block in Chlorophyll Synthesis[J]. Plant Physiol., 1996, 112: 821-832.
    [53] Newell E and Rienits KG. Chlorophyll Synthesis in a Yellow Mutant of Wheat [J]. AustralianJournal of Plant Physiology, 1975, 2(4) :543 – 552.
    [54] Mogen K, Eide J, Duysen M , et al. Chloramphenicol Stimulates the Accumulation of Light-Harvesting Chlorophyll a/b Protein 11 by Affecting Posttranscriptional Events in the Chlorina CD3 Mutant Wheat[J].Plant Physiol, 1990, 92, 1233-1240.
    [55] Williams ND, Joppa L, Duysen ME,et al.Inheritance of three chlorophyll-deficient mutants of common wheat[J]. Crop Sci, 1985,25: 1023-1025.
    [56] Allen KD, Duysen ME and Staehelin LA. Biogenesis of thylakoid membranes is controlled by light intensity in the conditional chlorophyll b-deficient CD3 mutant of wheat[J]. The Journal of Cell Biology,1988,107, 907-919.
    [57] Duysen M E, Freeman T P, Williams N D,et al. Chloramphenicol Stimulation of Light Harvesting Chlorophyll Protein Complex Accumulation in a Chlorophyll b Deficient Wheat Mutant[J]. Plant Physiol, 1985 ,78(3): 531–536.
    [58] Duysen, Murray E, Freeman, et al. Regulation of Excitation Energy in a Wheat Mutant Deficient in Light-Harvesting Pigment Protein Complex[J]. Plant Physiol, 1984, 76(3):561–566.
    [59] Falbel TG, Staehelin LA.Characterization of a family of chlorophyll-deficient wheat (Triticum) and barley (Hordeum vulgare) mutants with defects in the magnesium-insertion step of chlorophyll biosynthesis[J]. Plant Physiol, 1994,104 (2):639-648 .
    [60] Luo P G , Ren Z L . Wheat Leaf Chlorosis Controlled by a Single Recessive Gene[J]. 植物生理与分子生物学学报, 2006, 32(3) : 330-338.
    [61] Koval S F, Baiborodin S I,Fedotova V D. Interlocus interaction of chlorina mutant genes cn-A1 and cn-D1 in near-isogenic lines of, spring wheat Novosibirskaya 67 (T. aestivum) [J]. Wheat Information Service, 2001, 92: 1-4 .
    [62] Freeman T P , Duysen M E , Olson N H, et al. Electron transport and chloroplast ultrastructure of a chlorophyll deficient mutant of wheat[J]. Photosynthesis Research,1982, 3(3):179-189.
    [63] 赵琦,唐崇钦,匡廷云.玉米突变体(zb/zb)的叶绿体光合特性[J].植物学报, 1997, 39 (11):1082- 1084.
    [64] Greene B A, Allred D R, Morishige D T, et al. Hierarchical response of light harvesting chlorophyll-proteins in a light-sensitive chlorophyll b deficient mutant of maize[J]. Plant Physiol, 1988, 87:357-364.
    [65] Schultes N, Sawers R J H, Brutnell T P, et al. Maize high chlorophyll fluorescent 60 mutation is caused by an Ac disruption of the gene encoding the chloropiast ribosomal small subunit protein [J].The Plant Journal, 2000, 21 ( 4 ): 317-327.
    [66] Barkan A, Walker M, Nolasco M. A nuclear mutation in maize blocks the processing and translation of several chloroplast mRNAs and provides evidence for the differential translation of alternative mRNA forms[J]. EMBO J, 1994,13(13):3170-3181.
    [67] Yukari A, Toshiya H. Maize mutant lacking chloroplast FtsY exhibit pleiotropic defects in the biogenesis of thylakoid membranes[J]. The Plant Cell, 2004, 16:201-204.
    [68] Donald A H, Donald M. Characterization of two photosynthetic mutants of maize[J]. Plant Physiol, 1999, 120:1129-1136.
    [69] Harpster MH, Mayfield SP, Taylor WC.Effects of pigment-deficient mutants on the accummulation of photosynthetic proteins in maize[J]. Plant Mol Biol, 1984,3:59-71.
    [70] Hu G S, Yalpani N, Briggs S P, et al. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of Maize[J]. The Plant Cell, 1998, 10 (7):1095-1105.
    [71] James G M, Roger W K, Donald M. Chlorophyll-protein complexes of a photosystemⅡ mutant of maize[J]. Plant Physiology, 1984, 75 (1): 238-241.
    [72] Millerd A, McWilliam R. Studies on a maize mutant sensitive to low temperature I.influence oftemperature and light on the production of chloroplast pigments[J]. Plant Physiol, 1968, 43 (12): 1967-1972.
    [73] Green B A, Allred D R, Morishige D T. Hierarchical response of light harvesting chlorophyll-proteins in a light-sensitive chlorophyll b deficient mutant of maize[J]. Plant Physiol, 1988,7:357.
    [74] Ruairidh J. H, Sawers, Joanne Viney, et al.The Maize Oil Yellow1 (Oy1) Gene Encodes the I Subunit of Magnesium Chelatase[J].Plant Molecular Biology, 2006,60:95-106.
    [75] Bassi R, Machold O, Simpson D. Cholophyll-proteins of two photosystem I preparetions from maize[J] .Carlsbern Res Commun, 1985, 50: 145.
    [76] 魏慧敏,陈云伟,张年辉,等.黄化油菜突变体 Cr3529 子叶类囊体膜光谱性质研究[J].西北植物学报, 2005, 25(2): 250-255.
    [77] 杨胜洪,杜林方,赵云,张义正.抽薹期叶绿素缺乏油菜突变体类囊体膜的研究[J].云南植物研究, 2001,23(1):97-104.
    [78] 张年辉,杜林方,赵云,等.叶绿素缺乏油菜突变体的 LHCⅡ多肽组成、蛋白含量与 cab 基因转录研究[J].西北植物学报, 2004, 24(3):484-487.
    [79] 赵云,杜林方,杨胜洪,等. 缺乏叶绿素油菜突变体的叶绿体组成和结构变化[J]. 植物学报,2001,43 (8): 877-880.
    [80] Zhao Y,Wang ML,Zhang YZ,et al. A chlorophyll-reduced seedling mutant in oilseed rape, Brassica napus, for utilization in F1 hybrid production[J]. Plant Breed, 2000,119 (2):131-135.
    [81] Zhao Y,Du L F, Yang SH H, et al. Chloroplast composition and structure differences in a chlorophyll-reduced mutant of oilseed rape seedlings[J]. Acta Boanicat Sinica, 2001,43(8): 877-880.
    [82] Ghirardi M L, Melis A.Chlorophyll b deficiency in soybean mutants. Effects on photosystem stoichiometry and chlorophyll antenna size[J].Biochim.Biophys.Acta,1988,932:130-137.
    [83] Keck RW, Dilley RA, Allen CF.Chloroplast composition and structure differences in a soybean mutant[J].Plant Physiol, 1970, 46:692-695.
    [84] Matringe M, Scalla R. Studies on the mode of action of Acifluorfen-methyl in non-chlorophyllous soybean cells[J]. Plant Physiol, 1988, 86: 619-625.
    [85] 李国权,李梦,吴殿武.辐射诱发大豆叶绿素缺失突变及其遗传分析[J]. 古林农业大学学报,1987, 9(3):46-51.
    [86] Nakayama M, Masuda T, Bando T, Yamagata H, Ohta H, Takamiya K. Cloning and expression of the soybean chlH gene encoding a subunit of Mg-chelatase and localization of the Mg2+ concentration-dependent ChlH protein within the chloroplast[J]. Plant Cell Physiol ,1998,39: 275–284.
    [87] 刘富中,Gostimskii S .A. 豌豆叶绿素突变基因 xa-18 的遗传分析[J]. 中国园艺学会第九届学术年会论文集.242-246.
    [88] Ladygin VG. Pigment composition and photosynthetic activity of pea chlorophyll mutants[J]. ИзвАкадНаук (СерБиол)[Izv Akad Nauk (Ser Biol)], 2003, 4: 447-454.
    [89] Highkin H R, Boardman N K, Good child D J. Photosynthetic studies on a pea mutant deficient in chlorophyll[J]. Plant Physiol, 1969, 44:1310.
    [90] Barak S,Heimer Y,Nejidat A,et al.The peroxisomai glycolate oxidase gene is differenttially expressed in yellow and white sectors of the DP1 variegated tobacco mutant[J].Physiol Plant, 2000,110 (1):120-126.
    [91] Monde R A, Zito F, Olive J,et al.Posttranscriptional defects in tobacco chloroplast mutants lacking the cytochrome b6/f complex[J]. Plant J, 2000, 21 (1):61-72.
    [92] Bae C H,Abe T,Matsuyama T,et al.Regulation of chloroplast gene expression is affected in ali,a novel tobacco albino mutant[J].Ann.Bot.,2001,88:545-553.
    [93] Schmid GH,Gaffron H.Light metabolism and chloroplast structure in chlorophyll-deficient tobacco mutants[J].J Gen Physiol, 1967, 50:563-582.
    [94] Ali E. Alawady and Bernhard Grimm. Tobacco Mg protoporphyrin IX methyltransferase is involved in inverse activation of Mg porphyrin and protoheme synthesis[J]. The Plant Journal, 2005, 41(2): 282-290.
    [95] Papenbrock J, Pfündel E, Mock HP, et al. Decreased and increased expression of the subunit CHL I diminishes Mg chelatase activity and reduces chlorophyll synthesis in transgenic tobacco plants[J]. Plant J, 2000,22:155–164.
    [96] 李丕皋, 封如敏. 小麦特异材料-返白系的初步研究[A]. 陕西省遗传学会.陕西省遗传学会论文汇编[C]. 1985. 53-56.
    [97] Oki S, Gu X, Kofiod K D,et al. A light-intensity sensitive chlorophyll mutant in sorghum[J]. Hereditas, 1997,126:239-245.
    [98] 肖松华,张天真,潘家驹.陆地棉芽黄突变体的遗传及在杂种优势上的利用[J].南京农业大学学报, 1995, 18(3): 28-33.
    [99] 季道藩,许馥华.棉花叶绿素缺失的细胞质遗传[J].遗传,1979, 1(5): 15-19.
    [100] 郭士伟,张云华,金永庆,等.小白菜 (Brassica chinensis L.)黄苗突变体的叶绿素荧光特性[J]. 作物学报, 2003, 29 (6): 958-960.
    [101] Karst. Bjorn Walles. The Homozygous and Heterozygous Effects of an Aurea Mutation on Plastid Development in Spruce (Picea abies L.) [M].Studia Forestalia Suecica, 1967.
    [102] Awan M A, Konzak C F, Rutger J N, Nilan R A. Mutagenic deflects of sodium azide in rice[J]. Crop Science, 1980, 20:663-668.
    [103] Terry MJ, Kendrick RE.Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato[J]. Plant Physiol, 1999, 119: 143-152.
    [104] Kumar AM, Soll D. Antisense HEMAl RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis thaliana[J]. Plant Physiol, 2000, 122:49-55.
    [105] Somervill C R. Analysis of Photosynthesis With M utams of Higher[J]. Plants and AIgae Ann Rev plant physiol, 1986, 37: 467-507.
    [106] 邵继荣,周仕春,黄明远等. 水稻温敏突变系 1103S 叶绿索间断失绿性状表达特性的研究[J].四川大学学报(自然科学版), 1997, 34 (5 ): 688-692.
    [107] Yang CM, Osterman J, Markwell J.Temperature sensitivity as a general phenomenon in a collection of chlorophylldeficient mutants of sweetclover[J].Biochem Genet, 1990,28 (12):31-40.
    [108] Markwell J P, Osteman J C. Occurrence of temperature-sensitive phenotypic plasticity chlorophyll-deficient mutants of Arabidopsis thaliana[J]. Plant Physiol, 1992, 98:392-394.
    [109] Miles D. The use of mutations to probe photosynthesis in higher plants[A]. Edelman M ed. Methods in Chloroplast Molecular Biology[C]. Amsterdam: Elsevier, 1982, 76-107.
    [110] 邵继荣.温敏失绿突变体冷激应答的细胞与分子机理研究[D]. 四川农业大学,2004.
    [111] 黄晓群. 一份新的水稻黄化突变体的遗传分析及基因定位[D]. 四川大学, 2006.
    [112] 徐培洲. 非孟德尔遗传在 EGSR 水稻上的表现及叶绿素缺乏突变体 W1 色素缺乏机理的探讨[D].四川农业大学,2006.
    [113] 王新其,殷丽青,沈革志. 2 个水稻黄叶突变体的遗传初步分析[J].上海交通大学学报(农业科学版), 2005,23(4):392-400.
    [114] Green B R, Durnford DG.The chlorophyll-carotenoid proteins of oxygenic photsynthesis[J]. Annu Rev Plant Physiol Plant Mol Biol, 1996,47 (1):685-714.
    [115] 童哲. 光质和除草剂 norflurazon 对欧洲赤松子叶质体色素形成的影响[J]. 植物学报, 1985,27(1):57-62.
    [116] 汤泽生. 一个细胞质遗传实验的新材料:南黄大麦[J].四川师范学院学报(自科版), 1990, 11(3): 217-221.
    [117] 汤泽生, 王祖秀.黄化大麦的系列研究:Ⅰ .南黄大麦的穗部性状[J]. 四川师范学院学报(自科版), 1990,11(4): 300-303.
    [118] 于海莉,孙志强.一个新的大豆细胞质黄化突变体的初步研究[J]. 大豆科学,1992,11(2):120-126.
    [119] 董遵,刘敬阳,马红梅,等.甘蓝型油菜黄化(苗)突变体的叶绿素含量及超微结构[J].中国油料作物学报,2000, 22 (3): 27-29.
    [120] 汤泽生, 代庆阳. 黄化型大麦的系列研究:VI 南黄大麦叶绿体超微结构的发育[J]. 四川师范学院学报(自然科学版), 1989,10(1): 30.
    [121] 贾玉峰, 许耀奎. 春小麦黄绿色突变系的遗传及叶绿体结构的分析[J].吉林农业大学学报,1992,14(1): 1-4.
    [122] 夏英武,吴殿星,舒庆尧,等.水稻辐射白色转绿突变系的遗传及叶绿体超微结构的分析[J].核农学通报,1996, 17 (1):1-4.
    [123] 何瑞锋,丁毅,余金洪,等.水稻温敏叶绿素突变体叶片超微结构的研究[J].武汉植物学研究,2001,19(1):1-5.
    [124] Koski VM, Smith JH. Chlorophyll formation in a mutant, white seedling-3[J]. Arch Biochem. 1951, 34(1):189-95.
    [125] Wallace RH, Schwarting AE. A Study of Chlorophyll in a White Mutant Strain of Helianthus annuus[J]. Plant Physiol. 1954 , 29(5):431–436.
    [126] Genty B, Briantais JM, Baker NR. The relationshipbetween the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochim Biophys Acta, 1989, 990: 87–92.
    [127] Van Kooten O and Snel J TH. The use of chlorophyll nomenclature in plant stress physiology[J]. Photosyn. Res. , 1990, 25: 147-150.
    [128] Schreiber U, Bilger W, Neubauer C . Chlorophyll fluorescenceas a nonintrusive indicator for rapid assessment of in vivo photosynthesis[A]. Schulze E-D, Caldwell MM (eds). Ecophysiology of Photosynthesis[C]. Berlin: Spinger-Verlag, 1994. 49-70.
    [129] Bj?rkman O., Demmig, B. Photon yield of O2 evolution and cholorophyll fluorescence at 77K among vascular plants of diverse origins[J]. Planta, 1987, 170: 489-504.
    [130] Bilger, W. Bj?rkman,O. Role of xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in Hedera canariensis[J]. Photosynthesis Research, 1990, 25:173-185.
    [131] Fambrini M,Castagna A,Vecchia FD.Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis,reduced PS Ⅱ activity and low endogenous level of abscisic acid[J]. Plant Sci, 2004,167:79-89.
    [132] 胡忠,梁汉兴,彭丽萍. 一个黄绿色水稻突变体的光合作用特性[J].云南植物研究,1981, 3(4): 449-456.
    [133] 何奕琨,汤泽生.南黄大麦光合性状的研究[Jl .酉南农业学报,1990, 3( 4) : 38- 41.
    [134] 赵丽哲, 苏小静. 小麦返白系返白阶段叶绿体膜光谱特性及色素蛋白质复合体的变化[J]. 华北农学报,1996,11(2).-62-66.
    [135] Havaux M, Tardy F. Thermostability and photostability of photosystem Ⅱ in leaves of the chlorina-f2 barley mutant deficient in light-harvesting chlorophyll a/b protein comples[J].Plant Physiol, 1997, 113: 913-923.
    [136] Leverenz JW, ?quist G, Wingsle G. Photosynthesis and photoinhibition in leaves of chlorophyll b-less barley in relation to absorbed light [J]. Physiol Plant, 1992, 85: 495-502.
    [137] Dai X B, Cao S Q, Xu X M , et al .Study on a mutant low content chlorophyll b in a high yielding rice and its photosynthesis properties[J]. Acta Bntanica Sinica, 2000, 42(12): 1289-1294.
    [138] Rohácek K, Barták M. Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications[J]. Photosynthetica, 1999, 37:339-363.
    [139] 周祥胜. 一个水稻黄叶突变体的光合、遗传和农学特性研究[D]. 浙江大学, 2006.
    [140] Lokstein H, H?rtel H, Hoffmann P, Renger G. Comparison of chlorophyll fluorescence quenching in leaves of wild-type with a chlorophyll-b-less mutant of barley (Hordeum vulgare L.)[J]. J Photochem Photobiol B Biol ,1993, 19: 217-225.
    [141] Simpson DJ, Machold O, H?yer-Hansen G, et al . Chlorina mutants of barley (Hordeum vulgare L.) [J]. Carlsberg Res. Commun, 1985,50:223-238.
    [142] Freeman TP, Duysen ME,Williams ND. Effects of gene dosage on light harvesting chlorophyll accumulation,chloroplast development and photosynthesis in wheat[J]. Can J Bot, 1987, 65:2118-2123.
    [143] Simpson D J, Van Wetlstein D. The structure and function of the thylakoid membrane[J]. Carlsberg Res Commun, 1989, 54:55-65.
    [144] LI J A, Webber A N.Photosynthesis in Arabidopsis thaliana mutants with reduced chloroplast number[J]. Photosynth Res, 2005,85(3):373-384.
    [145] M?ller M G., Petersen B L., Kannangara C. G, et al. Chlorophyll Biosynthetic Enzymes and Plastid Membrane Structures in Mutants of Barley (Hordeum vulgare L.)[J]. Hereditas, 1997 ,127 (3), 181-191.
    [146] 赵云,王茂林,李江,等.幼叶黄化油菜(Brassica napus L.)突变体 Cr3529 叶绿体超微结构观察[J].四川大学学报(自然科学版), 2003,40(5):974-977.
    [147] Jarvis P, Li HM, Chen LJ, et al.An Arabidopsis mutant defective in the plastid general protein import apparatus[J].Science, 1998, 282 (5386):100-103.
    [148] 林宏辉,何礼,晏婴才,等.叶绿素缺乏大麦突变体叶绿体结构功能及生化特性的研究[J].四川大学学报(自然科学版), 2001,38(6):899-904.
    [149] Goodchild D J, Highkin H R, Boardman N K. The fine structure of chloroplast in a barley mutant lacking chlorophy Ⅱ b[J]. Expe. Cell Res, 1966, 43: 684-688.
    [150] 苏小静,汪沛宏.小麦突变体返白系返白机理的研究— Ⅰ 返白阶段叶绿体超微结构观察[J].西北农林科技大学学报(自然版),1990,2:73-76.
    [151] 杨莉,郭蔼光,关旭. 小麦突变体返白系返白阶段叶绿体超微结构变化研究[J].西北农业学报 2003, 12(4): 64-67.
    [152] 吴殿星,舒庆尧, 夏英武,等.水稻转绿型白化突变系 W25 的叶绿体超微结构研究[J]. 浙江农业大学学报, 1997, 23(4):451-452.
    [153] William C T, Alice B, Robert A M. Use of nuclear mutants in the analysis of chloroplast development[J]. Devel Genet,1987, 8:305-320.
    [154] Frick G, Su QX, Apel K, et al. An Arabidopsis porB porC double mutant lacking light-dependent NADPH: protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arreste[J]. Plant J, 2003,35(2):141-153.
    [155] Motohashi R, Ito T, Kobayashi M, et al. Functional analysis of the 37kD inner envelope membrane polypeptide in chloroplast biogenesis using a D-stagged Arabidopsis pale-green mutant[J]. The Plant Journal, 2003, 34 (5): 719-731.
    [156] Hong X, Dmitrii V, Wim V. Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria[J]. The Proceedings of the National Academy of Science of the USA, 2001, 98:14168-14173.
    [157] Anderson JM. Photoregulation of the composition, function, and structure of thylakoid membranes[J]. Annu. Rev. Plant Physiol, 1986, 37:93–136.
    [158] Herrin DL, Battey JF, Greer K, et al.Regulation of chlorophyll apoprotein expression and accumulation.Requirements for carotenoids and chlorophyll[J]. J Biol Chem, 1992, 267 (12):8260-8269.
    [159] Preiss S,Thornber JP. Stability of the apoproteins of lightharvesting complex Ⅰ and Ⅱ during biogenesis of thylakoids in the chlorophyll b-less barley mutant chlorina f2[J].Plant Physiol, 1995, 107:709-717.
    [160] Bossmann B,Knoetzel J,Jansson S. Screening of chlorina mutants of barley (Hordeum vulgare L. )with antibodies against light harvesting proteins of PS Iand PSII absence of specific antenna proteins[J]. Photosynthesis Research,1997,52:127-136.
    [161] Plumley F G, Schmidt G W. Light-harvesting chlorophyll a complexes: interdependent pigment synthesis and protein assembly[J]. The Plant Cell, 1995, 7: 689-704.
    [162] Dan H Y, Jeanette W, Zach A , et al. Induction acclimative proteolysis of the light-harvesting chlorophyll a/b protein of photosystem II in response to elevated light intensities[J]. Plant Physiology, 1998, 118: 827-834.
    [163] 孙钦秒,冷静,李良璧,等. 高等植物光系统 II 捕光色索蛋白复合体结构与功能研究的新进展[J].植物学通报,2000,17(4): 289-301.
    [164] Liu Z., Yan H., Wang K., et al. Crystal structure of spinach major light-harvesting complex at 2.72 ? resolution[J]. Nature, 2004, 428:287-292.
    [165] Allen KD, Staehelin LA. Biochemical characterization of photosystem II antenna polypeptides in gram and stroma membranes of spinach[J]. Plant physiol, 1992,100: 1517-1526.
    [166] Plumley F G, Schmidt G W. Light-harvesting chlorophyll a complexes: interdependent pigment synthesis and protein assembly[J]. The Plant Cell, 1995, 7: 689-704.
    [167] Harrison MA, Nemson JA, Melis A. Assembly and composition of the chlorophyll a-b light harvesting complex in barley: immunochemical analysis of chlorophyll b-less and chlorophyll b-deficient mutants[J].Photosynth Res, 1993,38:141-151.
    [168] Thornber J P. Biochemical characterization and structure of pigment-protein of photosynthetic organism[A]. Staehelin L A, Amtzen C J, eds. Encyclopaedia of Plant Physiology[C]. New York: Soringer Verlag, 1986, 19: 98-115.
    [169] Duysen, Murray E,Freeman, et al. Regulation of Excitation Energy in a Wheat Mutant Deficient in Light-Harvesting Pigment Protein Complex[J] . Plant Physiol, 1984,76(3):561–566.
    [170] Herrin DL, Battey JF, Greer K, et al. Regulation of chlorophyll apoprotein expression and accumulation. Requirements for carotenoids and chlorophyll[J].J Biol Chem, 1992, 267 (12):8260-8269.
    [171] Ort DR, Yocum CF. Electron transfer transduction in photosynthesis: an overview[A]. Ort DR, Yocum CF. Oxygenic Photosynthesis: the Light Reactions[C]. Dordrecht: Kluwer Academic, 1996,1-9.
    [172] 袁澍.水分胁迫对黄化大麦光系统 II 的影响及黄化大麦突变机理的研究[D].四川大学, 2002.
    [173] Kamiya N and Shen J.R. Crystal structure of oxygen-evolving Photosystem II from Thermosynechococcus vulcanus at 3.7 ? resolution[J]. Proc. Natl Acad. Sci, 2003, 100:98–103.
    [174] Ferreira K N., Iverson T.M., Maghlaoui K., et al. Architecture of the photosynthetic oxygen-evolving center[J]. Science, 2004, 303, 1831–1838.
    [175] Zouni A, Witt H T, Kern J, et al. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 ? resolution[J]. Nature, 2001,409:739–743.
    [176] Diner B. A., Rappaport F. Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis[J]. Annu. Rev. Plant Biol, 2002,53:55–58.
    [177] Yamasato A,Nagata N,Tanaka R,et al.The Nterminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll B accumulation in Arabidopsis[J].Plant Cell, 2005,17 (5):1585-1597.
    [178] Jasson S.The light-harvesting chlorophyll a/b-binding protein[J].Biochim Biophys Acta, 1994, 1184:1-19.
    [179] Bailey S,Walters RG,Jansson S,et al.Acclimation of Arabidopsis thaliana to the light environment:the existence of separate low light and high light responses[J].Planta, 2001,213 (5):794-801.
    [180] Tanaka R, Koshino Y, Sawa S,et al.Overexpression of chlorophyllide a oxygenase (CAO) enlarges the antenna size of photosystem Ⅱ in Arabidopsis thaliana[J].Plant J, 2001,26 (4):365-373.
    [181] 陈熙, 崔香菊, YING-XIN ZHAO,等.低叶绿素 b 水稻突变体类囊体膜的比较蛋白质组学[J]. 生物化学与生物物理进展, 2006, 33 (7):653-659.
    [182] Kovács L, Damkj?r J, Kere?che S. et al. Lack of the Light-Harvesting Complex CP24 Affects the Structure and Function of the Grana Membranes of Higher Plant Chloroplasts[J]. The Plant Cell, 2006, 18:3106-3120.
    [183] Terao T,Yamashita A,Katoh S.Chlorophyll b-deficient mutants of rice Ⅰ.Absorption and fluorscence spectra and chlorophyll a/b ratios[J].Plant Cell Physiol, 1985,26 (7):1361-1367 .
    [184] Luciński R and Jackowski G. The structure, functions and degradation of pigment-binding proteins of photosystem II[J]. Acta Biochimica Polonica, 2006, 53(4): 693-708.
    [185] Lin Z F, Peng C L, Lin G Z, et al. Photosynthetic characterics of two new chlorophyll b-less rice mutants[J]. Photosynthetica, 2003, 41(1): 61-67 .
    [186] 苏小静,汪沛宏,王永吉. 小麦突变体返白系返白机理研究—Ⅲ .返白阶段叶蛋白质、游离氨基酸变化规律的分析[J].西北农林科技大学学报(自然版),1990,18(4):16-22.
    [187] 邵继荣,谢戎,唐梅. 水稻温敏突变系 1103S 叶绿素间断失绿期叶片蛋白质变化与叶绿索含量的关系[J].西南农业学报,1998, 11 (3): 14-19.
    [188] Hoober JK, Eggink LL, Hoober JK, et al. A potential role of chlorophylls b and c in assembly of light-harvesting complex[J]. FEBS Lett,2001, 489: 1-3.
    [189] 李良璧,孙钦秒,冷静,等. 光系统 II 捕光色素蛋白复合体的结构与功能[A].匡廷云. 光合作用原初光能转化过程的原理与调控[C]. 南京: 江苏科学技术出版社,2003.111-142.
    [190] Nasyrov Y S. Genetic control of photosynthesis and improving of crop productivity[J]. Ann. Rev. Plant Physiol, 1978, 29: 215-237.
    [191] 吴殿星,舒庆尧,夏英武,等.一个新的水稻转绿型自化突变系 W 25 的叶色特征及遗传[J].浙江农业学报,1996,8 ( 6 ): 372-374.
    [192] 黄晓群. 一份新的水稻黄化突变体的遗传分析及基因定位[D]. 四川大学, 2006.
    [193] 王新其,殷丽青,沈革志. 2 个水稻黄叶突变体的遗传初步分析[J].上海交通大学学报(农业科学版),2005,23(4):392-400.
    [194] 陈涛. 一个新的水稻白化转绿突变体的生理特性及基因定位[D].南京:南京农业大学,2006.
    [195] 吴关庭,王贤裕,周志远,等. 辐射诱发水稻叶绿索突变及其遗传研究[J].核农学通报,1995,16 (3):156-158.
    [196] 沈圣泉,舒庆尧,包劲松,等.实用转绿型叶色标记不育系白丰 A 的应用研究[J].中国水稻科学,2004, (1): 34-38.
    [197] Constantin, M J, and Nilan, R. A. Chromosome aberration assays in barley (Hordeumt vutlgare). A report of the U.S. Environmental Protection Agency Gene-Tox Program[J]. Mutat. Res, 1982, 99: 13-36.
    [198] 王祖秀,汤泽生.大麦叶色黄化突变体的遗传分析[J]. 西南农业学报,1996,8:180-182.
    [199] 谢戎,朱发云,何光华,等.水稻两用系温敏叶绿素自然突变体的初步研究[J]. 西南农业学报,1995,8(1):124-128.
    [200] Konishi, T. An incomplete dominant chlorophyll mutation on chromosome 1. Barley Genetics[J]. Newsletter, 1972,2: 43-45.
    [201] Prina A R, Arias M. C and de la Fuente M. C. A new mutant allele for Xa/xa gene and its use for location of newly induced mutants in the long arm of barley chromosome 1[J]. BGN, 1995, 25: 31-33.
    [202] Foster CA, Welsh. Two incomplete or semi-dominant mutants of barley[J]. Barley Genetics Newsletter, Ii. Research Notes. 1972,9:23-24.
    [203] Hansson A, Kannangara CG, von Wettstein D, et al. Molecular basis for semidominance of missense mutations in the XANTHA-H (42-kDa) subunit of magnesium chelatase[J]. Proc Natl Acad Sci USA, 1999,96 (4):1744-1749.
    [204] Nguyen, L.V. Transposon Tagging and Isolation of the SULFUR Gene in Tobacco (Nicotiana tabacum) [J]. North Carolina State University, 1995.
    [205] 国艳梅,顾兴芳,张春震,等. 黄瓜叶色突变体遗传机制的研究[J]. 园艺学报,2003, 30 (4) : 409-412.
    [206] 张建农,满艳萍,燕丽萍,等. 黄化西瓜叶片叶绿体结构与光合作用特性[J].果树学报,2004, 21(1):50-53.
    [207] Luther Smith. A Rare Dominant Chlorophyll Mutant In Durum Wheat: Induced by Atomic Bomb Irradiation[J]. J Hered ,1952, 43: 125-128.
    [208] Palmer R G and P N Mascia. Genetics. 1974, 95,985-1000.
    [209] Okabe K, Schmed G H, Straub J. Genetic characterization and high efficiency photosynthesis of an aurea mutant of tobacco[J]. Plant Physiol, 1977, 60:150.
    [210] Kawata EE and Cheung AY. Molecular analysis of an aurea photosynthetic mutant (Su/Su) in tobacco: LHCP depletion leads to pleiotropic mutant phenotypes[J]. The EMBO Journal, 1990,9:4197-4203.
    [211] 马国荣,刘佑斌,盖钧镒.大豆细胞质遗传芽黄突变体的发现[J]. 作物学报, 1994, 20(3): 334-338.
    [212] 钱前,朱旭东,曾大力, 等.细胞质基因控制的新特异材料白绿苗的研究[J]. 作物品种资源,1996,4: 11-12.
    [213] 余庆波,江华,米华玲,等.水稻白化突变体 a1b21 生理特性和基因定位[J].上海师范大学学报(自然科学版),2005, 34 (3): 70-75.
    [214] Beale SI. Green genes gleaned[J]. Trend Plant Sci, 2005, 10 (7):301-312.
    [215] Beale S L. Enzymes of chlorophyll biosynthesis[J]. Photosynthesis Research, 1999, 60 (1) : 43-73.
    [216] Steffen R, Christiane R. The regulation of enzymes involved in chlorophyll biosynthesis[J]. Eur. J. Biochem, 1996, 237, 323-343.
    [217] Beale S.I, Weinstein J.D. Tetrapyrrole metabolism in photosynthetic organisms[A]. Dailey H.A. Biosynthesis of Heme and Chlorophylls[C]. New York: McGraw-Hill, 1990. 287- 391.
    [218] Beale S I .Biosynthesis of cyanobacterial tetrapyrrole pigments: Hemes,chlorophylls, and phycobilin[A]. Bryyant DA. The Molecular Biology of Cyanobacteria[C]. Dordrecht: Kluwer Academic Publishers, 1993.519-558.
    [219] Diter W, Simon G. Chlorophyll biosynthesis[J]. The Plant Cell, 1995,7:1039-1057.
    [220] Ishikawa A, Okamoto H, Iwasaki Y, et al. A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis[J]. The Plant Journal, 2001. 27 (2): 89-99.
    [221] Espineda CE, Linford AS, Devine D,et al. The AtCAO gene,encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA,1999, 96 (18): 10507-10511.
    [222] Wettstein DV, Gough S, Kannangara CG. Chlorophyll biosynthesis[J]. Plant Cell, 1995,7 (7):1039-1057.
    [223] Rüdiger W. Biosynthesis of chlorophyll b and the chlorophyll cycle[J]. Photosynth Res,2002, 74: 187-193.
    [224] Eckhardt U. Grimm B. Hortensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants[J]. Plant Molecular Biology, 2004, 56 (1): 1-14.
    [225] Bollivar DW, Beale SI. The chlorophyll biosynthetic enzyme Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase-Characterization and partial purification from Chlamydomonas reinhardtii and Synechocystis sp. PCC 6803[J]. Plant Physiol, 1996, 112: 105–114.
    [226] Lee S. Kim J H. Yoo E S. et al. Differential regulation of chlorophyll a oxygenase genes in rice[J]. Plant Molecular Biology , 2005 ,57 (6): 805-818.
    [227] von Wettstein D, Gough S, Kannangara CG .Chlorophyll biosynthesis[J]. Plant Cell, 1995,7:1039-1057.
    [228] Rüdiger W. Biosynthesis of chlorophyll b and the chlorophyll cycle[J]. Photosynth Res, 2002,74:187-193.
    [229] Tanaka A, Ito H, Tanaka R, et al.Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a[J]. Proc Natl Acad Sci USA, 1998,95:12719-12723.
    [230] 郭春爱,刘芳,许晓明.叶绿素b缺失与植物的光合作用[J].植物生理学通讯, 2006,42(5):967-973.
    [231] Gibson LCD, Willows RD, Kannangara CG, et al. Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the BCH H, BCH I, and BCH D genes expressed in Escherichia coli[J]. Proc Natl Acad Sci USA, 1995, 92:1941–1944.
    [232] Rissler H.M., Collakova E., DellaPenna D.,et al. Chlorophyll biosynthesis. Expression of a second Chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis[J]. Plant Physiol, 2002, 128, 770–779.
    [233] Willows, R.D. Biosynthesis of chlorophylls from protoporphyrin IX[J]. Nat. Prod. Rep, 2003, 20: 327-341.
    [234] Walker C J, Willows R.D. Mechanism and regulation of Mg-chelatase[J]. Biochem. J, 1997, 327,321-333.
    [235] Jensen P.E., Willows R.D., Petersen B.L., et al. Structural genes for Mg-chelatase subunits in barley: Xantha-f -g and -h[J]. Mol. Gen. Genet, 1996 ,250, 383–394.
    [236] Gaubier P, Wu HJ, Laudié M, et al. A chlorophyll synthetase gene from Arabidopsis thaliana[J]. Mol Gen Genet, 1995,249:58-64.
    [237] Jensen P.E., Gibson L.C., Hunter C.N. Determinants of catalytic activity with the use of purified I, D and H subunits of the magnesium protoporphyrin IX chelatase from Synechocystis PCC6803[J]. Biochem. J, 1998,334: 335-344.
    [238] Karger GA, Reid JD, Hunter CN. Characterization of the binding of deuteroporphyrin IX to the magnesium chelatase H subunit and spectroscopic properties of the complex[J]. Biochemistry, 2001, 40, 9291-9299.
    [239] Willows RD and Beale SI. Heterologous expression of the Rhodobacter capsulatus BchI-D, and -H genes that encode magnesium chelatase subunits and characterization of the reconstituted enzyme[J]. J Biol Chem, 1998, 273: 34206–34213.
    [240] Reid J.D., Siebert C.A., Bullough P.A,et al. The ATPase activity of the ChlI subunit of magnesium chelatase and formation of a heptameric AAA+ ring[J]. Biochemistry, 2003, 42: 6912–6920.
    [241] Jensen PE, Gibson LCD, Hunter CN. ATPase activity associated with the magnesium-protoporphyrin IX chelatase enzyme of Synechocystis PCC6803: evidence for ATP hydrolysis during Mg2+ insertion, and the MgATP-dependent interaction of the ChlI and ChlD subunits[J]. Biochem J, 1999, 339:127-134.
    [242] Gibson LCD, Jensen PE, Hunter CN. Magnesium chelatase from Rhodobacter sphaeroides: initial characterization of the enzyme using purified subunits and evidence for a BCH I-BCH D complex[J]. Biochem J, 1999, 337:243-251.
    [243] Soldatova O, Apchelimov A, Radukina N, et al. An Arabidopsis mutant that is resistant to the protoporphyrinogen oxidase inhibitor acifluorfen shows regulatory changes in tetrapyrrolebiosynthesis[J]. Molecular Genetics and Genomics, 2005, 273: 311-318.
    [244] Apchelimov, Alexey A. Soldatova O, et al. The analysis of the ChlI 1 and ChlI 2 genes using acifluorfen-resistant mutant of Arabidopsis thaliana[J]. Planta,2006,225(4):935-943.
    [245] Karger G.A., Reid J.D., Hunter, C.N. Characterization of the binding of deuteroporphyrin IX to the magnesium chelatase H subunit and spectroscopic properties of the complex[J]. Biochemistry, 2001,40: 9291-9299.
    [246] Shen YY, Wang X F, Wu F Q, et al. The Mg-chelatase H subunit is an abscisic acid receptor[J]. Nature,2006,443:823-826.
    [247] Willows RD, Gibson LCD, Kannangara CG, et al. Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides[J]. Eur J Biochem, 1996, 235: 438-443.
    [248] Sirijovski N, Olsson U, Lundqvist J, et al. ATPase activity associated with the magnesium chelatase H-subunit of the chlorophyll biosynthetic pathway is an artefact[J]. Biochem J, 2006, 400(3):477-84.
    [249] Axelsson E, Lundqvist J, Sawicki A, et al. Recessiveness and Dominance in Barley Mutants Deficient in Mg-Chelatase Subunit D, an AAA Protein Involved in Chlorophyll Biosynthesis[J]. Plant Cell, 2006, 18: 3606-3616.
    [250] Bellemare G, Bartlett SG, Chua NH. Biosynthesis of chlorophyll a/b-binding polypeptides in wild type and the chlorina f2 mutant of barley[J].J Biol Chem, 1982,257 (13):7762-7767.
    [251] Murray DL,Kohorn BD.Chloroplasts of Arabisdopsis thaliana homozygous for the ch-1 locus lack chlorophyll b,lack stable LHCPⅡ and have stacked thylakoids[J]. Plant Mol Biol, 1991,16:71-79.
    [252] Koncz C, Meyerhofer R, Koncz-Kalman Z, et al. Schell J. Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana[J]. EMBO J, 1990,9: 1337-1346.
    [253] Hudson A, Carpenter R, Doyle R, et al. Olive: a key gene required for chlorophyll biosynthesis in Antirrhinum majus[J]. EMBO J, 1993, 12: 3711-3719.
    [254] von Wettstein D. Nuclear and cytoplasmic factors in development of chloroplast structure and function[J]. Can. J. Bot,1961, 39: 1537–1545.
    [255] Walker CJ, Weinstein JD. In vitro assay of the chlorophyll biosynthetic enzyme Mg-chelatase: resolution of the activity into soluble and membrane-bound fractions[J]. Proc Natl Acad Sci U S A, 1991, 88(13):5789–5793.
    [256] Mascia P. An analysis of precursors accumulated by several chlorophyll biosynthetic mutants of maize[J]. Mol Gen Genet, 1978,161: 237-244 .
    [257] Mascia P N., Robertson DS. Genetic studies of the chlorophyll biosynthetic mutants of maize[J], J. Hered. 1980, 71: 19-24 .
    [258] 苏小静,汪沛宏,陈毓荃. 小麦突变体返白系返白机理的研究—Ⅱ、返白阶段叶绿素代谢变化研究[J]. 西北农林科技大学学报(自然版),1990,18(3):80-84.
    [259] 崔海瑞,夏英武,高明尉. 温度对水稻突变体 W1 叶色及叶绿素生物合成的影响[J]. 核农学报,2001,15(5):269-273.
    [260] 徐培洲,李云,袁澍,等. 叶绿素缺乏水稻突变体中光系统蛋白和叶绿素合成特性的研究[J].中国农业科学,2006,39(7):1299-1305.
    [261] Cornah J E., Terry M J. and A G. Smith. Green or red: what stops the traffic in the tetrapyrrole pathway? [J]. Trends Plant Sci, 2003, 8:224-230.
    [262] Dmitrii V, Vavilin and Wim F J. Vermaas. Regulation of the tetrapyrrole biosynthetic pathwayleading to heme and chlorophyll in plants and cyanobacteria[J]. Physiologia Plantarum , 2002,115: 9-24.
    [263] Goslings D R, Meskauskiene C, Kim K. P, et al. Concurrent interactions of heme and FLU with Glu tRNA reductase (HEMA1), the target of metabolic feedback inhibition of tetrapyrrole biosynthesis, in dark- and light-grown Arabidopsis plants[J]. Plant J, 2004, 40:957-967.
    [264] Papenbrock J., Gr?fe S., Kruse E., et al. Mg-chelatase of tobacco: identification of a Chl D cDNA sequence encoding a third subunit, analysis of the interaction of the three subunits with the yeast two-hybrid system, and reconstitution of the enzyme activity by coexpression of recombinant CHL D, CHL H and CHL I[J]. Plant J, 1997, 12: 981–990.
    [265] Dailey HA. Enzymes of heme biosynthesis[J]. J Biol Inorg Chem. 1997, 2:411–417.
    [266] Terry M.J and Kendrick R E. The aurea and yellow-green-2 mutants of tomato are deficient in phytochrome chromophore synthesis[J]. J. Biol. Chem. 1996 ,271:21681-21686.
    [267] Parks BM, Quail PH. Phytochrome-deficient hyl and hy2 long hypocotyls mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis[J]. Plant Cell, 1991,3:1177-1186.
    [268] McCormac AC, Fischer A, Kumar AM, et al. Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana[J]. Plant J, 2001, 25:549–61.
    [269] Papenbrock J, Grimm B. Regulatory network of tetrapyrrole biosynthesis – studies of intracellular signalling involved in metabolic and developmental control of plastids[J]. Planta ,2001, 213: 667–681.
    [270] Strand ?, Asami T, Alonso J, et al. Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX[J]. Nature, 2003, 421:79–83.
    [271] Strand A. Plastid-to-nucleus signalling [J]. Curr. Opin. Plant Biol, 2004, 7:621–25.
    [272] Susek R E, Ausubel F M, Chory J. Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development [J].Cell, 1993, 74: 787 - 799.
    [273] Rodermel S and Park S. Pathways of intracellular communication: tetrapyrroles and plastid-to-nucleus signaling[J]. BioEssays, 2003, 25, 631–636.
    [274] Rodermel S. Pathways of plastid-to-nucleus signaling[J]. Trends in Plant Science, 2001, 6, (10): 471-478.
    [275] Davis S J, Kurepa J, Vierstra R D. The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases [J]. Proc NatlAcad Sci USA, 1999, 96:6541 - 6546.
    [276] Kohchi T, Mukougawa K, Frankenberg N, et al. The Arabidopsis HY2 gene encodes phytochromobilin synthase, aferredoxin-dependent biliverdin reductase [J]. Plant Cell, 2001, 13:425 - 436.
    [277] Mochizuki N, Brusslan J A, Larkin R, et al. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction [J]. Proc NatlAcad Sci USA, 2001, 98:2053 - 2058.
    [278] McCormac AC, Terry MJ. The nuclear genes Lhcb and HEMA1 are differentially sensitive to plastid signals and suggest distinct roles for the GUN1 and GUN5 plastidsignaling pathways during de-etiolation[J]. Plant J, 2004, 40:672–85.
    [279] Brusslan J.A and Peterson M.P. Tetrapyrrole regulation of nuclear gene expression[J]. Photosyn. Res.2002, 71, 185–194.
    [280] Jarvis P. Intracellular signalling: The chloroplast talks [J].Curr Biol, 2001, 11:307 - 310.
    [281] Gadjieva R, Axelsson E, Olsson U,et al. Analysis of gun phenotype in barley magnesium chelatase and Mg-protoporphyrin IX monomethyl ester cyclase mutants[J]. Plant Physiol Biochem, 2005, 43(10-11):901-8.
    [282] Chen G, Bi Y R, Li N. EGYl encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development[J]. The Plant Journal, 2005, 41 ( 3 ) : 364-375.
    [283] Reinbothe S., Mache R and Reinbothe C. A second, substrate-dependent site of protein import into chloroplasts[J]. Proc. Natl. Acad. Sci. USA ,2000, 97: 9795–9800.
    [284] Mccormac DJ, Barkan A. A nuclear gene in-required for the translation of the chloroplast atpB/E mRNA[J]. The Plant Cell, 1999, 11(9):1709-1716.
    [285] Mulo P, Laakso S, Maenpaa P,et al. Stepwise photoinhibition of photosystem B[J]. Plant Physiol, 1998, 117:483-490.
    [286] Stephane B, Patrick F. Loss of atbino3 leads to the specific depletion of the Light-harvesting system[J]. The Plant Cell,2002, 14:2303-2314.
    [287] Ostheimer G J, Williams C R, Belcher S,et al. Group II intron splicing factors derived by diversification of an ancient RNA-binding domain[J]. EMBO J, 2003, 22(15):3919-3929.
    [288] Sundberg E,Slagter J G, Fridborg I, et al. ALBIN03, an Arabidopsis nuclear gene essential for chloroplast differentiation, encodes a chloroplast protein that shows homology to proteins present in bacterial membranes and yeast mitochondria[J]. The Plant Cell, 1997, 9 (5): 717-730.
    [289] Meskauskiene R. Nater M, Goslings D, et al. FLU: A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana[J]. Proc. Natl. Acad. Sci. USA, 2001,98 (22):12826-12831.
    [290] Terry MJ. Phytochrome chromophore-deficient mutants[J]. Plant Cell Environ, 1997,20:740-745.
    [291] Terry MJ, Wahleithner JA, Lagarias JC.Biosynthesis of the plant photoreceptor phytochrome[J]. Arch Biochem Biophys, 1993,306:1-15.
    [292] Kushnir S. Babiychuk E, Storozhenko S, et al. A mutation of the mitochondria ABC transporter Stal leads to dwarfism and chlorosis in the Arabidopsis mutant stank[J]. The Plant Cell, 2001,13(1):89-100.
    [293] Coschigano KT,Melo-Oliveira R,Lim J,et al.Arabidopsis gls mutants and distinct Fd-GOGAT genes: implications for photorespiration and primary nitrogen assimilation[J]. Plant Cell, 1998, 10: 741-752.
    [294] Lopez-Juez E, Jarvis RP, Takeuchi A, et al. New Arabidopsis cue mutants suggest a close connection between plastid and phytochrome regulation of nuclear gene expression[J]. Plant Physiol, 1998, 118: 803-815.
    [295] Oster U,Tanaka R. Tanaka A, et al. Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana[J]. The Plant Journal, 2000,21(3):305-310.
    [296] 许大全,张玉忠,张荣铣.植物光合作用的抑制[J]. 植物生理学通讯,1992. 28: 237-243.
    [297] 李素芳,成浩,虞富莲,等.安吉白茶阶段性返白过程中氨基酸的变化[J].茶叶科学,1996, 16(2): 153-154.
    [298] Neatby K W. A chlorophyll mutation in wheat[J]. J. Hered,1933, 24: 159-62.
    [299] Ellsworth R. K., Dullaghan J. P., and St. Pierre M. E. The reaction mechanism ofS-adenosyl-L-Methionine:magnesium protoporphyrin IX methyltransferase of wheat[J]. photosynthetica, 1974, 8:375-383.
    [300] Lupton F.G.H.. 北京农业大学遗传育种研究室.小麦育种的理论基础[M].北京:北京农业大学出版社,1988.
    [301] Sears E R. Effect of chromosome XII and XVI on the action of Neatby's virescent[J]. Wheat Inform. Serv. 1957,6: 1.
    [302] Sears LMS, Sears ER .The mutants chlorina-1 and Hermsen’s virescent[A]. KW Finlay, KW Shepherd, eds. Proceedings of the Third International Wheat Genetics Symposium[C]. Canberra. New York:Plenum Press, 1968. 299-305.
    [303] Washington, W.J. EMS induced chlorophyll mutations in hexaploid wheat variety Chinese Spring[J]. Genetics, 1969, 61: 562 .
    [304] Washington WJ, Sears ER. Ethyl methanesulfonate-induced chlorophyll mutations in Triticum aestivum[J]. Can J Genet Cytol ,1970,12:851-859.
    [305] Pettigrew R and Driscoll CJ. Cytogenetic studies of a chlorophyll mutant of hexaploid wheat[J]. Heredity ,1970, 25(3): 650-655.
    [306] Rao S., E.R. Sears Chemical mutagenesis in Triticum aestivum[J]. Mutation Research, 1964,1: 387-99.
    [307] Klindworth DL, Williams ND and Duysen ME. Genetic analysis of chlorina mutants of durum wheat[J]. Crop Sci, 1995, 35: 431-436.
    [308] Varughese, G., M.S. Swaminathan. A comparison of the frequency and spectrum of mutations induced by gamma rays and EMS in wheat[J]. Indian J. Genet, 1968, 28: 158-65.
    [309] Hermsen, J.G. Hybrid necrosis and hybrid chlorosis in wheat[M]. Proc. 2nd Intern. Genet. Symp. Hereditas suppl. Lund ,1966, 439-452.
    [310] Freeman T P, Duysen M E, Olson N H, et al . Estimation of the light distribution between photosystems I and II in intact wheat leaves by fluorescence and photoacoustic measurements[J]. Photosynthesis Research, 1986,7(3):257-267 .
    [311] 徐恒平,汪沛洪.小麦返白系返白期间 Po1y(A)RNA 与蛋白质水平的变化[J]. 植物生理学报,1992,18(4):337-340.
    [312] Pettigrew R, Driscoll CJ, Rienits KG . A spontaneous chlorophyll mutant in hexaploid wheat[J]. Heredity ,1969,24 :481-487.
    [313] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [314] 林钰琼,刘松,傅亚萍,等.T-DNA 插入水稻突变体库的叶绿素和净光合速率的变化[J].中国水稻科学,2003,17( 4 ) : 369-372.
    [315] Xu D Q, Chen X M, Zhang L X, et al. Leaf photosynthesis and chlorophyll fluorescence in a chlorophyll-deficient soybean mutant[J]. Photosynthetica, 1993, 29(1): 103-112.
    [316] Dunkley P R, Anderson J. The linht-harvestinn chlorophyll a/b 一 protein complex from barley thylakoid membranes: Polypeptide composition and characterization of an olinomer[J]. hiochim. hiophys. Acta, 1979, 545: 175.
    [317] Dei M. Benzyladenine-induced stimulation of 5-aminoleuvulinic acid accumulation under various light intensities in levulinic acid-treated cotyledons of etiolated cucumber[J]. Physiol Plant, 1985, 64: 153-160.
    [318] Bogorad L. Porphyrin synthesis[A] .Colowick SP, Kaplan NO. Methods in Enzymology 5[C]. New York: Academic Press, 1962. 885-891.
    [319] Rebeiz C A, Mattheis J R, Smith B B, et al. Chloroplast Biosynthesis and accumulation of protochlorophyll isolated etioplasts and developing chloroplasts[J]. Arch Biochem Biophys, 1975,171: 549-567.
    [320] Terry MJ,Kendrick RE.Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato[J].Plant Physiol, 1999, 119: 143-152.
    [321] 李继耕,李玉湘,耿玉轩,等. 大麦叶绿体突变体的类囊体膜蛋白质及叶绿体超微结构的研究[J]. 作物学报,1984, 10(2):101-104.
    [322] 陈云伟. 油菜黄化突变体叶绿体发育特性研究[D].四川大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700