用户名: 密码: 验证码:
奎尼酸生物合成的代谢工程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奎尼酸是一种具有极高价值的精细化工产品和医药中间体,在医药工业、食品工业、化工等行业均有较大的用途。本研究是将代谢工程技术应用于产奎尼酸基因工程菌的构建。根据代谢工程原理系统分析了细胞代谢网络,并利用DNA重组技术合理设计细胞代谢途径及其遗传修饰,进而完成细胞特性改造。目的是在大肠杆菌中构建奎尼酸生物合成途径,将碳代谢流最大程度的引向奎尼酸生成的方向。
     利用大肠杆菌莽草酸途径合成新的代谢物奎尼酸,需要提高上游几种代谢中间产物PEP、E4P、DAHP、DHQ的含量,与之对应的编码其合成酶的几种基因分别是ppsA、tktA、aroG、aroB。另外须在宿主细胞引入编码与奎尼酸合成有关的异源酶基因扩展代谢途径,然后串联表达酶基因,同时适量增加不同种属的多个关键酶的有效含量,改善限速反应。利用同源重组进行基因整合和基因破坏,改造染色体结构定向改变微生物代谢途径。本文主要从以下几个方面对奎尼酸基因工程菌进行了改造:
     1.编码奎尼酸脱氢酶的qutB基因是来自于构巢曲霉。在现有的基础上构建了一系列包含qutB基因的表达重组质粒。SD序列与起始密码子不同距离的pBVqutB1,pBVqutB2;具有qutB双拷贝三基因串联的pBVqutBqutBaroG;具有ppsA、tktA、qutB三基因串联的pBVPTB,以及新构建的单基因重组质粒pETqutB,pBVtacqutB,pTrcqutB。并对含有qutB基因的一系列重组质粒在大肠杆菌中进行了表达与否的验证。结果显示pTrcqutB,pBVtacqutB没有特异的蛋白表达带,说明pTrc99a和pBVtac载体不适合用于qutB基因的表达。pETqutB经过IPTG诱导后有特异的蛋白表达,并且在2—5小时内随着时间的延长而增加,但是时间更长(7h)则因为蛋白降解而出现表达蛋白减少的迹象。pBVqutB1和pBVqutB2同本实验室保存的pBVqutB没有出现明显的蛋白表达量上的差异,这说明利用pBV220表达载体表达qutB基因,起始密码子与SD序列之间距离的远近并不是影响其表达量的关键。含有两个qutB基因和一个aroG基因的多基因串连质粒pBVqutBqutBaroG,经过热诱导,也出现了非常明显的表达条带。
     2.对含有qutB基因在大肠杆菌中可以表达几种重组质粒进行酶活测定,与含有pBVqutB的对照菌相比,含有pBVqutB1,pBVqutB2的菌株的奎尼酸脱氢酶的酶活没有明显变化,三基因串联的pBVqutBqutBaroG甚至出现了酶活降低的现象。
     3.成功地从粗糙脉孢菌的基因组中克隆了奎尼酸脱氢酶的基因qa-3,并与几种表达载体连接得到了pBVqa3、pETqa3、pBVtacqa3、pTrcqa3,但是这些质粒重组子在大肠杆菌中均没有观察到该基因的特异表达条带。
     4.结合qa-3基因的密码子的特点和计算机模拟的mRNA二级结构,对qa-3基因的密码子和mRNA二级结构进行改造,优化该基因的密码子结构,降低形成mRNA二级结构的自由能,得到新的基因qa3RG~m。构建的pBVqa3RG~m重组质粒在大肠杆菌中成功的表达了奎尼酸脱氢酶,酶活也比对照明显提高。同时还构建了ppsA、tktA、qa3RG~m三基因串联的重组质粒pBVPTA。
     5.成功的构建了pUC-DK、pUC-DAK、pUC-DBK并制备了线性化片段DK、DAK、DBK,为基因敲除和基因替换做好了准备。利用Red重组系统成功的地进行了基因敲除和基因替换,并稳定了敲除和替换菌株的基因型,把这株菌株定名为大肠杆菌31K。
     6.成功的构建奎尼酸发酵的工程菌5、AP、B、A、BP、5K、APK、BK、AK、BPK、220K。通过实验室摇瓶初步发酵,在硅胶板上可以初步确定,菌株AP(31BK/pBVPTA)产生的奎尼酸量最大,也最稳定。
     7.将菌株AP扩大摇瓶发酵的规模,然后经过树脂富集,HPLC制备,得到了微量的奎尼酸样品。经过红外光谱、核磁共振、电子喷雾质谱以及紫外、液质联用等的鉴定可以确定与奎尼酸标准品无差异,由此可以确定我们利用生物合成并且分离鉴定了奎尼酸。
     总之,为了合成奎尼酸并提高其产量,本研究从分子进化、基因重组、网络构建等不同的方面对奎尼酸生物合成进行了许多有益尝试,既为研究奎尼酸的生物合成奠定了基础,也为基因工程应用于代谢工程提供一定的借鉴意义。
Quinic acid is an important fine chemical product and intermediates of drag synthesis, which can be numerously used in drag synthesis, food and chemistry industry. In this study metabolic engineering are applied for genetic engineering bacteria of quinic acid. This work about the analysis of metabolic pathway and designing rational genetic modification is to optimize cellular properties by using principle of molecular biology. The objection is to establish an approach to quinic acid biosynthesis in E.coli and change the carbon flow to redirect into the quinic acid biosynthesis branch.
     Production of a new metabolite quinic acid, used shikimate pathway in E.coli, it is necessary to enhance upriver metabolic intermediate , such as PEP、E4P、DAHP and DHQ which corresponding gene is ppsA、tktA、aroG、aroB, respectively. It is necessary to extend metabolic pathway by introduction of a heterogenous gene qutB or qa-3 into the host cell. Double specific enzyme genes or three ones co-expressed in a single plasmid vector to improve the enzymes' rate-limiting reactions. Both disruption of the aroD gene and directed-site insertion of the aroB or qa-3 or qutB gene make use of homologous recombine to change chromosome structure and directionally shift metabolic pathway of microorganism. This thesis improved genetic engineering bacteria of quinic acid biosynthesis on the following respects:
     1. A series of recombinant plasmid including qutB gene encoded quinate dehydrogenase from Aspergillus nidulans were constructed, such as pBVqutB1 and pBVqutB2 involved different distance between SD sequence and start codon; pBVqutBqutBaroG of three genes in series; pBVPTB contained ppsA、tktA、qutB, as well as pETqutB, pBVtacqutB, pTrcqutB contained single gene qutB. These recombinant plasmids were expressed in E.coli and the results showed that pTrcqutB and pBVtacqutB lacked specific protein band, explaining the vectors pTrc99a and pBVtac are not suitable for the expression that used for the gene of qutB. The pETqutB expresses the specific protein band after IPTG induced, and in 2-5 hours the expression increases along with horary extension but time is long (7 h) then to appear the evidence that expression protein reduce for protein degradation. pBVqutB1 and pBVqutB2 compared with the pBVqutB kept in this laboratory don't appear the obvious difference about protein expression. This elucidation shows that the distance between start codon and SD sequence was not the key to affect the expression of qutB gene when vector pBV220 was used. pBVqutBqutBaroG implied two qutB and one aroG also appears very obviously specific protein band.
     2. Enzyme activity of quinate dehydrogenase expressed by pBVqutB1, pBVqutB2 is not obvious distinguish compared with reference by pBVqutB, but by pBVqutBqutBaroG decreases.
     3. qa-3 gene was cloned successfully from genome of Neurospora crassa which also encodes quinate dehydrogenase and constructed into vectors to obtain pBVqa3、pETqa3、pBVtacqa3、pTrcqa3 . But they don't express in E.coli.
     4. According to codon usage of qa-3 and computer simultating its mRNA secondary structure, some codons were changed and lowered free energy a lot from -374.3 kJ/mol to -80.5 kJ/mol. New gene qa3RG~m was expressed in E. coli and also the enzyme activity of quinate 5-dehydrogenase could be accurately surveyed and increased obviously. pBVPTA including ppsA、tktA、qa3RG~m also was constructed.
     5. pUC-DK、pUC-DAK、pUC-DBK were constructed successfully and linear fragment DK、DAK、DBK were prepared for gene knockout and gene replacement. In order to increasing the in vivo catalytic activity of specific enzymes, the chromosomal genome of E. coli was modifizated by using Red recombination system. Stabilizing the genotype and new strain was named as 31BK.
     6. After transforming the recombinant plasmid into 31BK, the flasks fermentation demonstrate that strain AP (31BK/pBVPTA) has higher and stabler quinic acid production in engineering bacterium 5、AP、B、A、BP、5K、APK、BK、AK、BPK、220K through silica gel chromatography.
     7. The flasks fermentation of strain AP has been enlarged and gained a dram of quinic acid sample passed through enrichment by resin, HPLC preparation et al. NMR, FT-IR Microscope, Ion Trap (HCT) Spectrum, LC-MS and UV identified the sample was not difference with standard. This conforms that we utilize the method of biosynthesis to synthesize, purify and identify the production quinic acid.
     In summary, this study tries to actively experiment from different aspects e.g. molecular evolution, gene recombination and network construction to produce QA and enhances its yield. And these settle the groundwork for biosynthesis of quinic acid and provide a reference for genetic engineering applied to metabolic engineering.
引文
[1]高木满.茶提取液中的奎尼酸含量及其提取特性,福建茶叶,2002,1:26
    [2]D.A.MaCamey, T.M.Thorpe and J.P, MaCarthy. Bitterness in Foods and Beverage. ed. by R.L.Rousiff, Elsevier, 1990,pp 169
    [3]高木满.茶树不同部位奎尼酸含量的差异,福建茶叶,2002,2:2
    [4]滕荣伟,周志宏,王德祖,等.白花刺参中的咖啡酰基奎宁酸成分].波谱学杂志,2002,19(2):167
    [5]吴文标,盛德贤,吕世安,等.马铃薯酚类化合物的研究.中国马铃薯,2001,15(3):158
    [6]梁侨丽,丁林生.枳椇叶化学成分研究(Ⅱ).中草药,1997,28(8):457
    [7]张卫东,HA. ThiBangTam,陈万生,等.中药灯盏细辛中酚酸类化合物的结构与活性研究.中国药学杂志,2002,37(8):360
    [8]姜宏梁,徐丽珍,杨学东,等.北刘寄奴中奎尼酸酯类化学成分研究.中国药学杂志,2002,27(12):923
    [9]King P J, Ma G, Miao W, et al. Structure2activity relation-ships; analogues of the dicaffeoylquenic and dicaffeoyltartaricacids as potent inhibitors of human immunodeficie- ncy virus type2I integrase and replication. J Med Chem, 1999,42:497
    [10]RobinsonW E J r, ReineckeM G, Sunder S, et al. In2h ibitors of H Ⅳ 21 rep lication that inhibit H Ⅳ integrase[J ]. Proc Natl Acad Sci USA, 1996, 93:6326
    [11]徐玉文,刘永久.人免疫缺陷病毒整合酶抑制剂的研究现状.药学进展,2002,26(3):138
    [12]Tomesa,Jorgecs,Juancl. Hepatoprotective activity of polyphenolic compounds from Cynara Slolymus against CC14 toxicity in isolated rat hepatocytes. J Nat Prod, 1987,50(4): 612
    [13]董俊兴.旋覆花抗乙型肝炎病毒有效成分及其作用的研究.北京:军事医学科学院,1996.102
    [14]孙燕荣,董俊兴,吴曙光.二咖啡酰奎宁酸对成纤维细胞增殖与功能的影响.生命科学研究,2001,5(4):355
    [15]Laver G,Garman E. The origin and control of pandemic influenza Science ,2001,293(5536) : 1776
    [16]龚晓明,许激扬,丁玉林.抗流感病毒新药oseltamivir的合成改进.中国新药杂志,2003,12(6):454
    [17]李连生,刘克刚,姚祝军,等.唾液酸类化合物的合成研究进展.有机化学,2002,22(10):718
    [18]寺田澄男.Smallanthus sonchifolia 地上部分对α-葡糖苷酶及血糖升高的抑制活性.国外医学中医中药分册,2004,26(3):170
    [19]张卫东,HA. ThiBangTam,陈万生,等.灯盏花中新的酚酸类化合物的结构及活性研究.药学学报,2001,36(5):360
    [20]李惠庭,罗思齐.天然药物的研究[J].中国医药工业杂志,1997,28(2):82
    [21]Osawa K.木瓜中新的奎尼酸衍生物.国外医学中医中药分册,2003,25(2):77
    [22]奥田拓男.药物疗法—和汉药.日本医学介绍,1994,15(8):353
    [23]吴勇,管玫.(IS,3R,4S,5R)—1,4—二羟基—3—二苯叔丁硅氧基—6—氧代双环[3.2.1]—辛—7—酮的合成.华西医学杂志,1998,13(2):93
    [24]吴勇,管玫,成丽华.9—失碳—1α,25—二羟基维生素D_3A环合成子的合成方法.西药学杂志.2000,15(2):109
    [25]Haribal M.. Oviposition stimulant for the zebra swallowtail butterfly, Eurytides marcellus form the foliage of pawpaw. Asimina Triloba Chemoecology, 1998, 8 (3) :99
    [26]Gongora L, Giner RM, Manez S, et al. Effects of caffeoyl conjugates of isoprenyl- hydroquinone glucoside and quinic acid on leukocyte function. Life Sci 2002, 71(25):2995
    [27]Rros MT, Maycock CD, Ventura MR. The first synthesis of (-)-asperpentyn and efficient syntheses of(+)-harveynone, (+)-epiepoformin and (-)-theobroxide. Chemistry 2000,6 (21):3991
    [28]Fang N, Yu S, Prior RL. LC/MS/MS characterization of phenolic constituents in dried plums. J Agric Food Chem 2002,50(12):3579
    [29]陈梅芳,刘云,徐琪寿.构巢曲霉奎尼酸脱氢酶基因qutB在大肠杆菌中的克隆与表达.生物技术通讯2002,13(6):430
    [30]周道兵,陈笳鸿,汪咏梅,等.塔拉单宁水解废液回收奎尼酸的工艺试验.林产化工通讯,2001,35(1):17
    [31]Frost JW, Draths KM , Ward TC. Synthesis of quinic acid from glucose. United States Patent, 1998,5 798 236
    [32]Hawkins AR, Lamb HK, Smith M, et al. Molecular organization of the quinic acid utilization (QUT) gene cluster in Aspergillus nidulans. Molecular and General Genetics, 1988, 214:224
    [33]Bailey JE. Towards a science of metabolic engineering [J].Science ,1991,252: 1668—1674
    [34]Cameron D C ,Tong I-T. Cellular and metabolic engineering[J]. Applied Biochemistry and Biotechnology, 1993,38 (1-2): 105—140
    [35]Stephanopoulos G N , Aristidou A A , Nielsen J. Metabolic Engineering : Principles and Methodologies[M]. San Diego : Academic Press, 1998
    [36]郁静怡,杨胜利,代谢工程,生物工程学报,1996,12 (2):109—112
    [37]Sun, LP., Wu, HZ., Zhang, HZ. Metabolic-The third genetic engineering. Pharmaceutical Biotechnology. 2000, 7(2): 71—76
    [38]Stephanopoulos, G Metabolic fluxes and metabolic engineering. Metab. Eng. 1999,1(1): 1—11
    [39]Frederick R.,Role CK.,et al. The complete genome sequence of Escherichia coli K12. Science, 1997,277(5331): 1453—1471
    [40]Stephanopoulos G. Bioinformatics and metabolic engineering. Metab Eng, 2000,29(3): 157—158
    [41]Strohl WR. Biochemical engineering of nature product biosynthesis pathways. Metab. Eng. 2001,3(1): 4—14
    [42] Komatsubara S. Amino acids: genetically engineered Serratia marcescens. In: Recombinant microbes for industrial and agricultural applications(Y. Murooka and T. Imanaka. eds),1994, pp467-484. Marcel Dekker, New York.
    [43] Sauer U, Lasko D R, Fiaux J et al. Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J.Bacteriol, 1999 ,181(21): 6679-6688.
    [44] Bongaerts J , K¨armer M, Miiller U et al. Metabolic engineering for microbial production of aromatic amino acids and derived compounds [J]. Metab Eng , 2001,3:289—300.
    [45] Bently R. The shikimate pathway-a metabolic tree with many branches. Critical Reviews in Biochemistry and Molecular Biology, 1990,25:307-384
    [46] Van Den Hombergh JPTW, Moore JD ,Charles IG , et al. Overproduction in Escherichia coli of the dehydroquinate synthase domain of the Aspergillusnidulans pentafunctional AROM protein [J] . Biochemical Journal,1992, 284: 861-867
    [47] Geever RF, Huiet L, Baum JA, et al. DNA sequence, organization and regulation of the qa gene cluster of Neurosprer crassa [J] . Journal of Molecular Biology, 1989,207:15-34
    [48] Kang X, Scheibe R. Purification and characterization of the quinate : oxidoreductase from Phaseolus Mungo sprouts [J] . Phytochemistry, 1993,33 (4):769-773
    [49] Flores S, Gosset G, Flores N et al. Analysis of Carbon Metabolism in Escherichia coli Strains with an Inactive Phosphotransferase System by 13C Labeling and NMR Spectroscopy. Metab Eng, 2002,2(4): 124-137
    [50] Patnaik R, Spitzer R G, Liao J C. Pathway engineering for production of aromatics in Escherichia coli : confirmation of stoichiometric analysis by independent modulation of AroG,TktA,and Pps activities[J]. Biotechnol Bioeng, 1995,46(4): 361—370.
    [51] Patnaik R , Liao J C. Engineering of Escherichia coli central metabolism for aromatic metabolite production and near theoretical yield[J],Appl Environ Microbiol ,1994 ,60: 3903—3908.
    [52] Li K, Mikola M R , Draths K M et al. Fed-batch fermentorsynthesis of 3 - dehydroshikimic acid using recombinant Escherichia coli [J]. Biotechnol Bioeng,1999,64(1):61 — 73.
    [53] Flores N, Xiao J, Berry A et al. Pathway engineering for the production of aromatical compounds in Escherichia coli[J]. Nat Biotechnol, 1996,14: 620—623.
    [54] Berry A. Improving production of aromatic compounds in Escherichia coli by metabolic engineering[J],Trends Biotechnol,1996,14:250-256.
    [55] WU YQ(吴永庆),JIANG PH(江培翝),FAN CS(范长胜) et al. Cloning and co-expression of ppsA and pckA genes in Escherichia coli. Journal of Fudan University (复旦学报),2002, 41(1): 31-35
    [56] Hesterkamp T, Erni B A. A reporter gene assay for inhibitors of the bacterial phosphoenolpyruvate : sugar phosphotransferase system[J] . J Micro Biotech , 1999,1(2):309-317.
    [57] Iida A , Teshiba S , Mizobuchi K. Identification and characterizationof the tktA gene encoding a second transketolase in Escherichia coli K-12. J Bacteriol ,1993 ,175(17):5375-5383.
    [58] LI Y H(李永辉), LIU Y(刘云), WANG S C(王世春) et al.Co-expressions of Phosphoenolpyruvate Synthetase A(ppsA) and Transketolase A (tktA) Genes of Escherichia coli. Chinese Journal of Biotechnology(生物工程学报),2003, 19(3): 301—306
    [59] Berry A, Dodge T C, Pepsin M et al. Application of metabolic engineering to improve both the production and use of biotech indigo [J].Indust Microbiol Biotechnol, 2002, 28(3): 127—133.
    [60] Kim T H, Namgoong S K, Kwak JH et al. Effects of tktA, aroF~(FBR), and aroL expression in the tryptophan producing Escherichia coli [J].Microbiol Biotechnol, 2000, 10(6): 789-796 .
    [61] Lu J L , Liao J C. Metabolic engineering and control analysis for production of aromatics :role of transaldolase[J] . Biotechnol Bioeng , 1997 ,53:132—141.
    [62] Christophe C, Naruemol N R, Joachim W S et al. Dynamic modeling of the central carbon metabolism of Escherichia coli [J]. Biotechnol Bioeng , 2002 ,79(1): 53—73.
    
    [63] Poolman B., Koning WN. Secondary solute transport in bacteria. Biochem. Biophys. Acta. 1993,1183:5-39
    
    [64] Natarajan A.,Srienc F.Dynamics of glucose uptake by single Escherichia coli cells. Metab.Eng. 1999,1(4): 320-333
    [65] Strohl WR . Biochemcal engineering of natural product biosynthesis pathways[J]. Metab Eng, 2001, 3(1):4-14
    [66] Romeo T., Gong M. Genetic and physical mapping of the regulatory gene csrA on the Escherichia coli K-12 chromosome. J. Bacteriol. 1993, 175:5740-5741
    [67] Romeo T., Gong M., Liu Y., et al. Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J. Bacteriol. 1993, 175: 4744- 4755
    [68] Liu MY., Yang H., Romeo T. The product of the pleiotropic Escherichia coli gene csrA modulates glycogen biosynthesis via effects on mRNA stability. J. Bacteriol. 1995, 177:2663-2672
    [69] Romeo T. Post-transcriptional regulation of bacterial carbohydrate metabolism: evdence that the gene product CsrA is a global mRNA decay factor. Res. Microbiol.1996, 147:505-512
    [70] Sabis N., Yang H., Romeo T. Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA. J. Biol. Chem. 1995, 270: 29096-29104
    [71] Yang H., Liu MY., Romeo T. Coordinate genetic regulation of glycogen catabolism and biosynthesis in Escherichia coli via the CsrA gene product. J. Bacteriol. 1996, 178:1012-1017
    [72]Wei BD., Brun-Zinkernagel AM., Simecka JW., et al. Positive regulation of motility and flhDC expression by the RNA-bing protein CsrA of Escherichia coli. 2001, 40(1): 245—256
    [73]Romeo T. Global regulation by the small RNA-binding protein CsrA and the non-ciding RNA molecule CsrB. Mol. Microbiol. 1998, 29(6): 1321—1330
    [74]Liu MY., Gui G., Wei B., et al. The RNA molecule CsrB binds to the global regulation protein CsrA and antagonizes its activity in Escherichia coll. J. Biol. Chem. 1977, 272:17502—17510
    [75]Ramseier TM., Bledig S., Michotey V., et al. The global regulatory protein medulates the direction of carbon flow in Escherichia coli. Mol. Microbiol. 1995, 16(6): 1157—1169
    [76]Li K, Mikola MR, Draths KM, et al. Fed-batch fermentor synthesis of 3-dehydroshikimic acid using recombinant Escherichia coli[J]. Biotechnol Bioeng, 1999,64(1):61—73
    [77]Kramer R. Genetic and physiological approaches for the production of amino acids.J.Biotechn. 1996, 45:1—21
    [78]Jone KL., Keasling JD. Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab. Eng. 2000, 2(4): 328-338
    [79]RicciJCD.,Hernandez ME. Plasmid effects on Escherichia coli metabolism. Cri. Rev. Biotech.2000, 20(2):79—108
    [80]Jiang PH.,Shi M.,Qian ZK.,et al. Effect of F209S mutation of Escherichia coli aroG on resistance to phenylalanine feedback inhibition.Acta. Biochimica Biophysica Sinica.2000, 32(5):441—444
    [81]刘云,徐琪寿 苯丙氨酸生物合成途径关键酶基因串联表达及抗反馈抑制研究 博士论文,北京:军事医学科学院,2000.
    [82]Moore JD, Coggins JR, Virden R, et al. Efficient independent activity of a monomeric, monofunctional dehydroquinate synthase derived from the N-terminus of the pentafunctional AROM protein ofAspergillus nidulans [J] . Biochemiscal Journal, 1994, 301:297—304
    [83]Frost JW, Bender JL, Kadonaga JT, et al. Dehydroquinate synthase from Escherichia coli: purification, cloning and construction of overproducers of the enzyne [J]. Biochemistry, 1984, 23:4470—4475
    [84]Ger YM, Chen SL, Chiang HT, et al. A single Ser-180 mutation desensitizes feedback inhibition of the phenylalanine -sensitive DAHP synthase in E.coli [J] . Journal of Biochemistry, 1994, 116:986—990
    [85]Gubler M, Jetten M, Lee SH, et al. Cloning of the pyruvate kinase gene (PYK) of Corynebacterium glutamicum and site-specific inactivation of PYK in a lysine-producing Corynebacterium lactofermentum strain [J] . Applied and Enviromental Microbiology, 1994, 60(7):2494—2500
    [86]Draths KM., Pompliano DL., Conley DL., et al. Biocatalytic synthesis of aromatics from D-glucose: The role of transketolase. J. Am. Soc. 1992, 114:3956—3962
    [87]Liao JC., Chao YE, Patnaik R. Alteration of the biochemical values in central metabolism of Escherichia coli. Ann. N. Y. Acad. Sci. 1994, 754: 21-34
    [88] Patnaik R., Spitzer RG., Liao JC. Pathway engineering for production of aromatic in Escherichia coli: conformation of stoichiometric analysis by independent modulation of aroG、TktA and Pps activities. Biotech.and Bioeng. 1995, 46:361-370
    [89] Patnaik R., Liao JC. Engineering of Escherichia coli central metabolism for aromatic metabolite production with neer theoretical yield. Appl.Env.Microbiol. 1994,60:3903-3908
    [90] Mori M., Yokota A., Sugitomo S.,et al. Process for the isolation of a strain withreduced pyryuvate kinase activity or complete lacking it. Patent JP 1987, 62,205,782
    [91] Flores N.,Xiao J.,Berry A., et al. Pathway engineering for the production of aromatic compounds in Escherichia coli. Nature Biotechnology. 1996,14:620- 623
    [92] Snell KD., Draths KM., Frost JW. Synthetic modification of the Escherichia coli chromosome: enhancing the biocatalytic conversion of glucose into aromatic chemicals. J.Am.Chem.Soc. 1996, 118: 5605- 5614
    
    [93] Bailey JE. Towards a science of metabolic engineering. Science, 252:2668-2675
    [94] Neidhardt FC, Savageau MA. Regulation beyond the operon. In:Escherichia coli and Salminella: Cellular and molecular biology, Vol 2, 2~(nd) edn. FC Neidhart, R Curtiss III, JL Ingraham, ECC Lin, KB Low, et al.(eds.) Washington, DC: Amarican Society for Microbiology, pp1310-1324
    [95] Iida A, Teshiba S, Mizobuchi K. Identification and characterization of the tktA gene encoding a second transketolase in Escherichia coli K-12. J Bacteriol, 1993, 175(17): 5375-5383
    [96] Tatarko M, Romeo T. Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli. Curr Microbiol, 2001, 43(1): 26-32
    [97] Patnaik R, Roof WD, Young RF, et al. Stimulation of glucose catabolism in Escherichia coli by a potential futile cycle. J Bacteriol, 1992,174: 7527-7532
    [98] ParekhS., Vinc VA., Strobel RJ. Improvement of microbial strains and fermentation processes. Appl. Microbiol. Biotechnol, 2000, 54: 287-301
    [99] Murphy KC. Use of bacteriophage λ recombination function to promote gene replacement in Escherichia coli. J. Bacteriol. 1998, 180(8): 2063-2071
    [100] Yu DG, Ellis HM., Lee EC, et al. An efficient recombination system for chromosome engineering in Escherichia coli. PNAS, 2000, 97(11): 5978-5983
    [101] Muyrers JPP., Zhang YM., Stewart AF. Techniques: recombinogenic engineering-new options for cloning and manipulating DNA. Trends in Biochem. Sci. 2001, 26(5): 325-331
    [102] Datsenko KA., Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS, 2000,97(12): 6640-6645
    [103] Muyrers JPR, Zhang YM., Testa G, et al. Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res. 1999, 27(6): 1555-1557
    [104] Taroncher-Oldenburg G, Stephanopoulos G Targeted,PCR-based gene disruption in cyanobacteria: inactivation of the polyhydroxyalkanoic acid synthase genes in Synechocystis sp. PCC6803. Appl Microbiol Biotechnol. 2000, 54:677—680
    [105]Wang HL., Feng EL., Shi ZX., et al. Quick knockout ofShigella flexneri asd gene with Red system. Bull Acad Med Sci. 2002, 26(3): 161—164
    [106]Murphy KC., Campellone KG., Poteete AR. PCR-mediated gene replacement in Escherichia coli. Gene, 2000, 246:321—330
    [107]Tribe DE. Novel microorganism and method. US Patent 4,681,85, 1985
    [108]Amann,E., Ochs,B. and Abel,K.J.Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli Gene 69 (2), 301-315 (1988)
    [109]张智清,姚立红,侯云德.含P_RP_L启动子的原核表达载体的组建及其应用.病毒学报,1990;6(2):111—115
    [110]金冬雁,黎孟枫等译。分子克隆实验指南(第二版),北京:科学出版社,1994
    [111]Kang X, Scheibe R. Purification and characterization of the quinate: oxidereductase from phaseolus Mungo sprouts. Phytochemistry, 1993, 33(4):769—773
    [112]常会波,刘云,吴建新等,大肠杆菌脱氢奎尼酸合成酶基因aroB的克隆和表达,军事医学科学院院刊,2004年28(4):326—332
    [113]Geever R F, Huiet L, Baum J A, Tyler B M, Patel V B, Rutledge B J, Case M E, Giles N H. DNA sequence, organization and regulation of the qa gene cluster of Neurospora crassa. J Mol Biol. 1989: 207(1): 15—34.
    [114]Michael S, Mary E C, Christine C D, Norman H G, Slidney R K. Clone the quinic acid (qa) gene cluster from Neurospora crassa:identification of recombinant plasmids containing both qa-2+and qa-3+. Gene, 1981,14:23—32
    [115]Sharp P M., Li W H. Codon usage in regulatory genes in Escherichia coli does not reflect selection for ‘rare’ codons. Nucleic Acids Research. 1986, 14(19): 7737—7749
    [116]Borgia P T, Eagleton L E, Miao Y H. DNA preparations from Aspergillus and other filamentous fungi. Biotechniques, 1994, 17(3): 430—432
    [117]Sharp P M, Devine K M, Codon usage and gene expression level in Dictyostelium discoideum: highly expressed genes do ‘prefer’ optimal codons. Nucleic Acids Research, 1989, 17(13): 5029—5039
    [118]Brinkmann U, Mattes RE, Bucke LP. High-lever expression of recombinant genes in E. coli is dependent on the availability of the dnaY gene product. Gene, 1989,85(1): 109—114
    [119]Robinson M, Lilley R, Little S, Emtage J S, Yarranton G, Stephens P, Millican A, Eaton M, Humphreys G. Codon usage can affect efficiency of translation of genes in Escherichia coli. Nucleic Acids Research, 1984, 12(17): 6663—6671
    [120]Spanjaard R A, van Duin J. Translation of the sequence AGG-AGG yields 50% ribosomal frameshift. Proc Natl Acad Sci USA, 1988, 85(21): 7967—7971
    [121]杨吉吉,李太华,徐维明.大肠杆菌中外源基因表达的研究进展.微生物学免疫学进展.2000,28(2):69~72
    [122]时成波,吕安国,吴文芳,杨立泉,冯家勋,柏学亮.改造稀有密码子提高SEA蛋白表达量.生物工程学报.2002.18(4):477—480
    [123]Zhang SP, Zubay G, Goldman E. Low-usage codons in E.coli,yeast,fruit fly and primates. Gene, 1991,105 (1):61—72
    [124]Datsenko KA, Wanner BL One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products Proc Natl Acad Sci USA, 2000,97(12):6640—6645
    [125]Murphy KC Use of bacteriophage λ recombination function to promote gene replacement in Escherichia coli J. Bacteriol. 1998, 180(8):2063—2071
    [126]王恒墚,冯尔玲,史兆兴等. 用Red系统快速敲除痢疾杆菌asd基因.军事医学科学院院刊,2000,26(3):161—164
    [127]Duncan K et al The overexpression and complete amino acid sequence of Escherichia coli 3-dehydroquinase 1986, Biochem. J. 238(2):475—483
    [128]Guzman LM, Belin D, Carson MJ, et al Tight regulation, modulastion, and high-level expression by vectors containing the arabinose PBAD promoter J Bacterial 1995,177(14):4121—4130
    [129]Murphy KC, Campellone KG and Poteete AR PCR-mediated replacement in Escherichia coli, Gene 2000,246:321—330
    [130]Miller VL, Mekalanos JJ, A novel suicide vector and its use in construction mutantions:osmoregulation of outer membrane proteins and virulence determinants in vibro cholerae requires toxR J.Bacteriol. 1988,170:2575—2578

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700