用户名: 密码: 验证码:
大别—苏鲁造山带混合岩的成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地壳的两大组成部分——洋壳和陆壳,由于在物质成分上的巨大差异,致使在板块汇聚边界的俯冲消减作用中,二者呈现截然不同的地球动力学特征。我们已经清楚,洋壳俯冲以上覆地幔楔部分熔融、形成岛弧岩浆岩为特征。然而对陆壳的俯冲过程,我们尚处于探索之中。
     自二十世纪八十年代以来,由于在西阿尔卑斯和挪威西部的变质表壳岩中,发现了超高压变质矿物柯石英,说明大陆地壳曾被俯冲到至少80km深的地幔内部,然后又折返至地表。到目前为止,地质学家已在全球二十二条变质带中发现了柯石英、金刚石和其它超高压指示矿物。大陆深俯冲以及由此引发的陆壳岩石超高压变质作用,是最近二十余年来固体地球科学领域的研究热点。大别一苏鲁造山带出露有世界上规模最大、保存最好的超高压变质地体,是三叠纪时扬子板块向北俯冲进入华北板块之下,而形成的大陆碰撞造山带。是国际超高压变质研究的经典地区。
     大量的研究表明,与大洋地壳相比,大陆地壳除上部含少量的水之外,其余深部圈层均较“干”,因此在大陆深俯冲过程中无大规模的流体活动,难以形成类似于洋壳俯冲的岛弧岩浆作用。也就是说,缺乏同俯冲岩浆活动是大陆深俯冲最重要的特征之一。随着超高压变质作用后的流体活动及与折返过程近同时代的岩浆岩陆续被识别,探索超高压变质岩石在折返退变过程中是否存在岩浆活动或部分熔融过程,已成为大陆深俯冲作用研究的一个活跃方向。
     在大别一苏鲁超高压变质带中,广泛发育有较晚期的混合岩(约130Ma)。一般认为,这些主要分布在北大别的混合岩,与大陆深俯冲作用没有直接的动力学联系。然而,我们在苏鲁超高压变质地体的威海、荣成地区,以及大别超高压变质地体的碧溪岭地区均发现呈现类似于部分熔融特征的混合岩,却在空间上和时间上与超高压变质作用具有密切的关系。
     本文选取碧溪岭地区和荣成地区的两处典型混合岩为研究对象,通过较详细的野外调研,以及矿物化学、同位素地球化学和同位素定年等室内综合研究,探讨了两工作区混合岩的形成时代,成因及其与超高压变质作用的关系,并进一步讨论陆壳超高压变质地体中是否存在部分熔融作用,以及它们对大陆深俯冲带后期构造和物质组成演化的意义。
     碧溪岭岩体东北端外侧混合岩中角闪岩和奥长花岗岩均发育两期角闪石,早期(Ⅰ型)均为阳起石,后期(Ⅱ型)均为绿钠闪石。尽管角闪岩和奥长花岗岩的化学成分差别极大,但两者的Ⅰ型角闪石成分很相近,Ⅱ型角闪石成分基本相同,但均与该区新鲜富镁铝榴辉岩和退变富铁钛榴辉岩中角闪石的成分相差甚远。结合本人导师李红艳研究员前期元素-同位素地球化学研究结果,从矿物化学的角度进一步证明碧溪岭岩体混合岩是一期发生于780Ma的部分熔融事件的产物。
     荣成超高压变质地体中,发育由浅灰色片麻岩和肉红色片麻岩构成的混合岩。锆石SHRIMP U-Pb定年结果表明,两类片麻岩的原岩均形成于780Ma左右。锆石Hf同位素研究表明,肉红色片麻岩和浅灰色片麻岩具有完全一致的Hf同位素组成,表明它们的原岩为同一岩浆事件的产物。该区超高压变质作用的峰期变质发生于242Ma左右,而220Ma代表的是一次部分熔融事件。该部分熔融事件使肉红色片麻岩发生塑性流动,从而在宏观上形成了该混合岩化的现象。
     总体来看,根据大别山碧溪岭地区和苏鲁荣成地区的研究结果,超高压变质地体中可能存在明显的部分熔融作用,一期发生于780Ma左右,即超高压变质岩的原岩形成时代;另一期发生于220Ma左右,处于超高压变质岩的折返退变阶段。
During the subduction processes at the plate convergent boundary, the continental crust and oceanic crust, due to their remarkable differences in composition, show striking different dynamic characters. We already well understand that the subduction of oceanic crust induces partial melting of the mantle wedge and produces island arc magmatic activities. However, many important facts of the continental subduction processes still remain unknown.
     In the 1980s, continental crust was first proved to have subducted to the depth of more than 80 km and thereafter come back rapidly to the surface, since the discoveries of coesite in supracrustal rocks in the West alpines and West Norway. Up to now, geologists have identified ultra-high pressure (UHP) index minerals, such as coesite and diamond, in 22 metamorphic belts on the global earth. Continental deep subduction and related ultra-high pressure metamorphism has been the highlight field in the earth science research in the recent two decades. The Dabie-Sulu orogenic belt, formed by the collision of the Yangtze craton and the North China craton in the late Triassic, has been know as the largest and best-preserved UHP terrane all over the world. Therefore, it becomes the ideal area for the UHP metamorphic research.
     Numerous studies show that most parts of the continental crust are "dry" compared to the oceanic crust. No large scale fluid activities occurred during the continental deep subduction and hence island arc magmatism similar to the oceanic subduction could not be generated. Therefore, lack of syn-collisional magmatism is one of the most important characters of the continental deep subduction. However, more and more evidences have been identified showing post-UHP metamorphic fluid activities and contemporary magmatism related to the exhumation process. It has become an active topic in the continental deep subduction research to disclose whether it exist partial melting or even magma activities during the retrogression and exhumation processes of the UHP metamorphic rocks.
     In the Dabie-Sulu UHP metamorphic belt, post orogenic migmatite (130 Ma) is widely distributed. It is commonly understand that these migmatite, which are most reside in the Northern Dabie terrane, have no direct tectonic connection with the continental deep subduction. However, we identified certain migmatite showing partial melting characters in the Weihai and Rongcheng area, Northern Sulu UHP metamorphic terrane, and in the Bixiling area, Central Dabie UHP terrane. Evidences indicate that they have close temporal-spatial relationship with the UHP metamorphism.
     In this study, we choose two typical migmatite in the Bixiling area and Rongcheng area to carry out detailed field investigation, mineral chemistry, isotope chemistry and isotopic dating, to explore their geological age, origin, as well as their relations to the UHP metamorphism. We further discuss whether partial melting has ever occurred in the UHP metamorphosed supracrustal rocks, and try to understand the significance to the evolution of post-collisional structure and composition of the continental deep subduction belt.
     The migmatite to the Northeast of the Bixiling complex, Dabie terrane is composed of amphibolite and trondhjemite. Both of the rocks develop two types of amphibole - typeⅠis actinolite, and typeⅡis hastingsite. Despite the striking difference of the amphibolite and trondhjemite in bulk chemical composition, the typeⅠamphibole in both rocks is similar and the typeⅡamphibole in both rocks has nearly same composition. The compositions of these amphiboles are far from those in the MgAl-riched fresh eclogite and the retrograde FeTi-riched eclogite. Combined with the earlier isotopic and geochemical research work of Li H.Y., we further demonstrate that the migmatite in Bixiling represents the products of a 780 Ma partial melting event.
     In the Rongcheng area, Sulu UHP terrane, migmatite are composed of pale grey gneiss and pink gneiss. Zircon SHRIMP U-Pb dating shows that the protolith of the two types of gneiss were formed in ca. 780 Ma. Analysis of Hf isotopic data indicates that they obtain consistent Hf isotopic character at that time. This implies the two types of gneiss might be originated from a same magmatic source. The zircon dating also shows a 242 Ma event, which represents the peak UHP metamorphism, and a 220 event, which represents the partial melting. The later attributed to the pink gneiss with the rheological property and formed the migmatitic structure.
     In summary, according to the research work on the migmatite in the Bixiling area, Dabie UHP terrane and Rongcheng area, Sulu UHP terrane, partial melting events might have occurred in two stages. The earlier stage was around 780 Ma, i.e. the time of the protolith of the UHP metamorphic rocks; the later stage was around 220 Ma, which coincident with the exhumation of the UHP metamorphic rocks.
引文
Amelin Y, Lee D. C., Halliday A. N., 2000. Early-middle crust evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochim. Cosmochim. Acta, 64: 4205-4225.
    Amelin Y., Lee D. C., Halliday A. N et al., 1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature. 399: 252-255.
    Ames L, Tilton GR and Zhou G., 1993. Timing of collision of the Sino-Korean and Yangtze Cratons: U-Pb zircon dating of coesite-bearing eclogites. Geology, 21: 339-342.
    Ames L. & Zhou B., 1996. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze Cratons.Tectonics, 1996, 15:472-489.
    
    B. E. Leake, A. R. Woolley, C.E.S. ARPS et al., 1997. Nomenclature of amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Eur. J. Mineral., 9: 623-651.
    Babcock, R.S. & Misch, P., 1989. Origin of the Skagit migmatites, north Cascades Range,Washington State. Contributions to Mineralogy and Petrology, 101: 485-495.
    Barbey, P., Macaudiere, J., Nzenti, J.P., 1990. High-pressure dehydration melting of metapelites: evidence from the migmatites of Yaounde (Cameroon). Journal of Petrology, 31:401-427.
    Blanckenburg F and Davies JH. 1995. Slab breakoff: A model for syncollisional magmatism and tectonics in Alps. Tectonics, 14 (1) :120 -131.
    
    Bryant, D.L., Ayers, J.C., Gao, S et al., 2004. Geochemical, age, and isotopic constraints on the location of the Sino-Korean/Yangtze suture and evolution of the NorthemDabie complex,east central China. Geological Society of America (GSA) Bulletin, 116,698-717.
    Chappell B W, White A J R, 1974. Two contrasting granite types. Pacific Geol., 8, 173-174.
    Chavagnac, V., Nagler, T.F., Kramers, J.D., 1999. Migmatization by metamorphic segregation at subsolidus conditions: implications for Nd-Pb isotope exchange. Lithos, 46: 275-298.
    Chen JF, Xie Z, Li XD et al. 2003. U-Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane. China. Geochemical Journal, 37 (1): 35-46
    Chen, R.-X.., Zheng, Y.-F., Gong, B et al., 2007. Oxygen isotope geochemistry of ultrahigh-pressure metamorphic rocks from 200-4000 m core samples of the Chinese continental scientific drilling. Chemical Geology 242, 51-75.
    Chopin C. 1984. Coesite and pure pyrope in high-grade blueschists of the western Alps: A first record and some consequence. Contrib Mineral Petrol, 86: 107-118.
    Collins et al. 1978. Nature and origin of A-type granites with particular reference to southeastern Australia. Contr. Mineral. Petrol, 80: 183-200.
    Collins W J, Beams S D, White A J R et al., 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Mineral Petrol, 80: 189-200.\
    Cong B.L. (Ed.), 1996. Ultrahigh-pressure metamorphic rocks in the Dabieshan-Sulu Region of China. Science Press, Beijing, China.
    
    Davies JH and Blanckenburg F. 1995. Slab breakoff: A model of lithoshpere detachment and its test in the Magmatism and deformation of collisional orogens. Earth and Planetary Science Letters. 129:85-102.
    Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted litho-sphere. Nature, 347: 662-665.
    
    Domanik, K. J. & Holloway, J. R., 1996. The stability of phengitic muscovite and associated phases from 5.5 to 11 Gpa: implications for deeply subducted sediments. Geochim Cosmochim Acta, 60:4133-4150.
    Eide EA, Mcwilliams MQ and Liou JG 1994. ~(40)Ar/~(39)Ar geochronology and exhumation of high-pressure to ultrahigh-pressure metamorphic rocks in east-central China. Geology, 22:601-604.
    Enkin, R.J., Yang, Z., Chen, Y et al., 1992. Paleomagnetic constrains on the geodynamic history of the major blocks of China from the Permian to the present. Journal of Geophysical Research,97,13953-13989.
    Ernst, W. G., 2005. Alpine and Pacific styles of Phanerozoic mountain building: Subduction-zone petrogenesis of continental crust. Terra Nova, 17: 165-188.
    Ernst, W.G., Hacker, B.R., Liou, J.G., 2007. Petrotectonics and geochronology of ultrahigh-pressure crustal and upper mantle rocks—implications for Phanerozoic orogeny. In:Sears, J.W., Harms, T.A., Evenchick, C.A. (Eds.), Whence the Mountains? Enquiries into the Evolution of Orogenic Belts. Geological Society of America Special Paper, vol. 433, pp. 27-49.
    Ernst, W.G., Zhou, G., Liou, J.G et al., 1991. High-pressure and superhighpressure metamorphic terranes in the Qinling-Dabie mountain belt, central China: early- to mid-Phanerozoic accretion of the western paleo-Pacific Rim. Pacific Science Association Information Bulletin,43, 6-15.
    Fan WM. Guo F , Wang YJ et al. 2001. Post-orogenic bimodal volcanism along the Sulu orogenic belt in eastern China. Phys. Chem. Earth (A), 26: 133-146.
    Faure, M., Lin W., Le Breton, N. 2001. Where is the North China and South China block boundary in eastern China? Geology, 29, 119-122.
    Faure, M., Lin, W, Shu, L., Sun, Y., Scharer, U., 1999. Tectonics of the Dabieshan (eastern China) and possible exhumation mechanism of ultrahigh-pressure rocks. Terra Nova, 11, 251-258.
    G. Cruciani, M. Franceschelli, S. Jung et al., 2008. Amphibole-bearing migmatites from the Variscan Belt of NE Sardinia, Italy: Partial melting of mid-Ordovician igneous sources.Lithos, 105: 208-224.
    Gilder, S.A., Courtillot, V. 1997. Timing of the North-South China collision from new middle to late Mesozoic paleomagnetic data from the North China block. Journal of Geophysical Research, 102,17713-17727.
    Gray E. Bebout, 2007. Metamorphic chemical geodynamics of subduction zones. Earth and Planetary Science Letters, 260:373-393.
    
    Hacker B. R., Ratschbacher L., Webb L., et al., 2000. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic- Early Jurassic tectonic unroofing. J Geophys Res, 2000, B105: 13339-13364.
    Hacker, B.R., Ratschbacher, L., Liou, J.G., 2004. Subduction, Collision, and Exhumation in the Ultrahigh-Pressure Qinling-Dabie Orogen: a review. In: Malpas, J. (Ed.), Aspects of the Tectonic Evolution of China. Special Paper of Geological Society of London, 226, 157-175.
    Hacker, B.R., Ratschbacher, L., Webb, L et al., 1998. Orogen-scale architecture of the ultrahigh-pressure Dabie-Hong'an-Tongbai Shan, China. Earth and Planetary Science Letters, 161,215-230.
    
    Hacker, B.R., Ratschbacher, L., Webb, L et al., 2000. Exhumation of ultrahigh-pressure continental crust in East-central China: Late Triassic-Early Jurassic tectonic unroofing.Journal of Geophysical Research, 105, 13339-13364.
    
    Hacker, B.R., Wallis, S.R., Ratschbacher, L et al., 2006. Hightemperature geochronology constraints the tectonic history and architecture of the ultrahigh-pressure Dabie - Sulu orogen.Tectonics 25, TC5006. doi:10.1029/2005TC001937.
    Harrison T. M., Blichert-Toft J., Mueller W et al., 2005. Heterogeneous hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science, 310: 1947-1950.
    
    Hemingway, B. S., Bohlen, S. R., Hankins, W. B et al., 1998. Heat capacity and thermodynamic properties for coesite and jadeite, reexamination of the quartz-coesite equilibrium boundary.Am. Mineral., 83:409-418.
    
    I. H. Campbell, S. R. Taylor. 1983. Geophys. Res. Lett. 10, 1061.
    J.G. Liou, W.G. Ernst, R.Y. Zhang, et al. 2009. Ultrahigh-pressure minerals and metamorphic terranes - The view from China. Journal of Asian Earth Sciences, article in press.
    Jahn, B-M., Chen, B., 2007. Dabieshan UHP metamorphic terrane: Sr-Nd-Pb isotopic constaint to pre-metamorphic subduction polarity. International Geology Review, 40, 14-29.
    John M. Eiler. 2007. On the Origins of Granites. Geology, 315, 951-952.
    
    Jung, S., Hoernes, S., Mezger, K., 2000. Geochronology and petrology of migmatites from the Proterozoic Damara Belt - importance of episodic fluid-present disequilibrium melting and consequences for granite petrology. Lithos, 51: 153-179.
    
    Katsube, A., Hayasaka, Y, Santosh, M et al., 2009. SHRIMP zircon U-Pb ages of eclogite and orthogiieisis from Sulu ultrahigh-pressure zone in Yangkou area, eastern China. Gondwana Research, 15: 168-177.
    Kinny P D, Maas R., 2003. Lu-Hf and Sm-Nd isotope systems in zircon. In: Hanchar J M, Hoskin P W O, eds. Zircon. Rev Mineral Geochem, 53: 327-341
    L. Liu, J. Zhang, H. W. Green II et al., 2007. Evidence of former stishovite in metamorphosed sediments, implying subduction to > 350 km. Earth and Planetary Science Letters, 263:180-191.
    
    Li SG, Jagoutz E, Chen Y et al., 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie orogen, central China. Geochim. Cosmochim. Acta, 64: 1077-1093.
    Li SG, Xiao Y, Liu D et al., 1993. Collision of the North China and Yangtze Block and formation of coesite-bearing eclogites: Timing and processes. Chemical Geology, 109: 89-111.
    Li X-P, Zheng Y-F, Wu Y-B, et al., 2004. Low-T eclogite in the Dabie terrane of China:Petrological and isotopic constraints on fluid activity and radiometric dating. Contrib Mineral Petrol, 148: 443-470.
    
    Li, H., 2003, Crustal evolution of the UHP metamorphic terranes in the Dabie orogen:Neoproterozoic magmatism and Triassic metamorphism of the Bixiling Complex and the Qinglongshan area. Doctoral thesis of Universite de Rennes 1, France.
    Li, H., 2004. SHRIMP dating and recrystallization of metamorphic zircons from a granitic gneiss in the Sulu UHP terrane. Acta Geologica Sinica, 78(1): 146-154.
    
    Liang Liu, Junfeng Zhang, Harry W. Green II et al. 2007. Earth and Planetary Science Letters, 263:180-191.
    Lin, J.L., Fuller, M., 1990. Paleomagnetism, North China and South China collision, and the Tan-Lu fault. Philosophical transactions of the Royal Society of London, A331, 589-598.
    Liou J. G. and Zhang R. Y., 1996. Occurrences of intergranular coesite in ultrahigh-P rocks from the Sulu region, eastern China: Implications for lack of fluid during exhumation. Amer.Mineralogist, 81: 1217-1221.
    Liou, J.G., Ernst, W.G., Zhang, R.Y et al., 2009. Ultrahigh-pressure minerals and metamorphic terranes - The view from China. Journal of Asian Earth Sciences 35,199-231.
    Liou, J.G., Tsujimori, T., Chu, W et al., 2006. Late Archean to Early Proterozoic history of the Haiyangsuo Complex, eastern China: a Non-UHP exotic tectonic slab in the Sulu ultrahigh-pressure terrane. Mineralogy and Petrology, 88,207- 226.
    Liou, J.G., Tsujimori, T., Zhang, R.Y et al., 2004. Global UHP metamorphism and continent subduction/collision. The Himalayan model. International Geology Review 46, 1-27.
    Liu, D., Jian, P., Kroner, A., Xu, F.T., 2006. Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie-Sulu UHP complex, China. Earth and Planetary Sciences Letters 250,650-666.
    
    Liu, F., Gerdes, A., Liou, J.G., Xue, H., Liang, F.H., 2006. SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, eastern China: Constraints on the prograde, UHP and retrograde metamorphic ages. Journal of Metamorphic Geology, 24: 569-589.
    Liu, F., Gerdes, A., Zeng, L., Xue, H., 2008. SHRIMP U-Pb dating, trace elements and the Lu-Hf isotope system of coesite-bearing zircon from amphibolite in the SW Sulu UHP terrane,eastern China. Geochimica et Cosmochimica Acta, 72: 2973-3000.
    
    Liu, F., Liou, J.G., Xu, Z., 2005. U-Pb SHRIMP ages recorded in the coesite-bearing zircon domains of paragneisses in the southwestern Sulu terrane, eastern China. New Interpretation.American Mineralogist, 90: 790-800.
    
    Liu, F., Liou, J.G., Xue, H., 2006a. Identification of UHP and non-UHP orthogneisses in the Sulu UHP terrane (eastern China). Evidences from SHRIMP U-Pb dating on mineral inclusion-bearing zircons. International Geology Review 48, 1067-1086.
    
    Liu, F., Xu, Z., Katayama, I., Yang, J.S., Maruyama, S., Liou, J.G, 2001. Mineral inclusions in zircons of para- and orthogneiss from pre-pilot drill hole CCSD-PP1, Chinese Continental Scientific Drilling Project. Lithos, 59: 199-215.
    
    Liu, F., Xu, Z., Liou, J.G., Dong, H., Xue, H., 2007. Ultrahigh-pressure mineral assemblages in zircons from surface to 5158 m depth cores in the main drill hole of Chinese Continental Scientific Drilling Project, southwestern Sulu belt, China. International Geological Review,49: 454-478.
    
    Liu, F., Xu, Z., Liou, J.G., Katayama, I., Masago, H., Maruyama, S., Yang, J.S., 2002a.Ultrahigh-pressure mineral inclusions in zircons from gneissic core samples of the Chinese continental scientific drilling site in eastern China. European Journal of Mineralogy 14,499-512.
    
    Liu, F., Xu, Z., Liou, J.G., Song, B., 2004a. SHRIMP U-Pb ages of ultrahigh-pressure and retrograde metamorphism of gneissic rocks, southwestern Sulu terrane, eastern China.Journal of Metamorphic Geology, 22: 315-326.
    
    Liu, F., Xu, Z., Xue, H., 2004b. Tracing the protolith, UHP metamorphism, and exhumation ages of orthogneiss from the SW Sulu terrane (eastern China): SHRIMP U-Pb dating of mineral inclusion-bearing orthogneiss. Lithos 78,411-429.
    Liu, L., Sun, Y., Xiao, P.X et al., 2002b. Discovery of ultrahigh-pressure magnesite-bearing garnet lherzoiite (>3.8 GPa) in the Altyn Tagh, Northwest China. Chinese Science Bulletin 47,881-886.
    Loiselle M C and Wones D R.,1979. Chracteristics and origin of anorogenic granites.Geol.Soc.Am.Abs.withProg.,11,468.
    Ludwig K. R. 2001. Isoplot/Ex, rev 2. 49: A geochronological toolkit for Microsoft Excel. Berkerley Geochron Center Spec. Publ. No. 1a: 1-58.
    
    Oh, C.W., Kusky, T., 2007. Review of the Late-Permian to Triassic Hongseong-Odesan Collision belt in South Korea and its Tectonic correlation with Korea, China and Japan. International Geology Review, 49,636-657.
    Okay A.I., Xu S and Sengor AMC. 1989. Coesite from the Dabie Shan eclogites, central China.Europeam Journal of Mineralogy, 1:595-598.
    Okay, A.I., 1993. Petrology of a diamond and coesite-bearing metamorphic terrain: Dabie Shan,China. European Journal of Mineralogy 5, 659-673.
    
    Otamendi, J.E. & Pati?o Douce, A.E., 2001. Partial melting of aluminous metagreywackes in the Northern Sierra de Comechingones, Central Argentina. Journal of Petrology, 42: 1751-1772.
    
    Patino Douce AE and McCarthy TC. 1998. Melting of crustal rocks during continental collision and subduction. In: Hacker B. Rand Liou J.G. (eds) When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Kluwer Academic Publishers. 27-55.
    
    Pitcher W S. 1983. Granite type and tectonic environment. In Hsuk(ed) mountain Building Processes. Academic Press. London.
    
    Rowley, D. B., Xue, F., Tuccker, R. D et al., 1997. Ages of ultrahigh-pressure metamorphism and protolith orthogneisses from the eastern Dabieshan: U/Pb zircon geochronology. Earth and Planetary Science Letters, 151: 191-203.
    
    Rumble, D., Giorgis, D., Oreland, T et al., 2002. Low 6 ~(18)O zircons, U - Pb dating, and the age of the Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu province, China. Geochimica et Cosmochimica Acta 66,2299 - 2306.
    
    Sawyer, E.W. & Barnes, S.J., 1988. Temporal and compositional differences between subsolidus and anatectic migmatite leucosomes from the Quetico metasedimentary belt, Canada.Journal of Metamorphic Geology, 6:437-450.
    
    Schmidt, M. W. & Poli, S., 1998. Experimentally based water budgets for dehydration slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163: 361-379.
    
    Schmidt, M. W., 1996. Experimental constraints on recycling of potassium from subducted oceanic crust. Science, 272: 1927-1930.
    Smith D C. 1984. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 310: 641-644.
    Sobolev, NY, Shatsky, VS. 1990. Diamond inclusions in garnets from metamorphic rocks. Nature,343, 742-756.
    
    Song, S. Zhang, L., Niu, Y., Su, L., Jian, P., Liu, D., 2005. Geochronology of diamond-bearing zircons from garnet peridotite in the north Qaidam UHPM belt, northern Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision.Earth and Planetary Science Letters, 234, 99-118.
    
    Tang, J., Zheng, Y.-F., Gong, B., Wu, Y.-B., Gao, T.-S., Yuan, H.L., Wu, F.-Y, 2008a. Extreme oxygen isotope signature of meteoric water in magmatic zircon from metagranite in the Sulu orogen, China: implications for Neoproterozoic rift magmatism. Geochimica et Cosmochimica Acta 72, 3139-3169.
    
    Tang, J., Zheng, Y.-F., Wu, Y.-B., Gong, B., Zha, X.P., Liu, X.-M., 2008b. Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen,China. Precambrian Research, 161: 389-418.
    
    Thompson AB. 1999. Some time-space relationships for crustal melting and granitic intrusion at various depths. In: Castro A. et al. (eds) Understanding granites: integrating new and classical techniques. Geological Society Special Publlicatin, 168: 7-25.
    Tsujimori, T., Sisson, B., Liou, J.G., Harlow, G.E., Sorensen, S.S., 2006a. Very lowtemperature record in subduction process: a review of global lawsoniteeclogites. Lithos 92, 609-624.
    
    Tsujimori, T., Sisson, V.B., Liou, J.G., Harlow, G.E., Sorensen, S.S., 2006b. Petrologic characterizations of Guatemalan lawsonite-eclogite: direct information on eclogitization of subducted oceanic crust in a cold subduction zone. In: Hacker, B.R., McClelland, W., Liou,J.G (Eds.), Ultrahigh-Pressure Metamorphism: Deep Continental Subduction. Geological Society of America Special Paper 403,147-168.
    Wallis, S.R., Enami, M., Banno, S., 1999. The Sulu UHP terrane: a review of the Petrology and structural Geology. International Geology Review, 41, 906-920.
    
    Wang LG, Qiu YM, McNaughton NJ et al. 1998. Constraints on crustal evolution and gold metallogeny in the Northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids. Ore Geology Reviews, 13:275-291.
    Wang X, Liou JG and Mao HG 1989. Coesite-bearing eclogite from the Dabie mountains in central China. Geology, 17:1085-1088.
    Wang, Q., Ishiwatari, A., Zhao, Z et al., 1993. Coesite-bearing granulite retrograded from eclogite in Weihai, eastern China: a preliminary study. Eur. J. Mineral., 5: 141-152.
    Wang, X. & Liou, J. G, 1993. Ultrahigh-pressure metamorphism of carbonate rocks in the Dabie Mountains, central China. Journal of Metamorphic Geology, 11: 575-588.
    
    Weber, C. & Barbey, P., 1986. The role of water, mixing processes and metamorphic fabric in the genesis of the Baume migmatites (Ardeche France). Contributions to Mineralogy and Petrology, 92:481-491.
    Whalen J B. et al. 1987. A-type granites geochemical charcteritics, discrimination and petrogenesis. Contrib. Mineral. Petrol, 95 :407-419.
    
    Whitney, D.L. & Irving, A.J., 1994. Origin of K-poor leucosomes in a metasedimentary migmatite complex by ultrametamorphism, syn-metamorphic magmatism and subsolidus processes.Lithos, 32: 173-192.
    
    Wu, Y.-B., Zheng, Y.-F., Zhao, Z.-F et al., 2006. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marblehosted eclogites from the Dabie orogen.Geochimica et Cosmochimica Acta 70, 3743-3761.
    Xu P, Wu FY, Xie LW et al., 2004. Hf isotopic composition of the standard zircons for the U-Pb dating. Chin. Bull. Sci., 49 (15): 1642 -1648.
    Xu PF, Liu FT, Wang QC, et al. 2001. Slab-like high velocity anomaly in the uppermost mantle beneath the Dabie-Sulu orogen. Geophys. Res. Lett., 28(9), 1847-1850.
    Xu Z. 1987. Etude tectonique et microtectonique de la chaine paleozoique et triasique des Quilings (Chine). These de doctorat, Univ. Sci. Tech. Languedoc, Montpellier.
    Xu Z., Zeng, L., Zhang, Z et al., 2006. Polyphase structural deformation and a dynamic model for the formation of Sulu high to ultrahigh-pressure (HP-UHP) metamorphic belt from subduction to exhumation. In: Hacker, B.R., McClelland, W., Liou, J.G (Eds.), Deep Continental Subduction, Geological Society of America Special Paper 403,93-113.
    Xu, S., Okay, A. I., Ji, S et al., 1992. Diamond from metamorphic rocks and its implication for tectonic setting. Science, 256: 80-82.
    Xu, S.T., Liu, Y.C., Chen, G.B et al., 2005. Microdiamonds, their classification and tectonic implications for the host eclogites from the Dabie and Su-Lu regions in central eastern China.Mineralogical Magazine, 69,509-520.
    Xu, S.T., Okay, A.I., Ji, S.Y et al., 1992. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science, 256, 80-82.
    Xue, F., Rowley, D.B., Tucker, R.D et al., 1997. U-Pb zircon ages of granitoid rocks in the north Dabie complex, eastern Dabie Shan, China. Journal of Geology, 105, 744-753.
    Yang JH, Chung SL, Wilde SA et al., 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China:Geochronology, geochemical and Nd-Sr isotopic evidence. Chem.Geol. ,214: 99-125.
    Yang, J.J., Godard, G., Kienast, J.R et al., 1993. Ultrahigh-pressure, 60 kbar magnesite-bearing garnet peridotite from Northeastern Jiangsu, China. Journal of Geology 101, 541-554.
    Yang, J.S., Xu, Z.Q., Zhang, J.X et al., 2001, tectonic significance of Caledonian high-pressure rocks in the Qilian-Qaidam-Altyn mountains, NW China: from continental assembly to intracontinental deformation, In: Hendrix, M.S., Davis, GA. (Eds.), Paleozoic and Mesozoic tectonic evolution of central Asia: from continental assembly to intracontinental deformation.Geological Society of American Memoir 194, 151-170.
    Ye K, Cong BL and Ye DN. 2000. The possible subduction of continental material to depths greater than 200km. Nature, 407,734-736.
    
    Ye K, Yao Y, Katayama I, et al., 2000. Large areal extent of ultrahigh-pressure (UHP) metamorphism in the Sulu UHP terrane, eastern China: New implications from coesite and omphacite inclusions in zircon from granitic gneisses. Lithos, 52: 157-164.
    Ye K. & Hirajima T., 1996, High-pressure marble at Yangguantun, Rongcheng County, Shandong Province, eastern China. Mineralogy and Petrology, 57: 151-165.
    Yui, T.F., Rumble, D., Lo, C.H., 1995. Unusually low δ 180 ultrahigh-pressure metamorphic rocks from Su-Lu terrane China. Geochimica et Cosmochimica Acta 59, 2859 - 2864.
    Zhai, M. Guo, J. Li, Z., Chen, D et al., 2007. Linking the Sulu belt to the Korean Peninsula:Evidence from eclogite, Precambrian basement, and Paleozoic sedimentary basins.Gondwana Research, 12, 388-403.
    Zhang, R.Y., Liou, J.G., 1996. Coesite inclusions in dolomite from eclogite in the southern Dabie mountains, China: The significance of carbonate minerals in UHPM rocks. American Mineralogist, 81, 181-186.
    
    Zhang, R.Y., Liou, J.G., Ernst, W.G., 1995. Ultrahigh-pressure metamorphism and decompressional P-T path of eclogites and country rocks from Weihai, eastern China. The Island Arc,4: 293-309.
    Zhang, R.Y., Liou, J.G., Tsai, C.H., 1996. Petrogeneses of a high-temperature metamorphic belt: a new tectonic interpretation for the north Dabieshan, Central China. Journal of Metamorphic Geology 14, 319-333.
    Zhang, R.Y., Liou, J.G., Tsujimori, T et al., 2006a, Non UHP unit in the Sulu UHP terrane, eastern
    57 China: Transformation of Proterozoic granulite and gabbro to garnet amphibolite. In: Hacker,B.R., McClelland, B., Liou, J.G (Eds.), Geological Society of America Special Paper Ultrahigh-Pressure Metamorphism: Deep Continental Subduction. Mineralogy and Petrology,88, 169-206.
    
    Zhang, R.Y., Liou, J.G., Yang, J.S et al., 2000. Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China. Journal of Metamorphic Geology 18,149-166.
    
    Zhang, R.Y., Liou, J.G., Ye, K et al., 2003a. Ultrahigh-pressure metamorphism in the forbidden zone. The Xugou garnet peridotite, Sulu terrane, eastern China. Journal of Metamorphic Geology 21,539-550.
    
    Zhang, Z.M., Xiao, Y.L., Hoefs, J et al., 2005. Petrogenesis of UHP metamorphic crustal and mantle rocks from the Chinese continental scientific drilling pre-pilot hole 1, Sulu belt,Eastern China. International Geology Review 47, 1160-1177.
    
    Zhao, R., Liou, J. G., Zhang, R. Y. & Li, T., 2006a. SHRIMP U-Pb zircon dating of the Rongcheng eclogite and associated peridotite: New constraints for ultrahigh-pressure metamorphism of mantle-derived mafic-ultramafic bodies from the Sulu terrane. In: Ultrahigh-pressure Metamorphism: Deep Continental Subduction, Special Paper 403 (eds Hacker, B. R.,McClelland, W. C. & Liou, J. G), pp. 115-125. Geological Society of America, Boulder,CO.
    
    Zhao, R., Zhang, R.Y., Liou, J.G et al., 2007. Petrochemistry, oxygen isotopes and U-Pb SHRIMP geochronology of mafic-ultramafic bodies from the Sulu UHP terrane, China. Journal of Metamorphic Geology, 25: 207-224.
    Zhao, X.X., Coe, R.S., 1987. Paleomagnetic constrains on the collision and notation of North and South China. Nature, 327,141-144.
    
    Zhao, Z.-F., Zheng, Y.-F., Gao, T.-S et al., 2006b. Isotopic constraints on age and duration of fluid-assisted high-pressure eclogite-facies recrystallization during exhumation of deeply subducted continental crust in the Sulu orogen. Journal of Metamorphic Geology 24, 687 -702.
    Zhao, Z.Y., Fang, A.M., Yu, L.J., 2003. High- to ultra-high pressure ductile shear zones in the Sulu UHP belt, eastern China. Terra Nova, 15, 322-329.
    
    Zheng Y-F, Fu B, Gong B et al., Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime.Earth Sci Rev, 2003,62: 105-161.
    
    Zheng Y-F, Wu Y-B, Zhao Z-F, et al., 2005a. Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite. Earth Planet Sci Lett, 240: 378-400.
    
    Zheng Y-F, Zhao Z-F, Wu Y-B, et al., 2006. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure ec-logite and gneiss in the Dabie orogen. Chem Geol,231: 135-158.
    
    Zheng, J., Griffin, W.L., O'Reilly, S.Y et al., 2006b. Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: Constraints on mantle evolution beneath eastern China. Journal of Petrology 46, 1-24.
    
    Zheng, J., Griffin, W.L., O'Reilly, S.Y et al., 2006a. Widespread Archean basement beneath the Yangtze craton. Geology, 34,417-420.
    Zheng,J.,Zhang,R.Y.,Liou,J.G et al.,2005b.Heterogeneous and metasomatismed mantle recorded by trace elements in minerals of the Donghai garnet peridotites,Sulu UHP terrane,China.Chemical Geology,221,243-259.
    Zheng,Y.-F.,Fu,B.,Gong,B.,Li,L.,2003a.Stable isotope geochemistry of ultrahighpressure metamorphic rocks from the Dabie-Sulu orogen in China:implications for geodynamics and fluid regime.Earth Science Review 62,105-161.
    Zheng,Y.-F.,Wu,Y.-B.,Chen,F.-K et al.,2004.Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoie.Geochimica et Cosmochimica Acta 68,4145-4165.
    Zheng,Y-F.,Zhang,S-B.,Zhao,Z-F et al.,2007.Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:implications for growth and reworking of continental crust.Lithos,96:127-150.
    陈建林,郭原生,付善明.2004.花岗岩研究进展-ISMA 花岗岩类分类综述.甘肃地质学报,13(1):67-73.
    陈骏,王鹤年.2004.地球化学.360-364.
    高天山,陈江峰,谢智等.2004.苏鲁超高压变质带中三叠纪石岛杂岩体地球化学研究.岩石学报,20(5):1025-1038.
    郭敬辉,陈福坤,张晓曼等.2005.苏鲁超高压带北部中生代岩浆侵入活动与同碰撞--碰撞后构造过程:锆石U-Pb年代学.岩石学报,2005,21(4):1281-1301.
    郭敬辉,翟明国,叶凯等.2002.胶东海阳所高压变质基性岩的岩石化学和地球化学.中国科学(D辑),32,(5):394-404.
    刘晓春,董树文,李三忠等.2005。湖北红安群的时代:变质花岗质侵入体U-Pb定年提供的制约。中国地质,32(1):75-81。
    钱青,钟孙霖,李通艺等.2002.八达岭基性岩和高Ba-Sr花岗岩地球化学特征及成因探讨:华北和大别-苏鲁造山带中生代岩浆岩的对比.岩石学报,18(3):275-292.
    唐俊,郑永飞,吴元宝等,2004.胶东东部变质岩锆石U-Pb定年和氧同位素研究.岩石学报,20(5):1039-1062.
    王涛.2000.花岗岩混合成因研穷及犬陆动力学意义.岩石学报,16:161-168.
    吴福元,李献华,杨进辉,郑永飞.2007.花岗岩成因研究的若干问题.岩石学报,23(6):1217-1238.
    徐克勤,1981.华南不同时代的花岗岩类及其与矿产的关系.北京:科学出版社.
    徐平,吴福元,谢烈文,杨岳衡,2004.U-Pb同位素定年标准锆石的Hf同位素.科学通报,49:1403-1410.
    徐树桐,刘贻灿,陈冠宝等,2003.大别山、苏鲁地区榴辉岩中新发现的微粒金刚石.科学通报,48(10):1069-1075.
    徐树桐,苏文,刘恰灿,王汝成,江来利和吴维平,1999.大别山北部榴辉岩的发现及其岩相学特征.科学通报,44(13):1452-1456.
    翟明国,范宏瑞,杨进辉等,2004.非造山带型金矿--胶东型金矿的陆内成矿作用.地学前缘,11(1):85-98.
    张旗,李承东,王焰,王元龙,金惟俊,贾秀勤,韩松.2005.中国东部中生代高Sr低Yb和低Sr高Yb型花岗岩对比及其地质意义.岩石学报,21(6):1527-1537.
    郑永飞,2004.深俯冲大陆板块折返过程中的流体活动.科学通报,49(10):917-929.
    郑永飞,2008.超高压变质与大陆碰撞研究进展:以大别-苏鲁造山带为例.科学通报,53(18):2129-2152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700