用户名: 密码: 验证码:
利用MFRSR反演西北混合相和沙尘云光学及物理特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
云作为地球辐射收支系统的重要调节器,在大气能量循环、水汽循环甚至在地球气候系统中扮演着非常关键的角色。云对地表和大气层顶的辐射通量以及大气中辐射能量再分布的影响,主要取决于云量、云的相态和光学厚度等信息。我国西北地区作为干旱半干旱区典型气候特征的代表区,混合相云和沙尘云成为该地区一种非常普遍的云的存在类型,增加了该地区云的光学和物理特性研究的复杂性,因此建立相关的反演算法将显得尤为重要。本论文基于地基遥感仪器多滤波旋转影带辐射仪(MFRSR)独特的观测几何和准确的大气透射观测,分别发展了薄混合相云、沙尘云光学特性的反演算法,也提出了精确估计天空云量的光谱透射率比值方法。通过理论上的敏感性试验以及兰州大学半干旱气候与环境观测站(SACOL)和中美沙尘暴联合观测实验移动观测站(张掖和景泰站)实时观测资料的评估和验证,取得了令人满意的结果。
     我们利用MFRSR的直接辐射和总辐射两个瞬时光谱观测,在辐射闭合的假定下,根据水云和冰云散射相函数的不同所引起的直接辐射及总辐射的差异,推断冰云和水云光学厚度混合率并识别云的热动力相态信息,继而精确估计薄混合相云的光学厚度。对该方法而言,1%的辐射观测误差所引起的总云光学厚度和混合率反演最大不确定性分别为8.4%和0.107;根据前向散射模拟以及SACOL、张掖和景泰站实时观测资料的评估和验证发现,基于云相识别的薄混合相云反演算法使直接辐射和总辐射反演的云光学厚度高度一致:两者之间的斜率为1.084,相关系数为0.96,均方根误差为0.679;因云粒子有效半径的差异所引起的太阳直接辐射和总辐射反演的云光学厚度的最大偏差(相对误差)分别为0.21(7.9%)和0.30(9.4%)。因此,该反演算法不仅能够精确反演薄混合相云的光学厚度,而且也提供了多云条件下薄混合云中独一无二的水云和冰云光学厚度混合率。
     另外,本文也利用MFRSR光谱辐射观测成功提出了进行云量估计的透射率比值方法(Ratio Method)。该方法主要基于云和晴天气溶胶的光谱特征来区分天空云分数(即云量)。敏感性试验和实际观测表明,所选择波段的透射比对太阳天顶角和主要的大气气体吸收是不敏感的。由于该算法中具有当地云天和晴天背景的判断,因此比值方法的反演则不依赖于仪器的绝对校正,与云和气溶胶光学特性的变化仅表现出微弱的关系,本质上减小了反演的不确定性,且其不确定性小于10%。由于窄带光谱辐射计观测目前非常广泛,这个简单的比值方法将本质上增强云量观测的能力。
     基于非球形沙尘气溶胶的散射特性,本文还发展了一种能够反演沙尘云中沙尘气溶胶光学厚度的方法。该方法通过结合地基遥感仪器多滤波旋转影带辐射计(MFRSR)的透射观测和雷达反演的云参数,根据沙尘气溶胶和云滴吸收特性的差异,区分和估计了沙尘及云的光学特性。敏感性试验表明,该方法对云特性的反演误差是不敏感的,并且薄沙尘云中沙尘和总光学厚度的最大绝对偏差仅仅只有0.056和0.1,厚沙尘云的反演误差则主要依赖于总沙尘云特性的激光雪达反演误差。该方法的发展为精确估计沙尘云辐射强迫和评估沙尘云的直接和间接辐射效应奠定了基础。
Clouds are an important modulator of the energy budget of the planet and play a critical role in the atmospheric energy cycle, water vapor cycle as well as earth climate system. The impact of clouds on the radiative fluxes, both at the surface and top of the atmosphere as well as the redistribution of the radiant energy in the atmosphere, depends on cloud cover, thermodynamic phase and optical depth. The northwestern China is a typical arid and semi-arid climatic characteristic representative area and there are some special cloud type, such as mixed-phase clouds and dusty clouds. The existence of these clouds increases the complexity and uncertainty of cloud optical properties retrieval. Thus it becomes more and more important to build up the retrieval method for mixed-phase cloud and dusty cloud. Based on the particular observation geometry of Multifilter Rotating Shadowband Radiometer (MFRSR) and accurate transmittance measurements, in this study, we have developed a method for retrieving optical properties of optically thin mixed-phase cloud and dusty cloud, respectively. Additionally, a ratio method for accurately estimating fractional sky cover from spectral transmittance measurements has also been developed. The theoretical sensitivity studies and validation and evaluation from measurements at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) site, Zhangye and Jingtai mobile facility during China-US joint dusty storms observation achieve satisfactory results.
     On the basis of the simultaneous measurements of direct and total radiation from MFRSR, we allow partitions of direct-beam and total radiation determined by different thermodynamic phase. Under the assumption of radiation closure, we further infer mixed ratio of cloud water and ice for optical thin clouds and identify cloud thermodynamic phase, and thus accurately estimate optical depths of optically thin mixed-phase cloud. For the new retrieval method, 1% measurement error will result in maximum uncertainties of 8.4% and 0.107 in retrieved total optical depths and mixed ratio, respectively. According to validation and evaluation using forward simulations and in situ measurements at SACOL, Zhangye and Jingtai sites, the new retrieval method achieves the high consistency of retrieved cloud optical depth from direct-beam and total radiation: the slope of 1.084 between the two with correlation coefficient of 0.96 and RMS of 0.679. The maximum biases (relative errors) of cloud optical depths within the range of effective radius of clouds are 0.21 (7.9%) and 0.30 (9.4%). Therefore, the retrieval method provides not only accuracy retrievals of cloud optical depths but also unique mixed ratio of cloud water and ice for optically thin clouds under overcast conditions.
     A ratio method for estimating fractional sky cover from spectral measurements has been developed. The spectral characteristics of clouds and clear-sky aerosols are utilized to partition sky fraction (sky cover). As illustrated in our sensitivity study and demonstrated in real measurements, the transmittance ratio at selected wavelengths is insensitive to solar zenith angle and major atmospheric gaseous absorption. With a localized baseline procedure, retrievals of this ratio method are independent of absolute calibration and weakly sensitive to changes in cloud and aerosol optical properties. Therefore this method substantially reduces the retrieval uncertainty. The uncertainty of this method, estimated through the sensitivity study and intercomparison, is less than 10%. With globally deployed narrowband radiometers, this simple ratio method can substantially enhance the current capability for monitoring fractional sky cover.
     Based on the scattering properties of nonspherical dust aerosol, a new approach is also developed for retrieving dust aerosol optical depths of dusty clouds. The new method is based on transmittance measurements from surface-based instruments multi-filter rotating shadowband radiometer (MFRSR) and cloud parameters from lidar measurements. It uses the difference of absorption between dust aerosols and water droplets for distinguishing and estimating the optical properties of dusts and clouds, respectively. As illustrated in sensitivity study, this new retrieval method is not sensitive to the retrieval error of cloud properties and the maximum absolute deviations of dust aerosol and total optical depths for thin dusty cloud retrieval algorithm are only 0.056 and 0.1, respectively, for given possible uncertainties. The retrieval error for thick dusty cloud mainly depends on lidar-based total dusty cloud properties. The retrieval method lays the foundation on accurately estimating dusty cloud radiative forcing and evaluating direct and indirect effect of dust aerosols on cloud.
引文
[1]陈勇航,黄建平,王天河,金宏春,葛觐铭(2005),西北地区不同类型云的时空分布及其与降水的关系,应用气象学报,16(6),717-728.
    [2]霍娟,吕达仁(2002),全天空数字相机观测云量初步研究,南京气象学院学报,25(2),241-246.
    [3]贾淑静,王成怒,胡志晋(1994),云微物理过程与全球气候变化的关系综述,山东气象,54.49-61.
    [4]吕达仁,霍娟,陈英等(2001),地基全天空成像辐射仪遥感的科学、技术问题和初步试验,中国遥感奋进创新20年,童庆禧主编,北京气象出版社,114-120.
    [5]石广玉,王标,张华等.大气气溶胶的辐射与气候效应.大气科学,2008,32(4):826-840.
    [6]汪宏七,赵高祥(1994),云和辐射:(Ⅰ)云气侯学和云的辐射作用,大气科学,18,增刊,910-932.
    [7]Ackerman,S.,K.Strabala,R Menzel,R.Frey,C.Moeller,L.Gumley,B.Baum,C.Schaaf,and G.Riggs(1997),Discriminating Clear-Sky from Cloud with MODIS:Algorithm Theoretical Basis Document(MOD35).Algorithm Theoretical Basis Document ATBD-MOD-06,NASA Goddard Space Flight Center,125 pp.
    [8]Ackerman,A.S.,O.B.Toon,D.E.Stevens,A.J.Heymsfield,V.Ramanathan and E.J.Welton(2000),Reduction of tropical cloudiness by soot,Sciences,288,1042-1047.
    [9]Albrecht,B.A.(1989),Aerosols,cloud microphysics,and fractional cloudiness,Science,245,1227-1230.
    [10]Baum,B.A,R F.Soulen,K.I.Strabala,M.D.King,S.A.Ackerman,W.P.Menzel,and P.Yang(2000),Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS:2.Cloud thermodynamic phase,J.Geophys.Res,105,11781-11792.
    [11]Baum,B.A.,R.A.Frey,G.G.Mace,M.K.Harkey,and P.Yang(2003),Nighttime multilayered cloud detection using MODIS and ARM data,J.Appl.Meteorol.,42,905-919.
    [12]Br(?)on,F.M.,D.Tanr(?) and S.Generoso(2002):Aerosol effect on cloud droplet size monitored from satellite,Science,295,834-838.
    [13]Cess,R.D.et al.(1989),Interpretation of cloud-climate feedback as produced by 14atmospheric general circulation models,Science,245,513-516.
    [14]Cess,R.D.et al.(1990),Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models,J.Geophys.Res.,95(D10),16601-16615.
    [15]Clothiaux,E.,et al.(1999),The atmospheric radiation measurement program cloud radars:Operational modes,J.Atmos.Sci.,56,819-827.
    [16]Collins,W.D.,W.C.Conant and V.Ranmanathan(1994),Earth radiation budget,clouds,and climate sensitivity,In:The Chemistry of the Atmosphere:Its Impact on Global Change(ed. Calvert J.G),Oxford,Blackwell Scientific Publishers,207-215.
    [17]Comstock,J.M.,R.d'Entremont,D.DeSlover,G G.Mace,S.Y.Matrosov,S.A.McFarlane,P.Minnis,D.Mitchell,K.Sassen,M.D.Shupe,D.D.Turner,Z.Wang(2007),An intercomparison of microphysical retrieval algorithms for upper tropospheric ice clouds,Bull.Amer.Meteorol.Soc,88(2),191-204.
    [18]Daniel,J.S.,S.Solomon,R.W.Portmann,A.0.Langford,C.S.Eubank,E.G Dutton,and W.Madsen(2002),Cloud liquid water and ice measurements from spectrally resolved near-infrared observations: A new technique, J.Geophys.Res., 107(D21), 4599,doi:10.1029/2001 JD000688.
    [19]DeMott,P.J,K.Sassen,M.Poellot,D.Baumgardner,D.C.Rogers,S.Brooks,A.J.Prenni and S.M.Kreidenweis(2003):African dust aerosols as atmospheric ice nuclei,Geophy.Res.Lett.,30,1732,doi:10.1029/2003GL017410.
    [20]Eloranta,E.W.,I.A.Razenkov,and J.P.Garcia(2006),Mixed-phase cloud measurements with the University of Wisconsin high spectral resolution lidar,paper presented at 16th Science Team Meeting,Atmos.Radiat.Meas.,Albuquerque,N.M.,27-31 March.
    [21]Fairall,C,and J.Hare(1990),An eight-month sample of marine stratocumulus cloud fraction,albedo and integrated liquid water,J.Clim.,3,847-864.
    [22]Goloub,P.,M.Herman,H.Chepfer,J.Riedi,G Brogniez,P.Couvert,and G Seze(2000),Cloud Thermodynamical Phase Classification from the POLDER Spaceborne instrument,J.Geophy.Res,105,14747-14759.
    [23]Haywood,J.M,V.Ramaswamy,B.J.Soden(1999),Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans,Science,283,1299-1305.
    [24]Higurashi,A,T.D.Nakajima(2002),Detection of aerosols types over the East China Sea near Japan from four-channel satellite data, Geophys.Res.Lett, 29, 1836,doi:10.1029/2002GL015357.
    [25]Huang,J.P,P.Minnis,B.Lin,T.Wang,Y Yi,Y Hu,S.Sun-Mack,and K.Ayers(2006a),Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES,Geophys.Res.Lett,30,6824,doi:10.1029/2005GL024724.
    [26]Huang,J.P,B.Lin,P.Minnis,T.Wang,X.Wang,Y Hu,Y.Yi,and J.K.Ayers(2006b),Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia,Geophys.Res.Lett,33,L19802,doi:10.1029/2006GL026561.
    [27]Huang,J,Y Wang,T.Wang,and Y Yi(2006c),Dusty cloud radiative forcing derived from satellite data for middle latitude regions of East Asia,Progress in Natural Science,16(10),1084-1089.
    [28]Huang,J? P.Minnis,B.Chen,Z.Huang,Z.Liu,Q.Zhao,Y Yi,and J.K.Ayers(2008),Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX,J.Geophys.Res,113,D23212,doi:10.1029/2008JD010620.
    [29]IPCC(2001),Climate Change 2001:The third assessment report,edited by J.J.McCarthy, Cambridge Univ.Press,New York.
    [30]IPCC(2007),Climate Change:The Physical Science Basis,in Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,edited by S.Solomon et al.,pp.996,Cambridge Univ.Press,United Kingdom and New York,NY,USA.
    [31]Kawamoto,K.and T.Nakjima(2003):Seasonal variation of cloud particle size from AVHRR remote sensing.Geophys.Res.Lett.,30,1810-1813.
    [32]Key,J.and J.Intrieri(2000),Cloud particle phase determination with the AVHRR,J.Appl.Meteorol.,39,1797-1805.
    [33]King,M.D? S.Platnick,P.Yang,G.T.Arnold,M.A.Gray,J.C.Riedi,S.A.Ackerman,and K.N.Liou(2004),Remote sensing of liquid water and ice cloud optical thickness,and effective radius in the arctic:Application of airborne multispectral MAS data,J.Atmos.Ocean.Tech.,21,857-875.
    [34]Knap,W.,P.Stamnes,and R.B.A.Koelemeijer(2002),Cloud thermodynamic phase determination from near-infrared spectra of reflected sunlight,J.Atmos.Sci.,59,83-96.
    [35]Levi,Y.and D.Rosenfeld(1996):Ice nuclei,rainwater chemical composition,and static cloud seeding effects in Israel,J.Appl.Meteorol.,35,1494-1501.
    [36]Lindzen,R.S.(1990),Some coolness concerning global warming,Bull.Amer.Meteor.Soc,71,288-299.
    [37]Liu,J.,C.Dong,X.Zhu(2002),Thermodynamic phase analysis of cloud particles with FY-1C data,Meteoro.Atmos.Phys.,80,65-71.
    [38]Long,C.N.,and T.P.Ackerman(2000),Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects,J.Geophys.Res.,105(D12),15609-15626.
    [39]Long,C.N.,T.P.Ackerman,K.L.Gaustad,and J.N.S.Cole(2006a),Estimation of fractional sky cover from broadband shortwave radiometer measurements,J.Geophys.Res.,lll,D11204,doi:10.1029/2005JD006475.
    [40]Long,C.N.,J.M.Sabburg,J.Calbo,and D.Pages(2006b),Retrieving cloud characteristics from ground-based daytime color all-sky images,J.Atmos.Oceanic Tech.,23(5),633-652.
    [41]Menzel,W.P.,and K.Strabala(1997),Cloud Top Properties and Cloud Phase:Algorithm Theoretical Basis Document,ATBD-MOD-04,NASA Goddard Spacc Flight Center,55 pp.
    [42]Minnis,P.(1989),Viewing zenith angle dependence of cloudiness determined from coincident GOES EAST and GOES WEST data,J.Geophys.Res.,94(D2),2303-2320.
    [43]Min,Q.,E.Joseph,and M.Duan(2004),Retrievals of thin cloud optical depth from a multifilter rotating shadowband radiometer,J.Geophys.Res.,109,D02201,doi:10.1029/2003 JD003964.
    [44]Min,Q.,and M.Duan(2005),Simultaneously retrieving cloud optical depth and effective radius for optically thin clouds,J.Geophys.Res.,110,D21201,doi:10.1029/2005JD006136.
    [45]Mitchell,J.F.B.,and W.J.Ingram(1989),Carbon dioxide and climate:Mechanisms of changes in cloud,J.Climate,5,5-21.
    [46]Pavolonis,M.J.,and A.K.Heidinger(2004):Daytime cloud overlap detection from AVHRR and VⅡRS,J.Appl.Meteorol.,43(5),762-778.
    [47]Pavolonis,M.J.,A.K.Heidinger,and T.Uttal(2005),Daytime global cloud typing from AVHRR and VⅡRS:Algorithm description,validation,and comparisons,J.Appl.Meteorol.,44,804-826.
    [48]Pfister,G,R.L.McKenzie,J.B.Liley,A.Thomas,B.W.Forgan,and C.N.Long(2003),Cloud coverage based on all-sky imaging and its impact on surfacc solar irradiance,J.Appl.Meteorol,42(10),1421-1434.
    [49]Ramanathan,V,P.J.Crutzen,J.T.Kiehl,and D.Rosenfeld(2001),Aerosols,climate,and the hydrological cycle,Science,294,2119-2124.
    [50]Riedi,J.,P.Goloub,and R.T.Marchand(2001),Comparison of POLDER cloud phase retrievals to active remote sensors measurements at the ARM SGP site,Geophys.Res.Lett.,28(11),2185-2188.
    [51]Riedi,J.,B.Marchant,S.Platnick,B.Baum,F.Thieuleux,C.Oudard,F.Parol,J-M.Nicolas,and P.Dubuisson(2007),Cloud thermodynamic phase inferred from merged POLDER and MODIS data,Atmos.Chem.Phys.Discuss.,7,14103-14137.
    [52]Rosenfeld,D.and R.Nirel(1996):Seeding effectiveness-The interaction of desert dust and the southern margins of rain cloud systems in Israel,J.Appl.Metorol.,35,1502-1510.
    [53]Rosenfeld,D.,Y.Rudich and R.Lahav(2001):Desert dust suppressing precipitation:a possible desertification feedback loop,Proceedings of National Academy of Sciences,98(11),5975-5980.
    [54]Rossow,W.,A.Walker,and L.Garder(1993),Comparison of ISCCP and other cloud amounts,J.Clim.,6,2394-2418.
    [55]Rossow,W.B.,and R.A.Schiffer(1999),Advances in understanding clouds from ISCCP,Bull.Amer.Meteorol.Soc,80,2261-2287.
    [56]Sassen,K.(1991),The polarization lidar technique:A review and current assessment,Bull.Amer.Meteor.Soc,72,1848-1866.
    [57]Sassen,K.,and S.Benson(2001),A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing,Part Ⅱ: Microphysical properties derived from lidar depolarization,J.Atmos.Sci.,58,2103-2112.
    [58]Sassen,K.(2002):Indirect climate forcing over the western US from Asian dust storms.Geophys.Res.Lett.,29,1029,doi:10.1029/2001GL014034.
    [59]Shupe,M.D.,P.Kollias,S.Y.Matrosov,and T.L.Schneider(2004),Deriving mixed-phase cloud properties from Doppler radar spectra,J.Atmos.Oceanic Technol.,21(4),660-670,doi:10.1175/1520-0426
    [60]Shupe,M.D,J.S.Daniel,G.de Boer,E.W.Eloranta,P.Kollias,C.N.Long,E.P.Luke,D. D.Turner,and J.Verlinde(2008),A focus on mixed-phase clouds:The status of ground-based observational methods,Bull.Amer.Meteorol.Soc.,89(10),1549-1562.
    [61]Stamnes,R,M.Sneep,J.F.de Haan,J.P.Veefkind,P.Wang,and P.F.Levelt(2008),Effective cloud fractions from the Ozone Monitoring Instrument:Theoretical framework and validation,J.Geophys.Res.,113,D16S38,doi:10.1029/2007JD008820.
    [62]Su,J.,J.Huang,Q.Fu,P.Minnis,J.Ge,and J.Bi(2008),Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements,Atmos.Chem.Phys.,8,2763-2771.
    [63]Takemura,T.,I.Uno,T.Nakajima,A.Higurashi,and I.Sano(2002),Modeling study of long-range transport of Asian dust and anthropogenic aerosols from East Asia,Geophys.Res.Lett.,29(24),2158,doi:10.1029/2002GL016251.
    [64]Turner,D.D.,S.A.Ackerman,B.A.Baum,H.E.Revercomb,and P.Yang(2003),Cloud phase determination using ground-based AERI observations at SHEBA,J.Appl.Meteor.,42,702-715.
    [65]Turner,D.D,(2005),Arctic mixed-phase cloud properties from AERI-lidar observations:Algorithm and results from SHEBA,J.Appl.Meteorol.,44,427-444,doi:10.1175/JAM2208.1.
    [66]Turner,D.D.,A.M.Vogelmann,R.T.Austin,J.C.Barnard,K.Cady-Pereira,J.C.Chiu,S.A.Clough,C.Flynn,M.M.Khaiyer,J,Liljegren,K.Johnson,B.Lin,C.Long,A.Marshak,S.Y.Matrosov,S.A.McFarlane,M.Miller,Q.Min,P.Minnis,W.O'Hirok,Z.Wang,W.Wiscombe(2007),Thin liquid water clouds:Their importance and our challenge,Bull.Am.Meteorol.Soc.,88,177-190,doi:10.1175/BAMS-88-2-177.
    [67]Twomey,S.(1977),Developments in Atmospheric Science,Atmospheric Aerosols,Elsevier,Elsevier scientific Publications,New York,USA
    [68]Wetherald,R.T.,and S.Manabe(1988),Cloud feedback processes in a general circulation model,J.Atmos.Sci.,45,1397-1415.
    [69]Yin,Y.and L.Chen(2007),Long-range transport of mineral aerosols and its absorbing and heating effects on cloud and precipitation:a numerical study,Atmos.Chem.Phys.Discuss.,7,3203-3228.
    [1]王莉萍(2007),用MFRSR仪器观测气溶胶的光学厚度,中国气象科学研究院硕士学位论文.
    [2]李云(2008),利用多光谱旋转遮蔽影带辐射仪(MFRSR)进行大气柱水汽总量反演,南京信息工程大学硕士学位论文.
    [3]Ackerman,T.P.,and G.Stokes(2003),The atmospheric radiation measurement program,Phys.Today,56,38-45.
    [4]Alexandrov,M.D.,A.A.Lacis,B.E.Carlson,B.Cairns(2000),Using MFRSR networks to build an aerosol climatology,J.Aero.Sci,31,supplement 1,642-643.
    [5]Alexandrov,M.D.,A.A.Lacis,B.E.Carlson,B.Cairns(2002a),Remote sensing of atmospheric aerosol and trace gases by means of multifilter rotating shadowband radiometer.Part Ⅰ:Retrieval Algorithm,J.Atmos.Sci.,59,524-543.
    [6]Alexandrov,M.D.,A.A.Lacis,B.E.Carlson,B.Cairns(2002b),Remote sensing of atmospheric aerosol and trace gases by means of multifilter rotating shadowband radiometer.Part Ⅱ:Climatological Applications,J.Atmos.Sci.,59,544-566.
    [7]Alexandrov,M.D.,A.Marshak,B.Cairns,A.A.Laeis,and B.E.Carlson(2004),Automated cloud screening algorithm for MFRSR data,Geophys.Res.Lett.,31,L04118,doi:10.1029/2003GL 019105.
    [8]Alexandrov,M.D.,B.E.Carlson,A.A.Lacis,and B.Cairns(2005),Separation of fine and coarse aerosol modes in MFRSR data sets,J.Geophys.Res.,110,D13204,doi:10.1029/2004JD005226.
    [9]Alexandrov,M.D.,P.Kiedron,J.J.Michalsky,G.Hodges,C.J.Flyrm,and A.A.Lacis (2007),Optical depth measurements by shadow-band radiometers and their uncertainties,Appl.Opt.,46(33),8027-8038.
    [10]Alexandrov,M.D.,A.A.Lacis,B.E.Carlson,and B.Cairns(2008),Characterization of atmospheric aerosols using MFRSR measurements,J.Geophys.Res.,113,D08204,doi:10.1029/2007JD0093 88.
    [11]Augustine,J.A.,C.R.Cornwall,G.B.Hodges,C.N.Long,C.I.Medina,J.J.Deluisi (2003),An automated method of MFRSR calibration for aerosol optical depth analysis with application to an Asian dust outbreak over the United States,J.Appl.Meteor.,42,266-278.
    [12]Augustine,J.A.,G.B.Hodges,C.R.Cornwall,J.J.Michalsky,and C.I.Medina(2005),An update on SURFRAD-The GCOS Surface Radiation budget network for the continental United States,J.Atmos.Oceanic Technol.,22,1460-1472.
    [13]Augustine,J.A.,G.B.Hodges,E.G.Dutton,J.J.Michalsky,and C.R.Cornwall(2008),An aerosol optical depth climatology for NOAA's national surface radiation budget network (SURFRAD),J.Geophys.Res.,113,D11204,doi:10.1029/2007JD009504
    [14]Bigelow,D.S.,J.R.Slusser,A.F.Beaubien,and J.H.Gibson(1998),The USDA Ultraviolet Radiation Monitoring Program,Bull.Am.Meteorol.Soc,79,601-615.
    [15]Box,G,G.Taha,and M.Kuzmanoski(2001),Long-term atmospheric monitoring in Sydney using an MFRSR,Geosci.Remote Sens.Sympo.,IGARSS,IEEE 2001 International,1,81-83.
    [16]Gao,W.,J.Slusser,J.Gibson,G Scott,D.Bigelow,J.Kerr,and B.McArthur(2001),Direct-Sun column ozone retrieval by the ultraviolet multifilter rotating shadow-band radiometer and comparison with those from Brewer and Dobson spectrophotometers,Appl.Opt.,40(19),3149-3155.
    [17]Gerasopoulos,E.,M.O.Andreae,C.S.Zerefos,T.W.Andreae,D.Balis,R Formenti,R Merlet,V.Amiridis,and C.Papastefanou(2003),Climatological aspects of aerosol optical properties in Northern Greece,Atmos.Chem.Phys.,3,2025-2041.
    [18]Guzzi,R.,G.C.Maracci,R.Rizzi,and A.Sicardi(1985),Spectroradiometer for ground-based measurements related to remote sensing in the visible from a satellite,Appl.Opt.,24,2859-2863.
    [19]Harrison,L.C,J.J.Michalsky,and J.Berndt(1994a),Automated multifilter rotation shadowband radiometer:An instrument for optical depth and radiation measurements,Appl.Opt,33(22),5118-5125.
    [20]Harrison,L.C,J.J.Michalsky,and J.Berndt(1994b),Objective algorithms for the retrieval of optical depths from ground-based measurements,Appl.Opt,33(22),5126-5132.
    [21]Kaskaoutis,D.G.,and H.D.Kambezidis(2008a),The diffuse-to-global and diffuse-to-direct-beam spectral irradiance ratios as turbidity indexes in an urban environment,J.Atmos.Solar-Terrest Phys.,doi:10.1016/j.jastp.2008.11.008.
    [22]Kaskaoutis,D.G.,H.D.Kambezidis,S.K.Kharol,K.V.S.Badarinath(2008b),The diffuse-to-global spectral irradiance ratio as a cloud-screening technique for radiometric data,J.Atmos.Solar-Terrest.Phys.,70,1597-1606.
    [23]Kassianov,E.I.,J.C.Barnard,and T.P.Ackerman(2005),Retrieval of aerosol microphysical properties using surfacc MultiFilter Rotating Shadowband Radiometer(MFRSR)data:Modeling and observations,J.Geophys.Res.,110,D09201,doi:10.1029/2004JD005337.
    [24]Kassianov,E.I.,C.J.Flynn,T.P.Ackerman,and J.C.Barnard(2007),Aerosol single-scattering albedo and asymmetry parameter from MFRSR observations during the ARM Aerosol IOP 2003,Atmos.Chem.Phys.,7,3341-3351.
    [25]Krotkov,N.,P.K.Bhartia,J.Herman,J.Slusser,G.Labow,G.Scott,G.Janson,T.F.Eck,and B.Holben(2005),Aerosol ultraviolet absorption experiment(2002 to 2004).Part 1:ultraviolet multifilter rotating shadowband radiometer calibration and intercomparison with CIMEL sunphotometers,Opt.Eng.44(4),041004-1-041004-17.
    [26]Lacis,A.A.,B.E.Carlson,J.E.Hansen(2000),Retrieval of atmospheric N02,03,aerosol optical depth,effective radius and variance information from SAGE Ⅱ multi-spectral extinction measurements,Appl.Math.Comp.,116,133-151.
    [27]Leontieva,E.,and K.Stamnes(1996),Remote sensing of cloud optical properties from ground-based measurements of transmittances:a feasibility study,J.Appl.Metero.,35,2011-2022.
    [28]Long,C.N.,and T.P.Ackerman(2000),Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects,J.Geophys.Res.,105,D12,15609-15626.
    [29]Long,C.N.,T.P.Ackerman,K.L.Gaustad,and J.N.S.Cole(2006a),Estimation of fractional sky cover from broadband shortwave radiometer measurements,J.Geophys.Res.,111,D11204,doi:10.1029/2005JD00647S.
    [30]Long,C.N.,J.M.Sabburg,J.Calbo,and D.Pages(2006b),Retrieving cloud characteristics from ground-based daytime color all-sky images,J.Armos.Oceanic Tech.,23(5),633-652.
    [31]Meloni,D.,A.di Sarra,G.Pace,and F.Monteleone(2006),Aerosol optical properties at Lampedusa(Central Mediterranean):2.Determination of single scattering albedo at two wavelengths for different aerosol types,Atmos.Chem.Phys.,6,715-727.
    [32]Michalsky,J.J.(1988),The Astronomical Almanac's Algorithm for Approximate Solar Position(1950-2050),Solar Energy,40,227-235.
    [33]Michalsky,J.J.,J.Liljegren,and L.Harrison(1995),A comparison of sun photometer derivations of total column water vapor and ozone to standard measures of same at the Southern Great Plains Atmospheric Radiation measurement site,J.Geophy.Res.,100(D12),25995-26003.
    [34]Min,Q.,and L.C.Harrison(1996),Cloud properties derived from surfacc MFRSR measurements and comparison with GOES results at the ARM SGP site,Geophys.Res.Lett.,23(13),1641-1644.
    [35]Min,Q.,M.Duan,and R.Marchand(2003),Validation of surfacc retrieved cloud optical properties with in situ measurements at the Atmospheric Radiation Measurement Program(ARM)South Great Plains site,J.Geophys.Res.,108(D17),4547,doi:10.1029/2003JD003385.
    [36]Min,Q.,E.Joseph,and M.Duan(2004a),Retrievals of thin cloud optical depth from a multifilter rotating shadowband radiometer,J.Geophys.Res.,109,D02201,doi:10.1029/2003 JD003964.
    [37]Min,Q.,P.Minnis,and M.Khaiyer(2004b),Comparison of cirrus optical depths derived from GOES 8 and surfacc measurements,J.Geophys.Res.,109,D15207,doi:10.1029/2003 JD004390.
    [38]Min,Q.,and M.Duan(2005),Simultaneously retrieving cloud optical depth and effective radius for optically thin clouds,J.Geophys.Res.,110,D21201,doi:10.1029/2005JD006136.
    [39]Min,Q.,T.Wang,C.N.Long,and M.Duan(2008),Estimating fractional sky cover from spectral measurements,J.Geophys.Res.,113,D20208,doi:10.1029/2008JD010278.
    [40]Minnis,P.,W.L.Smith Jr.,D.P.Garber,J.K.Ayers,and D.R.Doelling(1995b),Cloud properties derived from GOES-7 for the spring 1994 ARM intensive observing period using version 1.0.0 of the ARM satellite data analysis program,NASA Rep.,1366,59.
    [41]Mitchell,R.M.,and B.W.Forgan(2003),Aerosol measurement in the Australian Outback:Intercomparison of Sun photometers,J.Atmos.Oceanic Technol.,20,54-66.
    [42]Ohmura,A.,H.Gilgen,H.Hegner,G Mailer,M.Wild,E.G.Dutton,B.Forgan,C.FrOhlich,R.Philipona,A.Heimo,G.KOnig-Langlo,B.McArthur,R.Pinker,C.H.Whitlock,and K.Dehne(1998),Baseline Surfacc Radiation Network(BSRNAVCRP):New precision radiometry for Climate research,Bull.Am.Meteorol.Soc,79,2115-2136.
    [43]Pace,G,A.di Sarra,D.Meloni,S.Piacentino,and P.Chamard(2006),Aerosol optical properties at Lampedusa(Central Mediterranean):1.Influence of transport and identification of different aerosol types,Atmos.Chem.Phys.,6,697-713.
    [44]Pearson,R.,R.M.Fitzgerald,and J.Polanco(2007),An inverse reconstruction model to retrieve aerosol size distribution from optical depth data,J.Opt.A:Pure and Appl.Opt.,9,56-59.
    [45]Petters,J.L.,V.K.Saxena,J.R.Slusser,B.N.Wenny,and S.Madronich(2003),Aerosol single scattering albedo retrieved from measurements of surfacc UV irradiance and a radiative transfer model,J.Geophys.Res,108(D9),4288,doi:10.1029/2002JD002360.
    [46]Plana-Fattoria,A,P.Dubuisson,B.A.Fomin,and M.De Paula Correa(2004),Estimating the atmospheric water vapor content from multi-filter rotating shadow-band radiometry at S(?)o Paulo,Brazil,Atmos.Res,71,171-192.
    [47]Prata,A.J.(2000),Precipitable water retrieval from multi-filter rotating shadowband radiometer measurements,CSIRO Atmos.Res.Tech.Paper,No.47.
    [48]Reda,I,and A.Andreas(2008),Solar position algorithm for solar radiation Applications,Technical Report,NREL/TP-560-34302.
    [49]Schmid,B,J.J.Michalsky,D.W.Slater,J.C.Barnard,R.N.Halthore,J.C.Liljegren,B.N.Holben,T.F.Eck,J.M.Livingston,P.B.Russell,T.Ingold,and I.Slutsker(2001),Comparison of columnar water-vapor measurements from solar transmittance methods,Appl.Opt,40,1886-1896.
    [50]Stoffel,T,C.Riordan,and J.Bigger(1991),Joint EPRI/SERI project to evaluate solar energy radiation measurement systems for electric utility solar radiation resource assessment,in Proceedings of the IEEE Photovoltaic Specialist's Conference(Institute of Electrical and Electronics Engineers,New York).
    [51]Vaughan,J.K,C.Claiborn,and D.Finn(2001),April 1998 Asian dust event over the Columbia Plateau,J.Geophys.Res,106(D16),18381-18402.
    [52]Wesely,M.L.(1982),Simplified techniques to study components of solar radiation under haze and clouds,J.Appl.Meteorol,21,373-383.
    [53]Wang,T.,and Q.Min(2008),Retrieving optical depths of optically thin and mixed-phase clouds from MFRSR measurements,J.Geophys.Res.,113,D19203,doi:10.1029/2008JD009958.
    [54]Williams,Q.L.,R.S.Reddy,H.Liu,M.S.Benjamin,D.Lu,and K.M.Greene(2008),Comparison of total column ozone data from groundbased MFRSR measurements taken in the southern U.S.region with OMI satellite retrievals,Geophys.Res.Lett.,35,L20813,doi:10.1029/2008GL0352 21.
    [55]Yankee Environmental Systems,INC.(2003),MFR-7 Rotating Shadowband Radiometer:Installation and user guide,Version 2.20.
    [1]Alexandrov,M.D.,P.Kiedron,J.J.Michalsky,G.Hodges,C.J.Flynn,and A.A.Lacis (2007),Optical depth measurements by shadow-band radiometers and their uncertainties,Appl.Opt.,46(33),8027-8038.
    [2]Alexandrov,M.D.,A.A.Lacis,B.E.Carlson,and B.Cairns(2002),Remote sensing of atmospheric aerosols and trace gases by means of Multifilter Rotating Shadowband Radiometer.Part Ⅰ:Retrieval algorithm,J.Atmos.Sci.,59,524-543.
    [3]Bigelow,D.S.,J.R.Slusser,A.F.Beaubien,and J.H.Gibson(1998),The USDA ultraviolet radiation monitoring program,Bull.Am.Meteorol.Soc.,79,601-615.
    [4]Forgan,B.W.(1988),Sun photometer calibration by the ratio-langley method,in Baseline Atmospheric Program(Australia) 1986,edited by B.W.Forgan and P.J.Fraser,22-26,Bur.Of Meteoral.,Melbourne,Australia.
    [5]Harrison,L.C.,and J.J.Michalsky(1994),Objective algorithms for the retrieval of optical depths from ground-based measurements,Appl.Opt.,33,5126-5132.
    [6]Harrison,L.,P.Kiedron,J.Berndt,and J.Schlemmer(2003),Extraterrestrial solar spectrum 360- 1050 nm from Rotating Shadowband Spectroradiometer measurements at the Southern Great Plains(ARM) site,J.Geophys.Res.,108(D14),4424,doi:10.1029/2001JD001311.
    [7]Holben,B.N.,T.F.Eck,I.Slutsker,D.Tanre,J.P.Buis,A.Setzer,E.F.Vermote,J.A.Reagan,Y.J.Kaufman,T.Nakajima,F.Lavenu,I.Jankowiak,and A.Smirnov(1998),AERONET-A federated instrument network and data archive for aerosol characterization,Remote Sens.Environ.,66,1-16.
    [8]Huang,J.P.,W.Zhang,J.Q.Zuo,J.R.Bi,J.S.Shi,X.Wang,Z.L.Chang,Z.W.Huang,S.Yang,B.D.Zhang,G.Y.Wang,G.H.Feng,J.Y.Yuan,L.Zhang,H.C.Zuo,S.G.Wang,C.B.Fu,and J.F.Chou(2008),An overview of the semi-arid climate and environment research observatory over the Loess Plateau,Adv.Atmos.Sci.,25(6),906-921,doi:10.1007/s00376-008-0906-7.
    [9]Kasten,F.,and A.T.Young(1989),Revised optical air mass tables and approximation formula,Appl.Opt.,28,4735-4738.
    [10]Michalsky,J.J.,L.C.Harrison,and W.E.Berkheiser(1995),Cosine response characteristics of some radiometric and photometric sensors,Sol.Energy,54,397-402.
    [11]Michalsky,J.J.,J.A.Schlemmer,W.E.Berkheiser,J.L.Berndt,L.C.Harrison,N.S.Laulainen,N.R.Larson,and J.C.Barnard(2001),Multiyear measurements of aerosol optical depth in the atmospheric radiation measurement and quantitative links programs,J.Geophys.Res.,107,12099-12107.
    [12]Paltridge,G.W.,and C.M.R.Platt(1976),Radiative Processes in Meteorology and Climatology Elsevier Scientific,318 pp.
    [13]Reagan,J.A,I.C.Scott-Fleming,B.M.Herman,and R.M.Schotland(1984),Recovery of spectral optical depth and zero airmass solar spectral irradiance under conditions of temporarily varying optical depth,Proc.Int.Geoscience and Remote Sensing Symp.,Strasbourg,France,European Spacc Agency,455-459.
    [14]Shaw,G.E.(1976),Error analysis of multi-wavelength sun photometry,Pure Appl.Geophys.,114,1-14.
    [15]Weihs,P.,I.Dirmhirn,and I.M.Czerwenka-Wenkstetten(1995),Calibration of Sunphotometer for measurements of turbidity,Theor.Appl.Climatol.,51,97-104.
    [16]Welton,E.J.,J.R.Campbell,J.D.Spinhime,and V.S.Scott(2001),Global monitoring of clouds and aerosols using a network of Micropulse Lidar systems,Vol.4153,Proc.Lidar Remote Sensing for Industry and Environmental Monitoring,Sendai,Japan,SPIE,151-158.
    [1]邱金桓(1996),从太阳总辐射信息反演云光学厚度的理论研究,大气科学,20(1),12-21.
    [2]章澄昌,周文贤(1995),大气气溶胶教程,气象出版社.
    [3]Angstrom,A.(1929),On the transmission of sun radiation and on dust in the air,Geogr.Ann.,2,156-166.
    [4]Baker,H.,and A.Marshak(2001),Inferring optical depth of broken clouds above green vegetation using surface solar radiometer measurements,J.Atmos.Sci.,58,2989-3006.
    [5]Berk,A.,L.S.Bernstein,and D.C.Robertson(1989),MODTRAN:A moderate resolution model for LOWTRAN7,Rep.AFGL-TR-89-0122,Air Force Geophys.Lab.,Hanscom,AFB,Ma.
    [6]Bevington,P.R.(1969),Data reduction and error analysis for the physical sciences,Mcgraw-Hill,New York.
    [7]Bodhaine,B.A.,N.B.Wood,E.G.Dutton,and J.R.Slusser,1999:On Rayleigh optical depth calculations.J.Atmos.Oceanic Technol.,16,1854-1861.
    [8]Chandrasekhar,S.(1950),Radiative Transfer,Oxford University Press,Oxford.
    [9]Dong,X.,T.P.Ackerman,E.E.Clothiaux,P.Pilewskie,and Y.Han(1997),Microphysical and radiative properties of boundary layer stratiform clouds deduced from ground-based measurements,J.Geophys.Res.,102(D20),23829-23843.
    [10]Dong,X.,T.P.Ackerman,and E.E.Clothiaux(1998),Parameterizations and shortwave radiative properties of boundary layer stratus measurements,J.Geophys.Res.,103(D24),31681-31693.
    [11]Fu,Q.(1996),An accurate parameterization of the solar radiative properties of cirrus,J.Clim.,9,2058-2082.
    [12]Hansen,J.E.,and L.D.Travis(1974),Light scattering in planetary atmospheres,Space Sci.Rev.,16,527-610.
    [13]Harrison,L.,P.Kiedron,J.Berndt,and J.Schlemmer(2003),Extraterrestrial solar spectrum 360- 1050 nm from Rotating Shadowband Spectroradiometer measurements at the Southern Great Plains(ARM) site,J.Geophys.Res.,108(D14),4424,doi:10.1029/2001JD001311.
    [14]Hu,Y.X.,and K.Stamnes(1993),An accurate parameterization of the radiative properties of water clouds suitable for use in climate models,J.Clim.,6,728-742.
    [15]Hu,Y.-X.,B.Wielicki,B.Lin,G.Gibson,S.-C.Tsay,K.Stamnes,and T.Wong(2000),d-Fit:A fast and accurate treatment of particle scatteringphase functions with weighted singular-value decomposition least-squares fitting,J.Quant.Spectrosc.Radiat.Transfer,65,681-690.
    [16]Junge,C.E.(1963),Air Chemistry and Radioactiveity,Academic,San Diego,Calif.
    [17]King,M.,S.C.Tsay,S.E.Platnick,M.Wang,and K.L.Liou(1997),Cloud retrieval algorithms for MODIS:Optical thickness,effective particle radius,and thermodynamic phase,ATBD-MODIS,NASA,Greenbelt,Md.
    [18]Leontieva,E.,and K.Stamness(1996),Remote sensing of cloud optical properties from ground-based measurements of transmittance:A feasibility study,J.Appl.Meteorol.,35,2011-2022.
    [19]Liou,K.N.(1973),A numerical experiment on Chandrasekhar's discrete-ordinates method for radiative transfer:Application to cloudy and hazy atmospheres,J.Atmos.Sci.,30,1303-1326.
    [20]Marshak,A.,Y.Knyazikhan,A.B.Davis,W.J.Wiscombe,and P.Pilewskie(2000),Cloud-vegetation interaction:Using of normalized difference cloud index for estimation of cloud optical thickness,Geophys.Res.Lett.,27,1695-1698.
    [21]Michalsky,J.J.,J.A.Schlemmer,W.E.Berkheiser,J.L.Berndt,L.C.Harrison,N.S.Laulainen,N.R.Larson,and J.C.Barnard(2001),Multiyear measurements of aerosol optical depth in the atmospheric radiation measurement and quantitative links programs,J.Geophys.Res.,107,12099-12107.
    [22]Michalsky,J.,Q.Min,J.Barnard,R.Marchand,and P.Pilewskie(2003),Simultaneous spectral albedo measurements near the Atmospheric Radiation Measurement Southern Great Plains(ARM SGP)central facility,J.Geophys.Res.,108(D8),4254,doi:10.1029/2002JD002906.
    [23]Min,Q.,and L.C.Harrison(1996),Cloud properties derived from surfacc MFRSR measurements and comparison with GOES results at the ARM SGP site,Geophys.Res.Lett.,23(13),1641-1644.
    [24]Min,Q.,E.Joseph,and M.Duan(2004a),Retrievals of thin cloud optical depth from a multifilter rotating shadowband radiometer,J.Geophys.Res.,109,D02201,doi:10.1029/2003 JD003964.
    [25]Min,Q.,P.Minnis,and M.Khaiyer(2004b),Comparison of cirrus optical depths derived from GOES 8 and surfacc measurements,J.Geophys.Res.,109,D15207,doi:10.1029/2003 JD004390.
    [26]Minnis,P.,D.P.Kratz,J.A.Coakley Jr.,M.D.King,D.Garber,P.Heck,S.Mayor,D.F.Young,and R.Arduini(1995a),Cloud optical property retrieval(subsystem 4.3),in Clouds and the Earth's Radiant Energy System(CERES)Algorithm Theoretical Basis Document,NASA Rep.1376,3,135-176.
    [27]Minnis,P.,W.L.Smith Jr.,D.P.Garber,J.K.Ayers,and D.R.Doelling(1995b),Cloud properties derived from GOES-7 for the spring 1994 ARM intensive observing period using version 1.0.0 of the ARM satellite data analysis program,NASA Rep.,1366,59.
    [28]Minnis,P.,W.L.Smith Jr.,D.F.Young,L.Nguyen,A.D.Rapp,P.W.Heck,and M.M.Khaiyer(2002),Near-real-time retrieval of cloud properties over the ARM CART area from GOES data,Proc.12th Atmos.Radiat.Meas.Sci.Team Meet.,7.
    [29]Nakajima,T.,and M.Tanaka(1988),Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,J.Quant.Spectrosc.Radiative Transfer,40,51-69.
    [30]Qiu,J.(2006),Cloud optical thickness retrievals from ground-based pyranometer measurements,J.Geophys.Res.,111,D22,D22206,10.1029/2005JD006792.
    [31]Raschke,R.A.,and S.K.Cox(1983),Instrumentation and technique for deducing cloud optical depth,J.Climate Appl.Meteorol.,22,1887-1893.
    [32]Shiobara,M.,and S.Asano(1994),Estimation of cirrus optical thickness from sun photometer measurements,J.Appl.Meteor.,33,672-681.
    [33]Slingo,A.(1989),A GCM parameterization for the shortwave radiative properties of water clouds,J.Atoms.Sci.,46,1419.
    [34]Slingo,A.,and H.M.Schrecker(1982),On the shortwave radiative properties of stratiform water clouds,Quart.J.Roy.Meteor.Soc,108,407-426.
    [35]Stamnes,K.,S.-C.Tsay,W.J.Wiscombe,and K.Jayaweera(1988),Numerical stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,Apllied Optics,27,2502-2509.
    [36]Takano,O.,and K.-N.Liou(1989),Solar radiative transfer in cirrus clouds,Part Ⅰ.Single-scattering and optical properties of hexagonal ice crystals,J.Atmos.Sci.,46,3-19.
    [37]Teillet,P.M.(1990),Rayleigh optical depth comparisons from different sources,Appl.Opt.,29,1897-1900.
    [38]Tsay,S.-C,K.Stamnes,and K.Jayaweera(1989),Radiative energy budget in the cloudy and hazy Arctic,J.Atmos.Sci.,46,1002-1018.
    [39]Wiscombe,J.W.(1977),Delta-M method:Rapid yet accurate radiative flux calculations for strongly asymmetric phase functions,J.Atmos.Sci.,34,1408-1422.
    [40]Zhang,G,L.Xu,H.Chen(1995),A new parameterization scheme for shortwave radiative properties of water clouds,J.Appl.Meteor.,34(1),101-106.
    [1]程周杰,王洪芳,白洁(2007),云微物理参数的地基探测反演研究综述,气象科技35(1),9-14.
    [2]陈勇航,黄建平,王天河,金宏春,葛觐铭(2005),应用气象学报,16(6),717-728.
    [3]Baum,B.A,P.F.Soulen,K.I.Strabala,M.D.King,S.A.Ackerman,W.P.Menzel,and P.Yang(2000),Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS:2.Cloud thermodynamic phase,J.Geophys.Res,105,11781-11792.
    [4]Baum,B.A.,R.A.Frey,G.G.Mace,M.K.Harkey,and P.Yang(2003),Nighttime multilayered cloud detection using MODIS and ARM data,J.Appl.Meteorol.,42,905-919.
    [5]Daniel,J.S.,S.Solomon,R.W.Portmann,A.O.Langford,C.S.Eubank,E.G.Dutton,and W.Madsen(2002),Cloud liquid water and ice measurements from spectrally resolved near-infrared observations:A new technique,J.Geophys.Res.,107(D21),4599,doi:10.1029/2001JD000688.
    [6]Eloranta,E.W.,I.A.Razenkov,and J.P.Garcia(2006),Mixed-phase cloud measurements with the University of Wisconsin high spectral resolution lidar,paper presented at 16th Science Team Meeting,Atmos.Radiat.Meas.,Albuquerque,N.M.,27-31 March.
    [7]Goloub,P.,M.Herman,H.Chepfer,J.Riedi,G.Brogniez,P.Couvert,and G.S(?)ze(2000),Cloud Thermodynamical Phase Classification from the POLDER Spaceborne instrument,J.Geophy.Res.,105,14747-14759.
    [8]Key,J.and J.Intrieri(2000),Cloud particle phase determination with the AVHRR,J.Appl.Meteorol.,39,1797-1805.
    [9]King,M.D.,S.Platnick,P.Yang,G.T.Arnold,M.A.Gray,J.C.Riedi,S.A.Ackerman,and K.N.Liou(2004),Remote sensing of liquid water and ice cloud optical thickness,and effective radius in the arctic:Application of airborne multispectral MAS data,J.Atmos.Ocean.Tech.,21,857-875.
    [10]Knap,W.,P.Stammes,and R.B.A.Koelemeijer(2002),Cloud thermodynamic phase determination from near-infrared spectra of reflected sunlight,J.Atmos.Sci.,59,83-96.
    [11]Knuteson,R.O.,H.E.Revercomb,F.A.Best,N.C.Ciganovich,R.G.Dedecker,T.P.Dirkx,S.C.Ellington,W.F.Feltz,R.K.Garcia,H.B.Howell,W.L.Smith,J.F.Short,and D.C.Tobin(2004),Atmospheric Emitted Radiance Interferometer,Part Ⅰ:Instrument Design,J.Atmos.Ocean.Tech.,21(12),1763-1776.
    [12]Liu,J.,C.Dong,X.Zhu(2002),Thermodynamic phase analysis of cloud particles with FY-1C data,Meteoro.Atmos.Phys.,80,65-71.
    [13]Min,Q.,and L.C.Harrison(1996),Cloud properties derived from surface MFRSR measurements and comparison with GOES results at the ARM SGP site,Geophys.Res.Lett., 23(13),1641-1644.
    [14]Min,Q.,L.C.Harrison,and E.E.Clothiaux(2001),Joint statistics of photon path length and cloud optical depth:Case studies,J.Geophys.Res.,106(D7),7375-7386.
    [15]Min,Q.,M.Duan,and R.Marchand(2003),Validation of surfacc retrieved cloud optical properties with in situ measurements at the Atmospheric Radiation Measurement Program(ARM)South Great Plains site,J.Geophys.Res.,108(D17),4547,doi:10.1029/2003 JD003385.
    [16]Min,Q.,E.Joseph,and M.Duan(2004a),Retrievals of thin cloud optical depth from a multifilter rotating shadowband radiometer,J.Geophys.Res.,109,D02201,doi:10.1029/2003 JD003964.
    [17]Min,Q.,P.Minnis,and M.Khaiyer(2004b),Comparison of cirrus optical depths derived from GOES 8 and surfacc measurements,J.Geophys.Res.,109,D15207,doi:10.1029/2003 JD0043 90.
    [18]Min,Q.,and M.Duan(2005),Simultaneously retrieving cloud optical depth and effective radius for optically thin clouds,J.Geophys.Res.,110,D21201,doi:10.1029/2005JD006136.
    [19]Pavolonis,M.J.,and A.K.Heidinger(2004):Daytime cloud overlap detection from AVHRR and V1IRS,J.Appl.Meteorol.,43,762-778.
    [20]Pavolonis,M.J.,A.K.Heidinger,and T.Uttal(2005),Daytime global cloud typing from AVHRR and VⅡRS:Algorithm description,validation,and comparisons,J.Appl.Meteorol.,44,804-826.
    [21]Platnick S.,M.D.King,S.A.Ackerman,W.P.Menzel,B.A.Baum,J.Riedi,and R.A.Frey(2003),The MODIS Cloud Products:Algorithms and Examples from Terra.IEEE,Trans.Geo.And Remote Sensing,41,459-473.
    [22]Riedi J.,P.Goloub,and R.T.Marchand(2001),Comparison of POLDER cloud phase retrievals to active remote sensors measurements at the ARM SGP site,Geophys.Res.Lett.,28(11),2185-2188.
    [23]Riedi,J.,B.Marchant,S.Platnick,B.Baum,F.Thieuleux,C.Oudard,F.Parol,J-M.Nicolas,and P.Dubuisson(2007),Cloud thermodynamic phase inferred from merged POLDER and MODIS data,Atmos.Chem.Phys.Discuss.,7,14103-14137.
    [24]Rossow,W.B.,and R.A.Schiffer(1999),Advances in understanding clouds from ISCCP.Bull.Amer.Meteor.Soc,80,2261-2287.
    [25]Sassen,K.(1991),The polarization lidar technique:A review and current assessment,Bull.Amer.Meteor.Soc,72,1848-1866.
    [26]Sassen,K.,and S.Benson(2001),A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing,Part Ⅱ: Microphysical properties derived from lidar depolarization,J.Atmos.Sci.,58,2103-2112.
    [27]Shupe,M.D.,P.Kollias,S.Y.Matrosov,and T.L.Schneider(2004),Deriving mixed-phase cloud properties from Doppler radar spectra,J.Atmos.Oceanic Technol.,21(4),660-670, doi:10.1175/1520-0426
    [28]Turner,D.D.,S.A.Ackerman,B.A.Baum,H.E.Revercomb,and P.Yang(2003),Cloud phase determination using ground-based AERI observations at SHEBA,J.Appl.Meteor.,42,702-715.
    [29]Turner,D.D.(2005),Arctic mixed-phase cloud properties from AERI-lidar observations:Algorithm and results from SHEBA,J.Appl.Meteorol.,44,427-444,doi:10.1175/JAM2208.1.
    [30]Turner,D.D.,A.M.Vogelmann,R.T.Austin,J.C.Barnard,K.Cady-Pereira,J.C.Chiu,S.A.Clough,C.Flynn,M.M.Khaiyer,J.Liljegren,K.Johnson,B.Lin,C.Long,A.Marshak,S.Y.Matrosov,S.A.McFarlane,M.Miller,Q.Min,P.Minnis,W.O'Hirok,Z.Wang,W.Wiscombe(2007),Thin liquid water clouds:Their importance and our challenge,Bull.Am.Meteorol.Soc.,88,177-190,doi:10.1175/BAMS-88-2-177.
    [31]Wang,T.,and Q.Min(2008),Retrieving optical depths of optically thin and mixed-phase clouds from MFRSR measurements,J.Geophys.Res.,113,D19203,doi:10.1029/2008JD009958.
    [1]丁守国,石广玉,赵春生(2004),利用ISCCP D2资料分析近20年全球不同云类云量的变化及其对气候的可能影响,科学通报,49(11),1105-1111.
    [2]霍娟,吕达仁(2002),全天空数字相机观测云量初步研究,南京气象学院学报,25(2),241-246.
    [3]霍娟,吕达仁(2006),云的移动轨迹成像模拟及云量变化分析,南京气象学院学报,29(2),209-214.
    [4]吕达仁,霍娟,陈英等(2001),地基全天空成像辐射仪遥感的科学、技术问题和初步试验,中国遥感奋进创新20年,童庆禧主编,北京气象出版社,114-120.
    [5]王可丽,江灏,陈世强(2001),青藏高原地区的总云量-地面观测、卫星反演和同化资料的对比分析,高原气象,20(3),252-257.
    [6]Ackerman,S.,K.Strabala,p.Menzel,R.Frey,C.Moeller,L.Gumley,B.Baum,C.Schaaf,and G.Riggs(1997),Discriminating Clear-Sky from Cloud with MODIS:Algorithm Theoretical Basis Document(MOD35).Algorithm Theoretical Basis Document ATBD-MOD-06,NASA Goddard Space Flight Center,125 pp.
    [7]Angstrom,A.(1929),On the transmission of sun radiation and on dust in the air,Geogr.Ann.,2,156-166.
    [8]Clothiaux,E.,et al.(1999),The atmospheric radiation measurement program cloud radars:Operational modes,J.Atmos.Sci.,56,819-827.
    [9]Fairall,C.,and J.Hare(1990),An eight-month sample of marine stratocumulus cloud fraction,albedo and integrated liquid water,J.Clim.,3,847-864.
    [10]IPCC(2007),Climate Change:The Physical Science Basis,in Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,edited by S.Solomon et al.,pp.996,Cambridge Univ.Press,United Kingdom and New York,NY,USA.
    [11]Long,C.N.,and T.P.Ackerman(2000),Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects,J.Geophys.Res.,105(D12),15609-15626.
    [12]Long,C.N.,T.P.Ackerman,K.L.Gaustad,and J.N.S.Cole(2006a),Estimation of fractional sky cover from broadband shortwave radiometer measurements,J.Geophys.Res.,111,D11204,doi:10.1029/2005JD006475.
    [13]Long,C.N.,J.M.Sabburg,J.Calbo,and D.Pages(2006b),Retrieving cloud characteristics from ground-based daytime color all-sky images,J.Atmos.Oceanic Tech.,23(5),633-652.
    [14]Menzel,W.P.,and K.Strabala(1997),Cloud Top Properties and Cloud Phase:Algorithm Theoretical Basis Document,ATBD-MOD-04,NASA Goddard Space Flight Center,55 pp.
    [15]Min,Q.,and L.C.Harrison(1996),Cloud properties derived from surfacc MFRSR measurements and comparison with GOES results at the ARM SGP site,Geophys.Res.Lett.,23(13),1641-1644.
    [16]Min,Q.,E.Joseph,and M.Duan(2004a),Retrievals of thin cloud optical depth from a multifilter rotating shadowband radiometer,J.Geophys.Res.,109,D02201,doi:10.1029/2003 JD003964.
    [17]Minnis,R(1989),Viewing zenith angle dependence of cloudiness determined from coincident GOES EAST and GOES WEST data,J.Geophys.Res.,94(D2),2303-2320.
    [18]Pfister,G,R.L.McKenzie,J.B.Liley,A.Thomas,B.W.Forgan,and C.N.Long(2003),Cloud coverage based on all-sky imaging and its impact on surfacc solar irradiance,J.Appl.Meteorol.,42(10),1421-1434.
    [19]Randall,D.,J.Coakley Jr.,C.Fairall,R.Kropfli,and D.Lenschow(1984),Outlook for research on subtropical marine stratiform clouds,Bull.Am.Meteorol.Soc,65,1290-1301.
    [20]Rossow,W.,A.Walker,and L.Garder(1993),Comparison of ISCCP and other cloud amounts,J.Clim.,6,2394-2418.
    [21]Stammes,P.,M.Sneep,J.F.de Haan,J.P.Veefkind,P.Wang,and P.F.Levelt(2008),Effective cloud fractions from the Ozone Monitoring Instrument:Theoretical framework and validation,J.Geophys.Res.,113,D16S38,doi:10.1029/2007JD008820.
    [22]Wang,T.,and Q.Min(2008),Retrieving optical depths of optically thin and mixed-phase clouds from MFRSR measurements,J.Geophys.Res.,113,D19203,doi:10.1029/2008JD009958.
    [1]成天涛,吕达仁,徐永福.浑善达克沙地沙尘气溶胶的辐射强迫.高原气象,2005,24(6):920-926.
    [2]成天涛,吕达仁,陈洪滨等.浑善达克沙地沙尘气溶胶的粒谱特征.大气科学,2005,29(1):147-153.
    [3]段民征,吕达仁(2007),适用于遥感应用的辐射传输高精度快速计算方法,遥感学报,11(3),359-366.
    [4]范学花,陈洪滨,杜秉玉.近地层大气气溶胶对曙暮光辐射强度和天空颜色的影响.大气科学,2004,28(2):301-310.
    [5]冯建东,陈长和,陈勇航等.利用多通道MODIS遥感资料反演沙尘气溶胶尺度分布的个例试验.高原气象,2006,25(2):242-248.
    [6]胡秀清,卢乃锰,张鹏.利用静止气象卫星红外通道遥感监测中国沙尘暴.应用气象学报,2007,18(3):266-275.
    [7]李成才,毛节泰,刘启汉.利用MODIS资料遥感香港地区高分辨率气溶胶光学厚度.大气科学,2005,29(3):335-342.
    [8]李韧,季国良.敦煌地区大气气溶胶光学厚度的季节变化.高原气象,2003,22(1):84-87.
    [9]罗云峰,吕达仁,周秀骥等.30年来我国大气气溶胶光学厚度平均分布特征分析.大气科学,2002,26(6):721-730.
    [10]刘菲,牛生杰.北方沙尘气溶胶光学厚度和粒子谱的反演.南京气象学院学报,2006,29(6):775-781.
    [11]刘吉,陈长和.兰州城区冬季大气气溶胶粒子谱的反演研究.高原气象,2004,23(1):103-109.
    [12]刘金涛,陈卫标,刘智深等.高光谱分辨率激光雷达同时测量大气风和气溶胶光学性质的模拟研究.大气科学,2003,27(1):115-122.
    [13]刘立超,沈志宝,王涛等.敦煌地区沙尘气溶胶质量浓度的观测研究.高原气象,2005,24(5):765-771.
    [14]刘新罡,吕达仁,肖稳安等.北京晴天紫外波段气溶胶光学厚度反演与分析.南京气象学院学报,2005,28(1):51-57.
    [15]马井会,张华,郑有飞等.沙尘气溶胶光学厚度的全球分布及分析.气候与环境研究,2007,12(2):156-164.
    [16]牛生杰,孙继明,陈跃等.贺兰山地区沙尘气溶胶质量浓度的观测分析.高原气象,2001a,20(1):82-87.
    [17]牛生杰,章澄昌,孙继明.贺兰山地区沙尘气溶胶粒子谱分布的观测研究.大气科学,2001b,25(2):243-252.
    [18]邱金桓,杨理权.从宽带太阳直接辐射小时或日曝辐量反演气溶胶光学厚度研究.大气科学,2002,26(4):449-458.
    [19]邱金桓,郑斯平,黄其荣等.北京地区对流层中上部云和气溶胶的激光雷达探测.大气科学,2003,27(1):1-7.
    [20]邱金桓.宽带太阳漫射辐射法反演辐射加权平均的气溶胶一次散射反照率研究.大气科学,2006,30(5):767-777.
    [21]石广玉,赵思雄.沙尘暴研究中的若干科学问题.大气科学,2003,27(4):591-606.
    [22]石广玉,王标,张华等.大气气溶胶的辐射与气候效应.大气科学,2008,32(4):826-840.
    [23]王宏,石广玉,王标等.中国沙漠沙尘气溶胶对沙漠源区及北太平洋地区大气辐射加热的影响.大气科学,2007,31(3):515-526.
    [24]吴涧,符淙斌,蒋维楣等.东亚地区矿物尘气溶胶直接辐射强迫的初步模拟研究.地球物理学报,2005,48(6):1250-1260.
    [25]辛金元,张文煜,袁九毅等.消光法反演腾格里沙漠地区沙尘气溶胶谱分布.高原气象,2004,23(5):654-659.
    [26]延昊,矫梅燕,毕宝贵等.塔克拉玛干沙漠中心的沙尘气溶胶观测研究.中国沙漠,2006,26(3):389-393.
    [27]姚济敏,张文煜,袁九毅等.典型干旱区沙尘气溶胶光学厚度及粒度谱分布的初步分析.中国沙漠,2006,26(1):77-80.
    [28]叶笃正,丑纪范,刘纪远等.关于我国华北沙尘天气的成因与治理对策.地理学报,2000,55(5):513-521.
    [29]张立盛,石广玉.硫酸盐和烟尘气溶胶辐射特性及辐射强迫的模拟估算.大气科学,2001,25(2):231-242.
    [30]张文煜,辛金元,袁九毅等.腾格里沙漠气溶胶光学厚度多波段遥感研究.高原气象,2003,22(6):613-617.
    [31]Albrecht,B.A.(1989):Aerosols,cloud microphysics,and fractional cloudiness,Science,245,1227-1230.
    [32]Ackerman,A.S.,O.B.Toon,D.E.Stevens,A.J.Heymsfield,V.Ramanathan,and E.J.Welton(2000):Reduction of tropical cloudiness by soot,Science,288,1042-1047.
    [33]Augustine,J.A.,C.R.Cornwall,G.B.Hodges,C.N.Long,C.I.Medina,J.J.Deluisi (2003),An automated method of MFRSR calibration for aerosol optical depth analysis with application to an Asian dust outbreak over the United States,J.Appl.Meteor.,42,266-278.
    [34]Br(?)on,F.M.,D.Tanr(?) and S.Generoso(2002):Aerosol effect on cloud droplet size monitored from satellite,Science,295,834-838.
    [35]DeMott,P.J.,K.Sassen,M.Poellot,D.Baumgardner,D.C.Rogers,S.Brooks,A.J.Prenni and S.M.Kreidenweis(2003):African dust aerosols as atmospheric ice nuclei,Geophy.Res.Lett.,30,1732,doi:I0.1029/2003GL017410.
    [36]Dubovik,0.,B.N.Hilben,T.Lapyonok,A.Sinyuk,M.I.Mishchenko,P.Yang,and I.Slutsker(2002):Non-spherical aerosols retrieval method employing light scattering by spheroids,Geophy.Res.Lett,29(10),1415,doi:10.1029/2001GL014506.
    [37]Dubovik,O,et al.(2006),Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,J.Geophys.Res,111,D11208,doi:10.1029/2005JD006619.
    [38]Feingold,G,L.A.Remer,J.Ramaprasad,and Y Kaufman(2001),Analysis of smoke impact on clouds in Brazilian biomass burning regions:An extension of Twomey's approach,J.Geophys.Res,106,22,907-22,922.
    [39]Gao,Y,and J.R.Anderson(2001),Characteristics of Chinese aerosols determined by individual-particle analysis,J.Geophys.Res,106(D16),18,037-18,045.
    [40]Ge,J,J.Huang,F.Weng,and W.Sun(2008),Effects of dust storms on microwave radiation based on satellite observation and model simulation over the Taklamakan Desert,Atmos.Chem.Phys,8,4903-4909.
    [41]Haywood,J.M,V.Ramaswamy,and B.J.Soden(1999),Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans,Science,283,1299-1305.
    [42]Higurashi,A,T.D.Nakajima(2002):Detection of aerosols types over the East China Sea near Japan from four-channel satellite data.Geophys.Res.Lett,29,1836,doi:10.1029/2002GL015357.
    [43]Houghton J.T,L.G.Meira Filho,J.Bruce et al.(1994):IPCC,Radiative forcing of climate change.In:Climate Change 1994(eds.Lee Callendar B.A,Haites E,Harris N.et al.).New York,Cambridge University Press,137-157.
    [44]Huang,J.P.,P.Minnis,B.Lin,T.Wang,Y.Yi,Y.Hu,S.Sun-Mack,and K.Ayers(2006a),Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES,Geophys.Res.Lett,30,6824,doi:10.1029/2005GL024724.
    [45]Huang,J.P,B.Lin,P.Minnis,T.Wang,X.Wang,Y.Hu,Y.Yi,and J.K.Ayers(2006b),Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia,Geophys.Res.Lett,33,L19802,doi:10.1029/2006GL026561.
    [46]Huang,J,Y Wang,T.Wang,and Y.Yi(2006c),Dusty cloud radiative forcing derived from satellite data for middle latitude regions of East Asia,Progress in Natural Science,16(10),1084-1089.
    [47]Huang,J,J.Ge,and F.Weng(2007),Detection of Asia dust storms using multisensor satellite measurements,Remote Sens.Environ,110,186-191.
    [48]Huang,J,P.Minnis,B.Chen,Z.Huang,Z.Liu,Q.Zhao,Y Yi,and J.K.Ayers(2008),Long-range transport and vertical structure of Asian dust from CALIPSO and surfacc measurements during PACDEX,J.Geophys.Res,113,D23212,doi:10.1029/2008JD010620.
    [49]IPCC,Climate Change(2007):The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,Solomon et al.,Eds.,Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA.
    [50]Kalashnikova,0.V.,and I.N.Sokolik(2002),Importance of shapes and compositions of wind-blown dust particles for remote sensing at solar wavelengths,Geophys.Res.Lett.,29(10),1398,doi:10.1029/2002GL014947.
    [51]Kalashnikova,O.V.,and I.N.Sokolik(2004),Modeling the radiative properties of nonspherical soil-derived mineral aerosols,J.Quant.Spectr.Rad.Tran.,87,137-166.
    [52]Kawamoto,K.and T.Nakjima(2003):Seasonal variation of cloud particle size from AVHRR remote sensing.Geophys.Res.Lett.,30,1810-1813.
    [53]Levi,Y.and D.Rosenfeld(1996):Ice nuclei,rainwater chemical composition,and static cloud seeding effects in Israel,J.Appl.Meteorol.,35,1494-1501.
    [54]Levy,R.C,L.A.Remer,and O.Dubovik(2007),Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land,J.Geophys.Res.,112,D13210,doi:10.1029/2006JD007815.
    [55]Li,Z.(2004),Aerosol and climate:A perspective from East Asia,In:Observation,Theory,and Modeling of the Atmospheric Variability(ed.Zhu D.),Singapore:World Scientific Pub.Co.,501-525.
    [56]Min,Q.,and L.C.Harrison(1996),Cloud properties derived from surfacc MFRSR measurements and comparison with GOES results at the ARM SGP site,Geophys.Res.Lett.,23(13),1641-1644.
    [57]Min,Q.,E.Joseph,and M.Duan(2004),Retrievals of thin cloud optical depth from a multifilter rotating shadowband radiometer,J.Geophys.Res.,109,D02201,doi:10.1029/2003 JD003 964.
    [58]Minnis,P.,D.P.Kratz,J.A.Coakley Jr.,M.D.King,D.Garber,P.Heck,S.Mayor,D.F.Young,and R.Arduini(1995),Cloud optical property retrieval(subsystem 4.3),in Clouds and the Earth's Radiant Energy System(CERES)Algorithm Theoretical Basis Document,NASA Rep.1376,3,135-176.
    [59]Mishchenko,M.I.,L.D.Travis(1994),Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observations,Appl.Opt.,33,7206-7225.
    [60]Mitrescu,C,and G.L.Stephens(2002),A new method for determining cloud transmittance and optical depth using the ARM Micropulsed Lidar,J.Atmos.Oceanic Tech.,19,1073-1081.
    [61]Nakajima,T.,M.Tanaka,M.Yamano,M.Shiobara,K.Arao,and Y.Nakanishi(1989),Aerosol optical characteristics in the yellow sand events observed in May,1982 at Nagasaki-part Ⅱ.models.J.Meteor.Soc.Japan,67,279-291.
    [62]Okada,K.,A.Kobayashi,Y.Iwasaka,H.Naruse,T.Tanaka,and O.Nemoto(1987),Features of individual Asian dust-storm particles collected at Nagoya,J.Meteor.Soc.of Japan,65,515-521.
    [63]Okada,K.,J.Heintzenberg,K.Kai,and Y.Qin(2001),Shape of Atmospheric Mineral Particles Collected in Three Chinese Arid-Regions,Geophys.Res.Lett.,28(16),3123-3126.
    [64]Omar et al.(2004),aerosol models for the CALIPSO lidar inversion algorithms,Proceedings of SPIE Vol.5240,0277-786X/04/$15 ? doi:10.1117/12.511067.
    [65]Qiu,J.(1995),Two-wavelength Lidar measurement of cloud-aerosol optical properties,Adv.in Atmos.Sci.,12(2),177-186.
    [66]Reid,E.A.,J.S.Reid,M.M.Meier,M.R.Dunlap,S.S.Cliff,A.Broumas,K.Perry,and H.Maring(2003),Characterization of African dust transported to Puerto Rico by individual particle and size segregated bulk analysis,J.Geophys.Res.,108(D19),8591,doi:10.1029/2002JD002935.
    [67]Ramanathan,V.,P.J.Crutzen,J.T.Kiehl,and D.Rosenfeld(2001):Aerosols,climate,and the hydrological cycle,Science,294,2119-2124.
    [68]Rosenfeld,D.and R.Nirel(1996):Seeding effectiveness-The interaction of desert dust and the southern margins of rain cloud systems in Israel,J.Appl.Metorol.,35,1502-1510.
    [69]Rosenfeld,D.,Y.Rudich and R.Lahav(2001):Desert dust suppressing precipitation:a possible desertification feedback loop,Proceedings of National Academy of Sciences,98(11),5975-5980.
    [70]Sassen,K.(2002):Indirect climate forcing over the western US from Asian dust storms.Geophys.Res.Lett.,29,1029,doi:10.1029/2001GL014034.
    [71]Sokolik I.N.and O.B.Toon(1996):Direct radiative forcing by anthropogenic mineral aerosols.Nature,381,681-683.
    [72]Su,J.,J.Huang,Q.Fu,P.Minnis,J.Ge,and J.Bi(2008),Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements,Atmos.Chem.Phys.,8,2763-2771.
    [73]Takemura,T.,I.Uno,T.Nakajima,A.Higurashi,and I.Sano(2002),Modeling study of long-range transport of Asian dust and anthropogenic aerosols from East Asia,Geophys.Res.Lett.,29(24),2158,doi:10.1029/2002GL016251.
    [74]Twomey,S.(1977):The influence of pollution on the shortwave albedo of clouds,J.Atmos.Sci.,34,1149-1152.
    [75]Yang,P.,K.N.Liou(1996),Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,Appl.Opt.,35,6568-6584.
    [76]Yang et al.(2007),Modeling of the scattering and radiative properties of nonspherical dust-like aerosols,Aero.Sci.,38,995-1014.
    [77]Yang,P.,and K.N.Liou(1996),Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,Appl.Opt.,35,6568-6584.
    [78]Yin,Y.and L.Chen(2007),Long-range transport of mineral aerosols and its absorbing and heating effects on cloud and precipitation:a numerical study,Atmos.Chem.Phys.Discuss.,7,3203-3228.
    [79]Yu et al.(2006),A comparison of dust properties between China continent and Korea,Japan in East Asia,Atmos.Environ.,40,5787-5797.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700