用户名: 密码: 验证码:
纳米组装体的可控制备及其在细胞成像分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究纳米材料组装体对生化传感器构建和生物医学成像分析具有非常重要的意义。将金属纳米材料的表面等离子体共振特性或半导体纳米材料的荧光特性与碳纳米材料的生物相容性相结合,探索纳米组装体在生物成像和药物运载领域的应用具有独特的优势和发展潜力。本文研究了金属纳米颗粒形态、尺寸、等离子体耦合对表面等离子体共振特性的影响。在此基础上构建了金属纳米自组装体和金属纳米材料与碳纳米管的杂化组装体,并将组装方法拓展到了量子点与石墨烯的组装体制备,探索了组装体在生物成像和药物运载方面的用途。主要内容如下:
     1.提出形态可控纳米金颗粒的一步合成法。研究发现,以盐酸四环素为还原剂,CTAB为包被试剂,通过调节CTAB与HAuCl4摩尔比,很容易制备孪晶片、单晶纳米片、孪晶十面体等三种形态晶体。进一步通过扫描电镜(SEM)、透射电镜(TEM)、高分辨透射电镜(HRTEM)、X射线衍射(XRD)、电子衍射(SAED)等表征手段对晶体结构进行了解析。通过UV-vis-NIR消光光谱、暗场散射成像及单颗粒散射光谱研究了形态、尺寸对其表面等离子体共振性质的影响。三种形态的纳米晶体都表现出优异的近红外吸收和暗场散射特性,可作为细胞成像探针用于癌症诊断和治疗。此外,本文还探讨了晶核形成及晶体生长机制,对今后纳米颗粒的合成及形态的控制具有理论参考意义。
     2.金纳米棒的链型自组装和金纳米棒/纳米球的网状可控组装。以meso-四(4-磺基苯基)卟啉(TPPS)的H型聚集体为媒介,发现通过调节TPPS浓度可以调控组装体的粒子问距及其表面等离子体共振耦合。通过消光光谱、SEM等手段表征了自组装体的结构;通过ζ电位、动态光散射、共振散射光谱确证纳米组装体在溶液中形成。进一步通过有限差分时域(FDTD)计算发现,纳米颗粒表面等离子体共振峰红移程度随纳米颗粒间距呈双指数递减,基于此得到“等离子体标尺方程”。根据此方程计算组装体中粒子之间的距离,与SEM统计值吻合。进一步通过暗场散射成像和生物学方法探究金纳米棒的组装机理,证明卟啉聚集体吸附在金棒端头,是构成组装体的桥梁。
     3.构建了以DNA为桥梁的金属纳米颗粒/碳纳米管异质组装体。实验结果与理论计算表明,单链DNA可以通过π-π共轭作用缠绕在碳纳米管表面,其π-π堆垛能力与碱基的电子结构密切相关。基于单链DNA与碳纳米管特殊相互作用,DNA修饰的金属纳米颗粒可吸附至碳纳米管表面从而构建金属纳米颗粒/碳纳米管异质组装体。金属纳米颗粒形态、电荷、组分可根据需要进行调节,修饰及组装过程对单组分的性质没有显著影响。组装后金属纳米颗粒的优异表面等离子体共振光学特性得到保持,而碳纳米管也保持其生物相容性。借助于暗场散射成像,发现组装体进入细胞的能力不仅与碳纳米管固有性质相关,还取决于金属纳米颗粒表面包被试剂。此外,结合金属纳米颗粒可见光区的散射特性和碳纳米管的近红外吸收性质,组装体可能同时应用于癌症的诊断和治疗。
     4.以DNA为媒介构建了石墨烯/量子点异质组装体。研究发现,DNA通过共价键修饰在量子点表面,借助DNA在石墨烯表面的吸附,量子点与石墨烯进行组装。该组装体同时具备两种纳米材料的特点,如优异的荧光特性、良好的生物相容性。进一步研究表明,以石墨烯为药物载体,通过药物自身荧光可考察药物在细胞内的分布,借助量子点荧光可考察石墨烯内在化途径,利用该组装体不仅可以监测药物释放,还能观察载体在药物释放过程中的胞内分布情况。
     上述研究内容探讨了金属表面等离子体共振特性与形态、组分、等离子体共振耦合等因素的关系,在此基础上通过DNA与碳纳米管的缠绕,构建了金属纳米颗粒与碳纳米管的组装体,利用DNA的吸附,该方法还可拓展至荧光量子点与石墨烯的组装,纳米组装体表现出优异的光学特性和良好的生物相容性,在生物成像和癌症治疗领域具有潜在的应用前景。
The investigations of nanoparticle assembly have promoted the development of nanocomposites in chemical and biological sensing, cell imaging and medical therapy. Combining the unique plasmon resonance properties of metal nanoparticles or fluorescence properties of semiconductor materials and biocompatibility of carbon nanomaterials, the nanocomposites demonstrate great potentials in biological imaging and cancer therapy. In this thesis, the dependence of surface plasmon resonance properties on particle morphology, size and plasmon coupling has been investigated, and then metal nanoparticle assembly as well as metal nanoparticle/carbon nanotube assembly have been facilely fabricated, which could be applied to the preparation of quantum dot/graphene nanocomposites. We have also investigated the potential applications of such nanocomposites in cell imaging and drug delivery. The main points are as follows:
     1. A general one-step route to synthesize Au crystals with various morphologies has been proposed. Starting from HAuCl4 in an aqueous medium and by employing tetracycline hydrochloride as the reducing agent and cetyltrimethylammonium bromide (CTAB) as the capping agent, it is very easy to get twinned tabular crystals, single crystalline nanoplates, and multi-twinned decahedra by modulating the molar ratio of CTAB with HAuCl4. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), selected area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM) were employed to characterize the three types of symmetric morphology. UV-vis-NIR. extinction spectra, dark field light scattering imaging and single particle spectra were used to investigate the dependence of surface plasmon resonance scattering on crystal size and morphology. The unique optical properties of the obtained crystals, including NIR absorption and dark field light scattering demonstrate their potential applications in cancer cell diagnostics and photothermal therapy. Moreover, a tentative explanation for the growth mechanism of Au crystals with different morphologies has been made.
     2. Linear chains of Au nanorods and bifurcated junctions of nanorods/nanospheres could be facilely fabricated via the cross-linking of H-type tetrakis(4-sulfonatophenyl)porphyrin (TPPS) aggregates in solutions. The tuning of the plasmon coupling between the Au nanocrystals has been demonstrated by varying the porphyrin concentration and thus the interparticle gap distances. The assembled nanocrystals were characterized by the extinction spectra and SEM images,ζ-potential measurements, dynamic light scattering analysis as well as resonance light scattering spectra confirmed the assembly was initiated in aqueous solutions other than solvent evaporation during the SEM specimen preparation. Further more, Finite-difference time-domain (FDTD) calculations showed that the redshift of the plasmon band exhibited a nearly exponential decay with increasing interparticle gap distances, giving rise to a "plasmon ruler equation". The gap distances determined according to this equation agreed well with the SEM observations. We also designed a biological procedure to investigate the interaction between Au nanocrystals and TPPS by the dark field light scattering technique, further confirming our view that TPPS preferentially bond to the end of Au nanorods to facilitate their end-to-end assembly.
     3. A novel strategy to prepare metal nanoparticle/carbon nanotube (CNT) hybrids through DNA linkage has been proposed. Both experimental and theoretical results demonstrated that the adsorption ability of single-strand DNA (ssDNA) on carbon nanotubes is correlative with electronic structure of natural bases. Based on the special interaction between ssDNA and CNTs, DNA modified Au nanoparticles could deposite on CNTs throughπ-πconjugate interaction, and the morphology, size, charge as well as the composition of metal nanoparticles could be rationally modulated according to experimental requirements. The conjugation chemistry did not perturb the unique intrinsic properties of each component, such as the unique plasmon properties of metal nanoparticles, and the affinity of CNTs for cancer cells. We have further investigated the interaction between nanocomposites and cancer cells using dark field light scattering imaging, and the results demonstrated that the internalization of nanocomposites into cancer cells depends on not only intrinsic affinity of CNTs but also biocompatibility of capped agents on decorated metal nanoparticles. Furthermore, the enhanced absorption of CNTs in the NIR region and the strong scattering of AgNSs in the visible region enable AgNS/CNT hybrids to be efficient agents for both cell imaging and cancer therapy.
     4. Quantum dots (QDs)/graphene hybrids have been facilely fabricated via DNA's cross-linking. It was found that QDs, which was first modified by DNA through colvalent bond, could be assembled on graphene surfaces throughπ-πstacking. The nanocomposites exhibited unique intrinsic properties of each component, such as high fluorescence intensity, good biocompatibility. By employing graphene as delivery vectors, we investigated the potential applications of the prepared nanocomposites in drug delivery, and it was found that the drug distribution could be visually observed by its own fluorescence. The internalization procedure of graphene could be monitored by QDs'fluorescence. In other words, the nanocomposites provided opportunities for monitoring both the drug delivery and vector distribution.
     In conclusion, the dependence of surface plasmon resonance properties of metal nanoparticles on morphology, composition and plasmon coupling has been investigated in this thesis. Based on the interaction between ssDNA and CNTs, we proposed a universal method for fabrication of metal nanoparticle/carbon nanotube assembly via DNA's cross-linking. The method could be further applied to prepare QDs/graphene assembly. The nanocomposites exhibited unique optical properties as well as good biocompatibility, which demonstrated great potentials in biological imaging and cancer therapy.
引文
[1]Ritchie, R. H., Plasmon losses by fast elcetrons in thin film. Phys. Rev.1957,106,874-881.
    [2]Barnes, W. L.; Dereux, A.; Ebbesen, T. W., Surface plasmon subwavelength optics. Nature 2003,424,824-830.
    [3]Millstone, J. E.; Park, S.; Shuford, K. L.; Qin, L. D.; Schatz, G. C.; Mirkin, C. A., Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc.2005,127,5312-5313.
    [4]Ghosh, S. K.; Kundu, S.; Mandal, M.; Nath, S.; Pal, T., Studies on the evolution of silver nanoparticles in micelle by UV-photoactivation. J. Nanopart. Res.2003,5,577-587.
    [5]Lazarides, A. A.; Schatz, G. C, DNA-Linked Metal Nanosphere Materials:Structural Basis for the Optical Properties. J. Phys. Chem. B 2000,104,460-467.
    [6]Pal, A.; Ghosh, S. K.; Esumi, K.; Pal, T., Reversible Generation of Gold Nanoparticle Aggregates with Changeable Interparticle Interactions by UV Photoactivation. Langmuir 2004, 20,575-578.
    [7]Lazarides, A. A.; Schatz, G. C., DNA-linked metal nanosphere materials:Fourier-transform solutions for the optical response. J. Chem. Phys.2000,112,2987-2993.
    [8]Willets, K. A.; Duyne, R. P. V., Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem.2007,58,267-297.
    [9]Faraday, M., Experimental Relations of Gold (and Other Metals) to Light. Philos. Trans. R. Soc. London 1857,147,145-181.
    [10]Rayleigh, J. W. S., On the dynamical theory of gratings. Proc. Roy. Soc.1907,79,399-416.
    [11]Rayleigh, J. W. S., Note on the remarkable case of diffraction spectra described by Prof. Wood. Philos. Mag.1907,14,60-65.
    [12]Mie, G., Beitrage zur optik truber medien speziel kolloidaler metallosungen. Ann. Phys. 1908,25,377-445.
    [13]Yguerabide, J.; Yguerabide, E. E., Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications. Anal. Biochem.1998,262,137-156.
    [14]Gans, R., The form of ultramicroscopic gold particle. Ann. Physik 1912,37,881-900.
    [15]Gans, R., Form of ultrami croscopic particles of silver. Ann. Physik 1915,47,270.
    [16]Ni, W.; Kou, X.; Yang, Z.; Wang, J., Tailoring Longitudinal Surface Plasmon Wavelengths, Scattering and Absorption Cross Sections of Gold Nanorods. ACS Nano 2008,2,677-686.
    [17]Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T., Anisotropic Metal Nanoparticles:Synthesis, Assembly, and Optical Applications. J. Phys. Chem. B 2005,109,13857-13870.
    [18]Sonnichsen, C.; Alivisatos, A. P., Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. Nano Lett.2005,5,301-304.
    [19]Millstone, J. E.; Park, S.; Shuford, K. L.; Qin, L.; Schatz, G. C.; Mirkin, C. A., Observation of a Quadrupole Plasmon Mode for a Colloidal Solution of Gold Nanoprisms. J. Am. Chem. Soc. 2005,727,5312-5313.
    [20]Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003,107,668-677.
    [21]Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G C.; Zheng, J. G, Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science 2001,294,1901-1903.
    [22]Xu, X.-H. N.; Chen, J.; Jeffers, R. B.; Kyriacou, S., Direct Measurement of Sizes and Dynamics of Single Living Membrane Transporters Using Nanooptics. Nano Lett.2002,2, 175-182.
    [23]Xu, X.-H. N.; Brownlow, W. J.; Kyriacou, S. V.; Wan, Q.; Viola, J. J., Real-Time Probing of Membrane Transport in Living Microbial Cells Using Single Nanoparticle Optics and Living Cell Imaging(?). Biochemistry 2004,43,10400-10413.
    [24]Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S., Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys.2002,116,6755-6759.
    [25]Kubo, S.; Diaz, A.; Tang, Y.; Mayer, T. S.; Khoo,I. C.; Mallouk, T. E., Tunability of the Refractive Index of Gold Nanoparticle Dispersions. Nano Lett.2007,7,3418-3423.
    [26]Pastoriza-Santos, I.; Sanchez-Iglesias, A.; Abajo, F. J. G. d.; Liz-Marzan, L. M., Environmental Optical Sensitivity of Gold Nanodecahedra. Adv. Funct. Mater.2007,17, 1443-1450.
    [27]Sherry, L. J.; Chang, S.-H.; Schatz, G. C.; Duyne, R. P. V., Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes. Nano Lett.2005,5,2034-2038.
    [28]Duval Malinsky, M.; Kelly, K. L.; Schatz, G C.; Van Duyne, R. P., Nanosphere Lithography:Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles. J. Phys. Chem. B 2001,105,2343-2350.
    [29]Haes, A. J.; Van Duyne, R. P., A Nanoscale Optical Biosensor:Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles. J.Am. Chem. Soc.2002,124,10596-10604.
    [30]Marinakos, S. M.; Chen, S. H.; Chilkoti, A., Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Anal. Chem.2007,79,5278-5283.
    [31]Mayer, K. M.; Lee, S.; Liao, H.; Rostro, B. C; Fuentes, A.; Scully, P. T.; Nehl, C. L.; Hafner, J. H., A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods. ACS Nano 2008,2,687-692.
    [32]Nusz, G J.; Marinakos, S. M.; Curry, A. C.; Dahlin, A.; Hook, F.; Wax, A.; Chilkoti, A., Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Anal. Chem. 2008,80,984-989.
    [33]Sherry, L. J.; Jin, R.; Mirkin, C. A.; Schatz, G C.; Duyne, R. P. V., Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms. Nano Lett.2006,6, 2060-2065.
    [34]Aravind, P. K.; Nitzan, A.; Metiu, H., The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres. Surf. Sci.1981,110,189-204.
    [35]Atay, T.; Song, J.-H.; Nurmikko, A. V, Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole-Dipole Interaction to Conductively Coupled Regime. Nano Lett.2004,4, 1627-1631.
    [36]Gunnarsson, L.; Rindzevicius, T.; Prikulis, J.; Kasemo, B.; Kall, M.; Zou, S.; Schatz, G. C., Confined Plasmons in Nanofabricated Single Silver Particle Pairs:Experimental Observations of Strong Interparticle Interactions. J. Phys. Chem.B 2005,109,1079-1087.
    [37]Prikulis, J.; Svedberg, F.; Kall, M.; Enger, J.; Ramser, K.; Goksor, M.; Hanstorp, D., Optical Spectroscopy of Single Trapped Metal Nanoparticles in Solution. Nano Lett.2003,4, 115-118.
    [38]Reinhard, B. M.; Siu, M.; Agarwal, H.; Alivisatos, A. P.; Liphardt, J., Calibration of Dynamic Molecular Rulers Based on Plasmon Coupling between Gold Nanoparticles. Nano Lett. 2005, 5,2246-2252.
    [39]Su, K. H.; Wei, Q. H.; Zhang, X.; Mock, J. J.; Smith, D. R.; Schultz, S., Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles. Nano Lett.2003,3, 1087-1090.
    [40]Jain, P. K.; Huang, W.; El-Sayed, M. A., On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs:A Plasmon Ruler Equation. Nano Lett. 2007,7,2080-2088.
    [41]Sonnichsen, C.; Reinhard, B. M.; Liphardt, J.; Alivisatos, A. P., A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol.2005,23,741-745.
    [42]Reinhard, B. M.; Sheikholeslami, S.; Mastroianni, A.; Alivisatos, A. P.; Liphardt, J., Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proc. Natl. Acad. Sci. USA 2007,104,2667-2672.
    [43]Pramod, P.; Thomas, K. G., Plasmon Coupling in Dimers of Au Nanorods. Adv. Mater.2008, 20,4300-4305.
    [44]Shibu Joseph, S. T.; Ipe, B. I.; Pramod, P.; Thomas, K. G., Gold Nanorods to Nanochains: Mechanistic Investigations on Their Longitudinal Assembly Using α,ω-Alkanedithiols and Interplasmon Coupling.J. Phys. Chem.B 2006,110,150-157.
    [45]Thomas, K. G.; Barazzouk, S.; Ipe, B. I.; Joseph, S. T. S.; Kamat, P. V., Uniaxial Plasmon Coupling through Longitudinal Self-Assembly of Gold Nanorods. J. Phys. Chem. B 2004,108, 13066-13068.
    [46]Jain, P. K.; Eustis, S.; El-Sayed, M. A., Plasmon Coupling in Nanorod Assemblies:Optical Absorption, Discrete Dipole Approximation Simulation, and Exciton-Coupling Model. J. Phys. Chem.B 2006,110,18243-18253.
    [47]Funston, A. M.; Novo, C.; Davis, T. J.; Mulvaney, P., Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries. Nano Lett.2009,9,1651-1658.
    [48]Fendler, J. H.; Meldrum, F. C., The colloid chemical approach to nanostructured materials. Adv. Mater.1995,7,607-632.
    [49]Fan, H.; Yang, K.; Boye, D. M.; Sigmon, T.; Malloy, K. J.; Xu, H.; Lopez, G. P.; Brinker, C. J., Self-Assembly of Ordered, Robust, Three-Dimensional Gold Nanocrystal/Silica Arrays. Science 2004,304,567-571.
    [50]Middleton, A. A.; Wingreen, N. S., Collective Transport in Arrays of Small Metallic Dots. Phy. Rev. Lett.1993,71,3198-3201.
    [51]Pileni, M. P., Reverse micelles as microreactors. J. Phys. Chem.1993,97,6961-6973.
    [52]Kim, Y.; C, R.; Johnson; Hupp, J. T., Gold Nanoparticle-Based Sensing of"Spectroscopically Silent" Heavy Metal Ions. Nano Lett.2001,1,165-167.
    [53]Liu, J.; Lu, Y, Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat. Protoc.2006,1,246-252.
    [54]Andres, R. P.; Bielefeld, J. D.; Henderson, J. I.; Janes, D. B.; Kolagunta, V. R.; Kubiak, C. P.; Mahoney, W. J.; Osifchin, R. G., Self-Assembly of a Two-Dimensional Superlattice of Molecularly Linked Metal Clusters. Science 1996,273,1690-1693.
    [55]Hayazawa, N.; Inouye, Y.; Sekkat, Z.; Kawata, S., Near-field Raman scattering enhanced by a metallized tip. Chem. Phys. Lett.2001,335,369-374.
    [56]Zhang, S.; Kou, X.; Yang, Z.; Shi, Q.; Stucky, G. D.; Sun, L.; Wang, J.; Yan, C., Nanonecklaces assembled from gold rods, spheres, and bipyramids. Chem. Commun.2007, 1816-1818.
    [57]Chen, C. L.; Zhang, P. J.; Rosi, N. L., A new peptide-based method for the design and synthesis of nanoparticle superstructures:Construction of highly ordered gold nanoparticle double helices. J. Am. Chem. Soc.2008,130,13555-13557.
    [58]Zhou, Z.; Kang, H.; Clarke, M. L.; Lacerda, S. H. D. P.; Zhao, M.; Fagan, J. A.; Shapiro, A.; Nguyen, T.; Hwang, J., Water-Soluble DNA-Wrapped Single-Walled Carbon-Nanotube/Quantum-Dot Complexes. Small 2009,5,2149-2155.
    [59]Eichen, Y.; Braun, E.; Sivan, U.; Yoseph, G B., Self-assembly of nanoelectronic components and circuits using biological templates. Acta Polym.1998,49,663-667.
    [60]Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G., DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 1998,391,775-778.
    [61]Weizmann, Y.; Patolsky, F.; Popov, I.; Willner, I., Telomerase-generated templates for the growing of metal nanowires. Nano Lett 2004,4,787-792.
    [62]Moghaddam, M. J.; Taylor, S.; Gao, M.; Huang, S.; Dai, L.; McCall, M. J., Highly Efficient Binding of DNA on the Sidewalls and Tips of Carbon Nanotubes Using Photochemistry. Nano Lett.2004,4,89-93.
    [63]Correa-Duarte, M. A.; Liz-Marzan, L. M., Carbon nanotubes as templates for onedimensional nanoparticle assemblies. J. Mater. Chem.2006,16,22-25.
    [64]Martin, C. R., Membrane-Based Synthesis of Nanomaterials. Chem. Mater.1996,8, 1739-1746.
    [65]Tang, Z.; Kotov, N. A., One-Dimensional Assemblies of Nanoparticles:Preparation, Properties, and Promise. Adv. Mater.2005,17,951-962.
    [66]Jackson, A. M.; Myerson, J. W.; Stellacci, F., Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles. Nat. Mater.2004,3,330-336.
    [67]Lin, S.; Li, M.; Dujardin, E.; Girard, C.; Mann, S., One-Dimensional Plasmon Coupling by Facile Self-Assembly of Gold Nanoparticles into Branched Chain Networks. Adv. Mater.2005, 17,2553-2559.
    [68]Gole, A.; Murphy, C. J., Biotin-Streptavidin-Induced Aggregation of Gold Nanorods: Tuning Rod-Rod Orientation. Langmuir 2005,21,10756-10762.
    [69]Park, H.-S.; Agarwal, A.; Kotov, N. A.; Lavrentovich, O. D., Controllable Side-by-Side and End-to-End Assembly of Au Nanorods by Lyotropic Chromonic Materials. Langmuir 2008,24, 13833-13837.
    [70]Chang, J.-Y.; Wu, H.; Chen, H.; Ling, Y.-C; Tan, W, Oriented assembly of Au nanorods using biorecognition system. Chem. Commun.2005,1092-1094.
    [71]Pan, B.; Ao, L.; Gao, F.; Tian, H.; He, R.; Cui, D., End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization. Nanotechnology 2005,16,1776-1780.
    [72]Zareie, M. H.; Xu, X.; Cortie, M. B., In Situ Organization of Gold Nanorods on Mixed Self-Assembled-Monolayer Substrates. Small 2007,3,139-145.
    [73]Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J., Preferential End-to-End Assembly of Gold Nanorods by Biotin-Streptavidin Connectors. J. Am. Chem. Soc.2003,125, 13914-13915.
    [74]Zhen, S. J.; Huang, C. Z.; Wang, J.; Li, Y. F., End-to-End Assembly of Gold Nanorods on the Basis of Aptamer-Protein Recognition. J. Phys. Chem. C 2009,113,21543-21547.
    [75]Nakashima, H.; Furukawa, K.; Kashimura, Y.; Torimitsu, K., Anisotropic assembly of gold nanorods assisted by selective ion recognition of surface-anchored crown ether derivatives. Chem. Commun.2007,1080-1082.
    [76]Wang, Y; Li, Y. F.; Wang, J.; Sang, Y; Huang, C. Z., End-to-end assembly of gold nanorods by means of oligonucleotide-mercury(II) molecular recognition. Chem. Commun. 2010,46,1332-1334.
    [77]Sethi, M.; Joung, G.; Knecht, M. R., Stability and Electrostatic Assembly of Au Nanorods for Use in Biological Assays. Langmuir 2009,25,317-325.
    [78]Joseph, S. T. S.; Ipe, B. I.; Pramod, P.; Thomas, K. G., Gold Nanorods to Nanochains: Mechanistic Investigations on Their Longitudinal Assembly Using r,6-Alkanedithiols and Interplasmon Coupling. J. Phys. Chem. B 2006,110,150-157.
    [79]Thomas, K. G.; Barazzouk, S.; Ipe, B. I.; Joseph, S. T. S.; Kamat, P. V., Uniaxial Plasmon Coupling through Longitudinal Self-Assembly of Gold Nanorods. J. Phys. Chem. B 2004,108, 13066-13068.
    [80]Varghese, N.; Vivekchand, S. R. C.; Govindaraj, A.; Rao, C. N. R., A calorimetric investigation of the assembly of gold nanorods to form necklaces. Chem. Phys. Lett.2008,450, 340-344.
    [81]Hu, X.; Cheng, W.; Wang, T.; Wang, E.; Dong, S., Well-ordered end-to-end linkage of gold nanorods. Nanotechnology 2005,16,2164-2169.
    [82]Nie, Z.; Fava, D.; Rubinstein, M.; Kumacheva, E., "Supramolecular" Assembly of Gold Nanorods End-Terminated with Polymer "Pom-Poms":Effect of Pom-Pom Structure on the Association Modes. J. Am. Chem. Soc.2008,130,3683-3689.
    [83]Nie, Z.; Fava, D.; Kumacheva, E.; Zou, S.; Walker, G. C.; Rubinstein, M., Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nat. Mater.2007,6,609-614.
    [84]Sudeep, P. K.; Joseph, S. T. S.; Thomas, K. G., Selective Detection of Cysteine and Glutathione Using Gold Nanorods. J. Am. Chem. Soc.2005,127,6516-6517.
    [85]Sun, Z.; Ni, W.; Yang, Z.; Kou, X.; Li, L.; Wang, J., pH-Controlled Reversible Assembly and Disassembly of Gold Nanorods. Small 2008,4,1287-1292.
    [86]Rodriguez-Fernandez, J.; Perez-Juste, J.; Mulvaney, P.; Liz-Marzan, L. M., Spatially-Directed Oxidation of Gold Nanoparticles by Au(III)-CTAB Complexes. J. Phys. Chem. B 2005,109,14257-14261.
    [87]Kou, X.; Sun, Z.; Yang, Z.; Chen, H.; Wang, J., Curvature-Directed Assembly of Gold Nanocubes, Nanobranches, and Nanospheres. Langmuir 2009,25,1692-1698.
    [88]Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayad, M. A., Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2007,2,107-118.
    [89]Eustis, S.; El-Sayed, M. A., Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev.2006,35,209-217.
    [90]Link, S.; Ei-Sayed, M. A., Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem.2003,54,331-366.
    [91]Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A., Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006,110,7238-7248.
    [92]Link, S.; El-Sayed, M. A., Shape and Size Dependence of Radiative, Non-Radiative and Photothermal Properties of Gold Nanocrystals. Int. Rev. Phys. Chem.2000,19,409-453.
    [93]Oldenburg, S. J.; Averitt, R. D.; Westcott, S. L.; Halas, N. J., Nanoengineering of Optical Resonances. Chem. Phys. Lett.1998,28,243-247.
    [94]Weissleder, R., A clearer vision for in vivo imaging. Nat. Biotechnol.2001,19,316-317.
    [95]Link, S.; El-Sayed, M. A.; Mohamed, M. B., Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant (vol 103B,pg3073,1999). J. Phys. Chem. B 2005,109,10531-10532.
    [96]Jain, P. K.; El-Sayed, M. A., Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells. Nano Lett.2007,7,2854-2858.
    [97]Sun, Y. G; Mayers, B. T.; Xia, Y. N., Template-engaged replacement reaction:A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2002,2,481-485.
    [98]Hu, M.; Chen, J. Y; Li, Z. Y; Au, L.; Hartland, G V.; Li, X. D.; Marquez, M.; Xia, Y N., Gold nanostructures:engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev.2006,35,1084-1094.
    [99]Oyelere, A. K.; Chen, P. C; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A., Peptide-Conjugated Gold Nanorods for Nuclear Targeting. Bioconjugate Chem.2007,18, 1490-1497.
    [100]Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A., Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res.2008,41,1578-1586.
    [101]Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer Cells Assemble and Align Gold Nanorods Conjugated to Antibodies to Produce Highly Enhanced, Sharp, and Polarized Surface Raman Spectra:A Potential Cancer Diagnostic Marker. Nano Lett.2007,7,1591-1597.
    [102]Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. J. Am. Chem. Soc. 2006,125,2115-2120.
    [103]El-Sayed, I. H.; Huang, X.; El-Sayed, M. A., Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer. Nano Lett.2005,5,829-834.
    [104]Kang, B.; Mackey, M. A.; El-Sayed, M. A., Nuclear Targeting of Gold Nanoparticles in Cancer Cells Induces DNA Damage, Causing Cytokinesis Arrest and Apoptosis. J. Am. Chem. Soc.2010,132,1517-1519.
    [105]Takahashi, H.; Niidome, T.; Nariai, A.; Niidome, Y; Yamada, S., Photothermal reshaping of gold nanorods prevents further cell death. Nanotechnology 2006,17, 4431-4435.
    [106]Takahashi, H.; Niidome, T.; Nariai, A.; Niidome, Y.; Yamada, S., Gold Nanorod-sensitized Cell Death:Microscopic Observation of Single Living Cells Irradiated by Pulsed Near-infrared Laser Light in the Presence of Gold Nanorods. Chem. Lett.2006,35,500-501.
    [107]Tong, L.; Zhao, Y; Huff, T. B.; Hansen, M. N.; Wei, A.; Cheng, J.-X., Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity. Adv. Mater.2007,19, 3136-3141.
    [108]Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L., Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 2003,100, 13549-13554.
    [109]Loo, C; Lowery, A.; Halas, N.; West, J.; Drezek, R., Immunotargeted Nanoshells for Integrated Cancer Imaging and Therapy. Nano Lett.2005,5,709-711.
    [110]Wang, J.; Liu, G. D.; Jan, M. R., Ultrasensitive electrical biosensing of proteins and DNA: Carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc.2004,126,3010-3011.
    [111]Wang, J.; Kawde, A. N.; Jan, M. R., Carbon-nanotube-modified electrodes for amplified enzyme-based electrical detection of DNA hybridization. Biosens. Bioelectron.2004,20, 995-1000.
    [112]Kam, N. W. S.; O'Connell, M.; Wisdom, J. A.; Dai, H. J., Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 2005,102,11600-11605.
    [113]Gaillard, C; Cellot, G; Li, S. P.; Toma, F. M.; Dumortier, H.; Spalluto, G; Cacciari, B.; Prato, M.; Ballerini, L.; Bianco, A., Carbon Nanotubes Carrying Cell-Adhesion Peptides do not Interfere with Neuronal Functionality. Adv. Mater.2009,21,2903-2908.
    [114]Gao, L. Z.; Nie, L.; Wang, T. H.; Qin, Y. J.; Guo, Z. X.; Yang, D. L.; Yan, X. Y, Carbon nanotube delivery of the GFP gene into mammalian cells. Chembiochem 2006,7,239-242.
    [115]Guo, Y; Shi, D. L; Cho, H. S.; Dong, Z. Y; Kulkarni, A.; Pauletti, G. M.; Wang, W.; Lian, J.; Liu, W.; Ren, L; Zhang, Q. Q.; Liu, G. K.; Huth, C; Wang, L. M.; Ewing, R. C, In vivo imaging and drug storage by quantum-dot-conjugated carbon nanotubes. Adv. Funct. Mater. 2008,18,2489-2497.
    [116]Liu, Z.; Winters, M.; Holodniy, M.; Dai, H. J., siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed.2007,46,2023-2027.
    [117]Pantarotto, D.; Briand, J. P.; Prato, M.; Bianco, A., Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun.2004,16-17.
    [118]Pantarotto, D.; Singh, R.; McCarthy, D.; Erhardt, M.; Briand, J. P.; Prato, M.; Kostarelos, K.; Bianco, A., Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed.2004,43,5242-5246.
    [119]Singh, R.; Pantarotto, D.; McCarthy, D.; Chaloin, O.; Hoebeke, J.; Partidos, C. D.; Briand, J. P.; Prato, M.; Bianco, A.; Kostarelos, K., Binding and condensation of plasmid DNA onto functionalized carbon nanotubes:Toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc.2005,127,4388-4396.
    [120]Wu, W.; Wieckowski, S.; Pastorin, G; Benincasa, M.; Klumpp, C; Briand, J. P.; Gennaro, R.; Prato, M.; Bianco, A., Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed.2005,44,6358-6362.
    [121]Gannon, C. J.; Cherukuri, P.; Yakobson, B. I.; Cognet, L.; Kanzius, J. S.; Kittrell, C.; Weisman, R. B.; Pasquali, M.; Schmidt, H. K.; Smalley, R. E.; Curley, S. A., Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 2007,110,2654-2665.
    [122]Marches, R.; Chakravarty, P.; Musselman, I. H.; Bajaj, P.; Azad, R. N.; Pantano, P.; Draper, R. K.; Vitetta, E. S., Specific thermal ablation of tumor cells using single-walled carbon nanotubes targeted by covalently-coupled monoclonal antibodies. Int. J. Cancer 2009,125, 2970-2977.
    [123]Cheng, J. P.; Fernando, K. A. S.; Veca, L. M.; Sun, Y. P.; Lamond, A. I.; Lam, Y. W.; Cheng, S. H., Reversible Accumulation of PEGylated Single-Walled Carbon Nanotubes in the Mammalian Nucleus. ACS Nano 2008,2,2085-2094.
    [124]Mu, Q. X.; Du, G. Q.; Chen, T. S.; Zhang, B.; Yan, B., Suppression of Human Bone Morphogenetic Protein Signaling by Carboxylated Single-Walled Carbon Nanotubes. ACS Nano 2009,3,1139-1144.
    [125]Kang, B.; Yu, D. C.; Dai, Y. D.; Chang, S. Q.; Chen, D.; Ding, Y. T., Cancer-Cell Targeting and Photoacoustic Therapy Using Carbon Nanotubes as "Bomb" Agents. Small 2009, 5,1292-1301.
    [126]Welsher, K.; Liu, Z.; Daranciang, D.; Dai, H., Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett.2008,8, 586-590.
    [127]Mu, Q. X.; Broughton, D. L.; Yan, B., Endosomal Leakage and Nuclear Translocation of Multiwalled Carbon Nanotubes:Developing a Model for Cell Uptake. Nano Lett.2009,9, 4370-4375.
    [128]Cherukuri, P.; Bachilo, S. M.; Litovsky, S. H.; Weisman, R. B., Near-Infrared Fluorescence Microscopy of Single-Walled Carbon Nanotubes in Phagocytic Cells. J. Am. Chem. Soc.2004,126,15638-15639.
    [129]Mieszawska, A. J.; Jalilian, R.; Sumanasekera, G. U.; Zamborini, F. P., Synthesis of Gold Nanorod/Single-Wall Carbon Nanotube Heterojunctions Directly on Surfaces. J. Am. Chem. Soc. 2005,127,10822-10823.
    [130]Hu, X.; Wang, T.; Wang, L.; Guo, S.; Dong, S., A General Route to Prepare One-and Three-Dimensional Carbon Nanotube/Metal Nanoparticle Composite Nanostructures. Langmuir 2007,25,6352-6357.
    [131]Guo, L.; Peng, Z., One-Pot Synthesis of Carbon Nanotube-Polyaniline-Gold Nanoparticle and Carbon Nanotube-Gold Nanoparticle Composites by Using Aromatic Amine Chemistry. Langmuir 2008,24,8971-8975.
    [132]Mu, Y.; Liang, H.; Hu, J.; Jiang, L.; Wan, L., Controllable Pt Nanoparticle Deposition on Carbon Nanotubes as an Anode Catalyst for Direct Methanol Fuel Cells. J. Phys. Chem. B 2005, 709,22212-22216.
    [133]Hull, R. V.; Li, L.; Xing, Y.; Chusuei, C. C, Pt Nanoparticle Binding on Functionalized Multiwalled Carbon Nanotubes. Chem. Mater.2006,18,1780-1788.
    [134]Peng, Z.; Holm, A. H.; Nielsen, L. T.; Pedersen, S. U.; Daasbjerg, K., Covalent Sidewall Functionalization of Carbon Nanotubes by a"Formation-Degradation" Approach. Chem. Mater. 2008,20,6068-6075.
    [135]Han, X.; Li, Y.; Deng, Z., DNA-Wrapped Single-Walled Carbon Nanotubes as Rigid Templates for Assembling Linear Gold Nanoparticle Arrays. Adv. Mater.2007,19,1518-1522.
    [136]Chen, Y.; Liu, H.; Ye, T.; Kim, J.; Mao, C., DNA-Directed Assembly of Single-Wall Carbon Nanotubes. J. Am. Chem. Soc.2007,129,8696-8697.
    [137]Han, X. G.; Li, Y. L.; Deng, Z. X., DNA-wrapped single-walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays. Adv. Mater.2007,19,1518-+.
    [138]Hobbie, E. K.; Bauer, B. J.; Stephens, J.; Becker, M. L.; McGuiggan, P.; Hudson, S. D.; Wang, H., Colloidal Particles Coated and Stabilized by DNA-Wrapped Carbon Nanotubes. Langmuir 2005,21,10284-10287.
    [139]Ostojic, G. N.; Ireland, J. R.; Hersam, M. C, Noncovalent Functionalization of DNA-Wrapped Single-Walled Carbon Nanotubes with Platinum-Based DNA Cross-Linkers. Langmuir 2008,24,9784-9789.
    [140]Kang, H.; Clarke, M. L.; Tang, J.; Woodward, J. T.; Chou, S. G.; Zhou, Z.; Simpson, J. R.; Walker, A. R. H.; Nguyen, T.; Hwang, J., Multimodal, Nanoscale, Hyperspectral Imaging Demonstrated on Heterostructures of Quantum Dots and DNA-Wrapped Single-Wall Carbon Nanotubes. ACS Nano 2009,3,3769-3775.
    [141]Shi, D. L.; Guo, Y.; Dong, Z. Y.; Lian, J.; Wang, W.; Liu, G. K.; Wang, L. M.; Ewing, R. C, Quantum-dot-activated luminescent carbon nanotubes via a nano scale surface functionalization for in vivo imaging. Adv. Mater.2007,19,4033-4037.
    [142]Kim, K.; Lee, S. H.; Yi, W.; Kim, J.; Choi, J. W.; Park, Y.; Jin, J.-I., Efficient Fied Emission from Highly Aligned, Graphitic Nanotubes Embedded with Gold Nanoparticles. Adv. Mater.2003,15,1618-1622.
    [143]Hrapovic, S.; Majid, E.; Liu, Y.; Male, K.; Luong, J. H. T., Metallic Nanoparticle-Carbon Nanotube Composites for Electrochemical Determination of Explosive Nitroaromatic Compounds. Anal. Chem.2006,78,5504-5512.
    [144]Li, W.; Liang, C.; Qiu, J.; Zhou, W.; Han, H.; Wei, Z.; Sun, G.; Xin, Q., Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon 2002,40,791-794.
    [145]Hao, E.; Bailey, R. C.; Schatz, G. C.; Hupp, J. T.; Li, S. Y., Synthesis and optical properties of "branched" gold nanocrystals. Nano Lett.2004,4,327-330.
    [146]Kan, C. X.; Zhu, J. J.; Zhu, X. G, Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms. J. Phys. D Appl. Phys.2008,41,-.
    [147]Kuo, C. H.; Huang, M. H., Synthesis of branched gold nanocrystals by a seeding growth approach. Langmuir 2005,21,2012-2016.
    [148]Reyes-Gasga, J.; Elechiguerra, J. L.; Liu, C.; Camacho-Bragado, A.; Montejano-Carrizales, J. M.; Yacaman, M. J., On the structure of nanorods and nanowires with pentagonal cross-sections. J. Cryst. Growth 2006,286,162-172.
    [149]Sanchez-Iglesias, A.; Pastoriza-Santos, I.; Perez-Juste, J.; Rodriguez-Gonzalez, B.; de Abajo, F. J. G.; Liz-Marzan, L. M., Synthesis and optical properties of gold nanodecahedra with size control. Adv. Mater.2006,18,2529-+.
    [150]Seo, D.; Park, J. C.; Song, H., Polyhedral gold nanocrystals with O-h symmetry:From octahedra to cubes. J. Am. Chem. Soc.2006,128,14863-14870.
    [151]Sun, J. H.; Guan, M. Y.; Shang, T. M.; Gao, C. L.; Xu, Z.; Zhu, J. M., Selective synthesis of gold cuboid and decahedral nanoparticles regulated and controlled by Cu2+ ions. Cryst. Growth Des.2008,8,906-910.
    [152]Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L., Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316,732-735.
    [153]WILEY, B.; SUN, Y.; XIA, Y, Synthesis of Silver Nanostructures with Controlled Shapes and Properties. AcC. Chem. Res.2007,40,1067-1076.
    [154]Yao, H.; Minami, T.; Hori, A.; Koma, M.; Kimura, K., Fivefold symmetry in superlattices of monolayer-protected gold nanoparticles. J. Phys. Chem. B 2006,110,14040-14045.
    [155]Zhang, J. H.; Liu, H. Y; Wang, Z. L.; Ming, N. B., Synthesis of high purity Au nanobelts via the one-dimensional self-assembly of triangular Au nanoplates. Appl. Phys. Lett.2007,91,-.
    [156]Zhu, J.; Jin, X. L., Electrochemical synthesis of gold triangular nanoplates and self-organized into rhombic nanostructures. Superlattices Microstruct.2007,41,271-276.
    [157]Zou, X. Q.; Ying, E. B.; Chen, H. J.; Dong, S. J., An approach for synthesizing nanometer-to micrometer-sized silver nanoplates. Colloids Surf, A 2007,303,226-234.
    [158]Prato, M.; Kostarelos, K.; Bianco, A., Functionalized Carbon Nanotubes in Drug Design and Discovery. Acc. Chem. Res.2007,41,60-68.
    [159]Shi Kam, N. W.; Jessop, T. C.; Wender, P. A.; Dai, H., Nanotube Molecular Transporters: Internalization of Carbon Nanotube-Protein Conjugates into Mammalian Cells. J. Am. Chem. Soc.2004,126,6850-6851.
    [160]Wu, Y.; Phillips, J. A.; Liu, H.; Yang, R.; Tan, W, Carbon Nanotubes Protect DNA Strands during Cellular Delivery. ACS Nano 2008,2,2023-2028.
    [161]Kam, N. W. S.; Liu, Z. A.; Dai, H. J., Carbon nanotubes as intracellular transporters for proteins and DNA:An investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed 2006,45,591-595.
    [162]Wiley, B. J.; Im, S. H.; Li, Z. Y.; McLellan, J.; Siekkinen, A.; Xia, Y. A., Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem.B 2006,110,15666-15675.
    [163]Chen, S. W.; Yang, Y. Y, Magnetoelectrochemistry of gold nanoparticle quantized capacitance charging. J. Am. Chem. Soc.2002,124,5280-5281.
    [164]Zhang, Y W.; Grass, M. E.; Kuhn, J. N.; Tao, F.; Habas, S. E.; Huang, W. Y.; Yang, P. D.; Somorjai, G. A., Highly selective synthesis of cataytically active monodisperse rhodium nanocubes. J. Am. Chem. Soc.2008,130,5868-5869.
    [165]Liu, X.; Dai, Q.; Austin, L.; Coutts, J.; Knowles, G.; Zou, J. H.; Chen, H.; Huo, Q., A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc.2008,130,2780-2782.
    [166]Jiang, X. C.; Yu, A. B., Silver nanoplates:A highly sensitive material toward inorganic anions. Langmuir 2008,24,4300-4309.
    [167]Huang, Y.; Duan, X.; Wei, Q.; Lieber, C. M., Directed assembly of one-dimensional nanostructures into functional networks. Science 2001,291,630-633.
    [168]Ji, X. H.; Song, X. N.; Li, J.; Bai, Y. B.; Yang, W. S.; Peng, X. G., Size control of gold nanocrystals in citrate reduction:The third role of citrate. J. Am. Chem. Soc.2007,129, 13939-13948.
    [169]Kim, F.; Song, J. H.; Yang, P. D., Photochemical synthesis of gold nanorods. J. Am. Chem. Soc.2002,124,14316-14317.
    [170]Sun, Y. G.; Mayers, B.; Herricks, T.; Xia, Y. N., Polyol synthesis of uniform silver nanowires:A plausible growth mechanism and the supporting evidence. Nano Lett.2003,3, 955-960.
    [171]Xiong, Y.; Washio, I.; Chen, J.; Sadilek, M.; Xia, Y, Trimeric clusters of silver in aqueous AgNO3 solutions and their role as nuclei in forming triangular nanoplates of silver. Angew. Chem. Int. Ed.2007,46,4917-4921.
    [172]Zhang, J.; Sun, L. D.; Yin, J. L.; Su, H. L.; Liao, C. S.; Yan, C. H., Control of ZnO morphology via a simple solution route. Chem. Mater.2002,14,4172-4177.
    [173]Uyeda, R., The morphology of fine metal crystallites. J. Cryst. Growth 1974,24/25, 69-75.
    [174]Kiyoto, K.; Nishida, I., Multiply-twinned particles of F. C. C. metals produced by condensation in argon at low pressures. J. Phys. Soc. Japan.1967,22,940.
    [175]Liu, S. M.; Gan, L. M.; Liu, L. H.; Zhang, W. D.; Zeng, H. C., Synthesis of single-crystalline TiO2 nanotubes. Chem. Mater.2002,14,1391-1397.
    [176]Sanchez-Iglesias, A.; Pastoriza-Santos, I.; Perez-Juste, J.; Rodriguez-Gonzalez, B.; de Abajo, F. J. G.; Liz-Marzan, L. M., Synthesis and optical properties of gold nanodecahedra with size control. Adv. Mater.2006,18,2529-2534.
    [177]Wiley, B.; Herricks, T.; Sun, Y. G.; Xia, Y. N., Polyol synthesis of silver nanoparticles:Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett.2004,4,1733-1739.
    [178]Berriman, R. W.; Herz, R. H., Twinning and the tabular growth of silver bromide crystals. Nature 1957,180,293-294.
    [179]Bogels, G.; Pot, T. M.; Meekes, H.; Bennema, P.; Bollen, D., Side-face structure and growth mechanism of tabular silver bromide crystals. Acta Cryst.1997, A53,84-94.
    [180]Orendorff, C. J.; Sau, T. K.; Murphy, C. J., Shape-Dependent Plasmon-Resonant Gold Nanoparticles. Small 2006,2,636-639.
    [181]Bogels, G.; Meekes, H.; P., B., Growth mechanism of vapor-grown silver crystals:relation between twin formation and morphology. J. Phys. Chem. B 1999,103,7577-7583.
    [182]Mitchell, J. W., Photographic sensitivity. Rep. Progr. Phys.1957,20,433-515.
    [183]Germain, V.; Li, J.; Ingert, D.; Wang, Z. L.; Pileni, M. P., Stacking faults in formation of silver nanodisks. J. Phys. Chem. B 2003,107,8717-8720.
    [184]Liu, B.; Xie, J.; Lee, J. Y.; Ting, Y P.; Chen, J. P., Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. J. Phys. Chem. B 2005,109,15256-15263.
    [185]Chu, H. C.; Kuo, C. H.; Huang, M. H., Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges. Inorg. Chem.2006,45,808-813.
    [186]Seo, D.; Il Yoo, C.; Chung, I. S.; Park, S. M.; Ryu, S.; Song, H., Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals:Decahedra, icosahedra, and truncated tetrahedra. J. Phys. Chem. C 2008,112,2469-2475.
    [187]Chen, H. Y.; Wang, J. X.; Yu, H. C.; Yang, H. X.; Xie, S. S.; Li, J. Q., Transmission electron microscopy study of pseudoperiodically twinned Zn2SnO4 nanowires. J. Phys. Chem. B 2005,109,2573-2577.
    [188]Salzemann, C.; Lisiecki, L.; Urban, J.; Pileni, M. P., Anisotropic copper nanocrystals synthesized in a supersaturated medium:Nanocrystal growth. Langmuir 2004,20, 11772-11777.
    [189]Pastoriza-Santos, I.; Sanchez-Iglesias, A.; de Abajo, F. J. G.; Liz-Marzan, L. M., Environmental optical sensitivity of gold nanodecahedra. Adv. Funct. Mater.2007,17, 1443-1450.
    [190]Chen, S. H.; Carroll, D. L., Silver nanoplates:Size control in two dimensions and formation mechanisms. J. Phys. Chem. B 2004,108,5500-5506.
    [191]Filankembo, A.; Giorgio, S.; Lisiecki, I.; Pileni, M. P., Is the anion the major parameter in the shape control of nanocrystals? J. Phys. Chem. B 2003,107,7492-7500.
    [192]Kan, C. X.; Zhu, X. G.; Wang, G. H., Single-crystalline gold microplates:Synthesis, characterization, and thermal stability. J. Phys. Chem. B 2006,110,4651-4656.
    [193]Murugadoss, A.; Chattopadhyay, A., Surface Area Controlled Differential Catalytic Activities of One-Dimensional Chain-like Arrays of Gold Nanoparticles. J. Phys. Chem. C 2008, 112,11265-11271.
    [194]Taleb, A.; Silly, F.; Gusev, A. O.; Charra, F.; Pileni, M.-P., Electron Transport Properties of Nanocrystals:Isolated, and "Supra"-Crystalline Phases. Adv. Mater.2000,12,633-637.
    [195]Minko, S.; Kiriy, A.; Gorodyska, G.; Stamm, M., Mineralization of Single Flexible Polyelectrolyte Molecules. J. Am. Chem. Soc.2002,124,10192-10197.
    [196]Yu, S.-H.; Colfen, H.; Antonietti, M., The Combination of Colloid-Controlled Heterogeneous Nucleation and Polymer-Controlled Crystallization:Facile Synthesis of Separated, Uniform High-Aspect-Ratio Single-Crystalline BaCrO4 Nanofibers. Adv. Mater. 2003,75,133-136.
    [197]Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y, Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence. Nano Lett.2003,3,955-960.
    [198]Jain, P. K.; Huang, W.; El-Sayed, M. A., On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs:A Plasmon Ruler Equation. Nano Lett.2007,7,2080-2088.
    [199]Reinhard, B. M.; Sheikholeslami, S.; Mastroianni, A.; Alivisatos, A. P.; Liphardt, J., Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proc. Natl. Acad. Sci.2007,104,2667-2672.
    [200]Liu, C.; Bard, A. J., Pressure-induced insulator-conductor transition in a photoconducting organic liquid-crystal film. Nature 2002,418,162-164.
    [201]Schwab, A. D.; Smith, D. E.; Bond-Watts, B.; Johnston, D. E.; Hone, J.; Johnson, A. T.; Paula, J. C. d.; Smith, W. F., Photoconductivity of Self-Assembled Porphyrin Nanorods. Nano Lett.2004,4,1261-1265.
    [202]Morisue, M.; Yamatsu, S.; Haruta, N.; Kobuke, Y, Surface-Grafted Multiporphyrin Arrays as Light-Harvesting Antennae to Amplify Photocurrent Generation. Chem. Eur. J.2005,11, 5563-5574.
    [203]Satake, A.; Fujita, M.; Kurimoto, Y; Kobuke, Y, Single supramolecular porphyrin wires bridging gold nanoparticles. Chem. Commun.2009,1231-1233.
    [204]Jiang, X. C.; Brioude, A.; Pileni, M. P., Gold nanorods:Limitations on their synthesis and optical properties. Colloids Surf., A 2006,277,201-206.
    [205]Sau, T. K.; Murphy, C. J., Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution. J. Am. Chem. Soc.2004,126,8648-8649.
    [206]Oubre, C.; Nordlander, P., Optical Properties of Metallodielectric Nanostructures Calculated Using the Finite Difference Time Domain Method. J. Phys. Chem. B 2004,108, 17740-17747.
    [207]Johnson, P. B.; Christy, R. W., optical constants of the noble metals. Phys. Rev. B 1972,6, 4370-4379.
    [208]Hill, H. D.; Mirkin, C. A., The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat. protoc.2006,1,324-336.
    [209]Gluodenis, M.; Foss, C. A., The Effect of Mutual Orientation on the Spectra of Metal Nanoparticle Rod-Rod and Rod-Sphere Pairs. J. Phys. Chem. B 2002,106,9484-9489.
    [210]Zhang, L.; Lu, Q.; Liu, M., Fabrication of Chiral Langmuir-Schaefer Films from Achiral TPPS and Amphiphiles through the Adsorption at the Air/Water Interface. J. Phys. Chem. B 2003,107,2565-2569.
    [211]Fava, D.; Winnik, M. A.; Kumacheva, E., Photothermally-triggered self-assembly of gold nanorods. Chem. Commun.2009,2571-2573.
    [212]Reinhard, B. M.; Siu, M.; Agarwal, H.; Alivisatos, A. P.; Liphardt, J., Calibration of Dynamic Molecular Rulers Based on Plasmon Coupling between Gold Nanoparticles. Nano Lett. 2005,5,2246-2252.
    [213]Hu, R.; Yong, K.-T.; Roy, I.; Ding, H.; He, S.; Prasad, P. N., Metallic Nanostructures as Localized Plasmon Resonance Enhanced Scattering Probes for Multiplex Dark-Field Targeted Imaging of Cancer Cells. J. Phys. Chem. C 2009,113,2676-2684.
    [214]Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. J. Am. Chem. Soc. 2006,128,2115-2120.
    [215]Li, H.; Rothberg, L., Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. USA 2004,101, 14036-14039.
    [216]Zhang, Z.-F.; Cui, H.; Lai, C.-Z.; Liu, L.-J., Gold Nanoparticle-Catalyzed Luminol Chemiluminescence and Its Analytical Applications. Ana. Chem.2005,77,3324-3329.
    [217]Terrones, M., Science and Technology of the Twenty-First Century:Synthesis, Properties, and Applications of Carbon Nanotubes. Annu. Rev. Mater. Res.2003,33,419-501.
    [218]Kam, N. W. S.; Liu, Z.; Dai, H., Carbon Nanotubes as Intracellular Transporters for Proteins and DNA:An Investigation of the Uptake Mechanism and Pathway. Angew. Chem. 2006,118,591-595.
    [219]Wu, W.; Wieckowski, S.; Pastorin, G.; Benincasa, M.; Klumpp, C.; Briand, J.-P.; Gennaro, R.; Prato, M.; Bianco, A., Targeted Delivery of Amphotericin B to Cells by Using Functionalized Carbon Nanotubes. Angew. Chem. Int. Ed. 2005,44,6358-6362.
    [220]Choi, J. H.; Nguyen, F. T.; Barone, P. W.; Heller, D. A.; Moll, A. E.; Patel, D.; Boppart, S. A.; Strano, M. S., Multimodal Biomedical Imaging with Asymmetric Single-Walled Carbon Nanotube/Iron Oxide Nanoparticle Complexes. Nano Lett.2007,7,861-867.
    [221]Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; McLean, R. S.; Onoa, G. B.; Samsonidze, G. G.; Semke, E. D.; Usrey, M.; Walls, D. J., Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 2003,302,1545-1548.
    [222]Frisch, M. J.; Trucks, G W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Wong, M. W.; Foresman, J. B.; Robb, M. A.; Head-Gordon, M.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A., Gaussian 98. Gaussian Inc.
    [223]Sengupta, D.; Nguyen, M. T., Ab initio calculations and quantum statitiscal analysis of the SiH3+NO reaction. Chemical Physics Letters 1997,265,35-40.
    [224]Frens, G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci.1973,241,20-22.
    [225]Creighton, J. A.; Blatchford, C. G.; Albrecht, M. G, Plasma Resonance Enhancement of Raman-Scattering by Pyridine Adsorbed on Silver or Gold Sol Particles of Size Comparable to the Excitation Wavelength. J. Chem. Soc., Faraday Trans.1979,75,790-798.
    [226]Henglein, A.; Giersig, M, Formation of Colloidal Silver Nanoparticles:Capping Action of Citrate. J. Phys. Chem. B 1999,103,9533-9539.
    [227]He, P. G.; Bayachou, M., Layer-by-layer fabrication and characterization of DNA-wrapped single-walled carbon nanotube particles. Langmuir 2005,21,6086-6092.
    [228]Niyogi, S.; Boukhalfa, S.; Chikkannanavar, S. B.; McDonald, T. J.; Heben, M. J.; Doom, S. K., Selective Aggregation of Single-Walled Carbon Nanotubes via Salt Addition. J. Am. Chem. Soc.2007,129,1898-1899.
    [229]Sano, M.; Okamura, J.; Shinkai, S., Colloidal Nature of Single-Walled Carbon Nanotubes in Electrolyte Solution:The Schulze-Hardy Rule. Langmuir 2001,17,7172-7173.
    [230]Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; Mclean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G., DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater.2003,2,338-342.
    [231]Gigliotti, B.; Sakizzie, B.; Bethune, D. S.; Shelby, R. M.; Cha, J. N., Sequence-Independent Helical Wrapping of Single-Walled Carbon Nanotubes by Long Genomic DNA. Nano Lett.2006,6,159-164.
    [232]Ikeda, A.; Hamano, T.; Hayashi, K.; Kikuchi, J.-i., Water-Solubilization of Nucleotides-Coated Single-Walled Carbon Nanotubes Using a High-Speed Vibration Milling Technique. Org. Lett.2006,8,1153-1156.
    [233]He, P.; Bayachou, M., Layer-by-Layer Fabrication and Characterization of DNA-Wrapped Single-Walled Carbon Nanotube Particles. Langmuir 2005,21,6086-6092.
    [234]Sharma, J.; Chhabra, R.; Yan, H.; Liu, Y., A facile in situ generation of dithiocarbamate ligands for stable gold nanoparticle-oligonucleotide conjugates. Chem. Commun.2008, 2140-2142.
    [235]Azzam, T.; Eliyahu, H.; Shapira, L.; Linial, M.; Barenholz, Y; Domb, A. J., Polysaccharide-Oligoamine Based Conjugates for Gene Delivery. J. Med. Chem.2002,45, 1817-1824.
    [236]Kim, P.; Odom, T. W.; Huang, J.-L.; Lieber, C. M., Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes:Van Hove Singularities and End States. Phys. Rev. Lett.1999,82,1225-1228
    [237]Kang, B.; Yu, D.; Dai, Y.; Chang, S.; Chen, D.; Ding, Y, Cancer-Cell Targeting and Photoacoustic Therapy Using Carbon Nanotubes as "Bomb" Agents. Small 2009,3,1292-1301.
    [238]Hill, H. D.; Mirkin, C. A., The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat. Protoc.2006,1,324-336.
    [239]Neto, A. H. C; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Rev. Mod. Phys.2009,81,109-162.
    [240]Allen, M. J.; Tung, V. C.; Kaner, R. B., Honeycomb Carbon:A Review of Graphene. Chem. Rev.2010,110,132-145.
    [241]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004,306,666-669.
    [242]Gupta, A.; Chen, G.; Joshi, P.; Tadigadapa, S.; Eklund, Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films. Nano Lett.2006,6, 2667-2673.
    [243]Riedl, C.; Zakharov, A. A.; Starke, U., Precise in situ thickness analysis of epitaxial graphene layers on SiC(0001) using low-energy electron diffraction and angle resolved ultraviolet photoelectron spectroscopy. Appl. Phys. Lett.2008,93,033106.
    [244]Alwarappan, S.; Erdem, A.; Liu, C.; Li, C.-Z., Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications. J. Phys. Chem. C 2009,113,8853-8857.
    [245]Shang, N. G.; Papakonstantinou, P.; McMullan, M.; Chu, M.; Stamboulis, A.; Potenza, A.; Dhesi, S. S.; Marchetto, H., Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes. Adv. Funct. Mater. 2008,18,3506-3514.
    [246]Yang, X. Y.; Zhang, X. Y.; Liu, Z. F.; Ma, Y. F.; Huang, Y.; Chen, Y., High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide. J. Phys. Chem. C 2008,112,17554-17558.
    [247]Varghese, N.; Mogera, U.; Govindaraj, A.; Das, A.; Maiti, P. K.; Sood, A. K.; Rao, C. N. R., Binding of DNA Nucleobases and Nucleosides with Graphene. Chemphyschem 2009,10, 206-210.
    [248]Lu, C. H.; Yang, H. H.; Zhu, C. L.; Chen, X.; Chen, G. N., A Graphene Platform for Sensing Biomolecules. Angew. Chem. Int. Ed.2009,48,4785-4787.
    [249]Zhang, L. M.; Xia, J. G.; Zhao, Q. H.; Liu, L. W.; Zhang, Z. J., Functional Graphene Oxide as a Nanocarrier for Controlled Loading and Targeted Delivery of Mixed Anticancer Drugs. Small 2010,6,537-544.
    [250]Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J., PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc.2008,130,10876-10877.
    [251]Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J., Nano-Graphene Oxide for Cellular Imaging and Drug Delivery. Nano Research 2008,1, 203-212.
    [252]Si, Y. C.; Samulski, E. T., Exfoliated Graphene Separated by Platinum Nanoparticles. Chem. Mater.2008,20,6792-6797.
    [253]Muszynski, R.; Seger, B.; Kamat, P. V., Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 2008,112,5263-5266.
    [254]Kamat, P. V., Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support. J. Phys. Chem. Lett.2010,1,520-527.
    [255]Cong, H. P.; He, J. J.; Lu, Y.; Yu, S. H., Water-Soluble Magnetic-Functionalized Reduced Graphene Oxide Sheets:In situ Synthesis and Magnetic Resonance Imaging Applications. Small 2010,6,169-173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700