用户名: 密码: 验证码:
生物功能化碳纳米管的合成、表征及分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(Carbon nanotubes,CNTs)作为吸附剂的应用引起了国内外科学家的广泛关注。碳纳米管凭借其优异的吸附性能,已用于分离富集多种多样的痕量分析物。然而,功能化的碳纳米管用作吸附剂,在高选择性、高灵敏度的分析检测方面,所得到的关注仍然较少。本论文旨在发展生物功能化的碳纳米管的合成方法、表征及其作为新型选择性吸附剂在痕量分析中的应用,主要研究内容和创新点如下:
     (1)将L-半胱氨酸功能化的碳纳米管用于痕量金属离子的选择性分离与富集。合成了L-半胱氨酸功能化的多壁碳纳米管并通过XPS、FT-IR、XRD和TEM的表征。分别从动态和静态吸附的角度,评价了L-半胱氨酸功能化的多壁碳纳米管的选择性富集与分离重金属的性能。L-半胱氨酸功能化的多壁碳纳米管不受离子强度影响成为了其显著的优点。其在pH 5.0~6.5范围内,L-半胱氨酸功能化的多壁碳纳米管可以有效地富集Cd~(2+);使用0.5 mol L~(-1)HCl洗脱后,由火焰原子吸收光谱检测。L-半胱氨酸功能化的多壁碳纳米管可以快速地吸附Cd~(2+)。相对于未修饰的碳纳米管,在与其他金属离子共存的抗干扰方面,有10到1600倍性能的增强。此方法已成功应用L-半胱氨酸功能化的多壁碳纳米管作为高选择性吸附剂,在线固相萃取复杂基质中的Cd~(2+)离子。以5.0mL min~(-1)流速富集60 s,富集倍数为33倍。检出限(3σ)为0.28μg L~(-1),而样品通量为36 h~(-1)。11次重复测定10μg L~(-1) Cd~(2+)精密度为1.6%。所建立的方法成功地用于各种环境和生物样品中的痕量检测。
     (2)研究了蛋白质功能化的碳纳米管用于痕量金属离子的选择性分离与富集。将构建、表达、提取并纯化得到的组氨酸标签的蛋白质用于多壁碳纳米管的功能化,并利用UV-vis、AFM和XRD等手段进行表征。分别从动态和静态吸附的角度,评价了组氨酸蛋白功能化碳纳米管的性能。在pH 4.0~5.5范围内,组氨酸标签的蛋白质功能化的多壁碳纳米管可以有效地富集Cu~(2+);在pH 5.0~6.5范围内,可以有效地富集Ni~(2+)。使用0.2 mol L~(-1)咪唑-盐酸洗脱后,由火焰原子吸收光谱检测。组氨酸标签蛋白功能化的的多壁碳纳米管可以快速地吸附Cu~(2+)和Ni~(2+)。因此,相对于未修饰的碳纳米管,在与其他金属离子共存的抗干扰方面分别有20000和1800倍的改善。以5.0 mL min~(-1)流速富集60 s,富集倍数分别为(Cu)29倍,(Ni)28倍。检出限(3σ)分别为:0.31μg L~(-1)(Cu)、0.63μg L~(-1)(Ni),而样品通量为40 h~(-1)。11次重复测定10μg L~(-1) Cu~(2+)、15μg L~(-1) Ni~(2+)精密度分别为:2.4%(Cu)、2.5%(Ni)。此方法已成功应用组氨酸标签蛋白功能化的碳纳米管作为高选择性吸附剂,用于痕量铜和镍在多种环境和生物样品中的测定。
     (3)构建了集免疫-磁性-荧光为一体的多功能碳纳米管,并建立了痕量溶藻弧菌的快速定量检测方法。合成了免疫-磁性-荧光多壁碳纳米管,并通过UV-vis、SEM、FT-IR、VSM和FL表征。考察了此复合功能材料吸附细菌的行为。材料的功能单元:其一,抗体能够高度专一性的识别抗原,聚乙二醇分子又可以显著地降低非特异性吸附,通过PCR-DNA琼脂糖凝胶电泳来验证来评价免疫-磁性-荧光多壁碳纳米管的选择性吸附性能。其二,在功能化的过程中,仍保留了多壁碳纳米管中的一部分金属颗粒Ni催化剂,作为免疫磁性介质分离致病性菌体。其三,利用高效的荧光有机试剂1-芘丁酸,能够与多壁碳纳米管的侧壁的强π-π堆积作用,既可以转化形成水分散性纳米荧光复合物,又可以成为纳米荧光复合物连接抗体蛋白的“桥梁”。实验测定溶藻弧菌的线性范围为3.0×10~4~1.5×10~7 cfu mL~(-1),检测限(3σ)为8.4×10~3 cfu mL~(-1),11次重复测定2.0×10~5 cfu mL~(-1)溶藻弧菌精密度为1.4%。免疫-磁性-荧光多壁碳纳米管可以应用于痕量溶藻弧菌的快速定量检测。
The use of un-functinalized carbon nanotubes(CNTs) as sorbents for separation and preconcentration of trace analytes has received considerable attention.However, little attention has been paid to fuctionalized carbon nanotubes as sorbents for highly selective separation and preconcentration of trace analytes.This dissertation describes the synthesis,characterization and selective sorption capability of bio-functionalized carbon nanotubes in trace analytical application.The main contents are summarized as follows:
     A selective on-line solid-phase extraction method was developed for the separation and preconcentration of trace Cd using L-cysteine functionalized multi-walled carbon nanotubes(MWCNTs-cysteine) as sorbent.MWCNTs-cysteine were synthesized and characterized by XPS,FT-IR,XRD and TEM.The capability of MWCNTs-cysteine for selective separation and preconcentration of heavy metal ions were statically and dynamically evaluated with Cd~(2+) as a model heavy metal ion. Unlike MWCNTs,the sorption of Cd~(2+) onto MWCNTs-cysteine was not influenced by ionic strength in a wide range.The MWCNTs-cysteine was demonstrated to be good column packings for on-line microcolumn separation and preconcentration of Cd~(2+).Effective preconcentration of Cd~(2+) on the MWCNTs-cysteine packed microcolumn was achieved in a pH range of 5.0 to 6.5.The retained Cd~(2+) was efficiently eluted with 0.5 mol L~(-1) HCl for on-line flame atomic absorption spectrometric determination.The MWCNTs-cysteine exhibited fairly fast kinetics for the adsorption of Cd~(2+),and offered up to 1600-fold improvement of the tolerable concentrations of co-existing metal ions over the MWCNTs for on-line solid-phase extraction of Cd~(2+).With a preconcentration time of 60 s at a sample loading flow rate of 5.0 mL min~(-1),an enhancement factor of 33 and a sample throughput of 36 h~(-1) along with a detection limit(3s) of 0.28μg L~(-1) were obtained.The precision(RSD) for 11 replicate measurements was 1.6%at the 10μg L~(-1) level.The developed method using the MWCNTs-cysteine as sorbent was successfully applied to determination of trace cadmium in a variety of biological and environmental materials.
     A selective on-line solid-phase extraction of trace Cu~(2+) and Ni~(2+) was developed using hexhistidine-tagged protein functionalized multi-walled carbon nanotubes (MWCNTs/6His-tagged-protein) as sorbent.The MWCNTs/6His-tagged-protein were prepared and characterized by ultraviolet-visible spectrophotometry,atomic force microscopy and X-ray diffraction spectroscopy.Both static and dynamical adsorption experiments showed that the MWCNTs/6His-tagged-protein served as good sorbent for the solid-phase extraction of Cu~(2+) and Ni~(2+).Effective on-line sorption of Cu~(2+) and Ni~(2+) on the MWCNTs/6His-tagged-protein packed microcolumn was achieved in a pH range of 4.0-5.5 and 5.0-6.5,respectively.The retained Cu~(2+) and Ni~(2+) were efficiently eluted with 0.2 mol L~(-1) imidazole-HCl solution for on-line flame atomic absorption spectrometric determination.The MWCNTs/6His-tagged-protein exhibited fairly fast kinetics for the sorption of Cu~(2+) and Ni~(2+),and gave up to 20000 and 1800 times improvement in the tolerable concentrations of co-existing ions over the MWCNTs for solid-phase extraction of Cu~(2+) and Ni~(2+),respectively.On-line solid-phase extraction at a flow rate of 5.0 mL min~(-1) for 60 s offered an enhancement factor of 29 for Cu~(2+) and 28 for Ni~(2+),a sample throughput of 40 h~(-1),and a detection limit(3s) of 0.31μg L~(-1) for Cu~(2+) and 0.63μg L~(-1) for Ni~(2+).The precision for 11 replicate measurements was 2.4%for 10μg L~(-1) Cu~(2+),and 2.5%for 15μg L~(-1) Ni~(2+). The new MWCNTs/6His-tagged protein nanohybrids have been shown to be a promising high selectively sorbent for on-line solid-phase extraction of Cu~(2+) and Ni~(2+) in a variety of environmental and biological samples.
     An ultrasenstive and rapid method for detection of pathogen Vibrio alginolyticus was developed based on the multi-functional carbon nanotubes. Immuno-magnetic-fluorescence-multiwalled carbon nanotubes were synthesized,and characterized by UV-vis,SEM,FT-IR,VSM and FL.The binding behavior of the multi-functional carbon nanotubes for bacterium was investigated by optical microscope.There were three distinguish functional units of the immuno-magnetic-fluorescence-multiwalled carbon nanotubes.First,the highly specific antibody-antigen interactions and poly(ethylene glycol) was found to be effective in resisting nonspecific adsorption.Second,parts of encapsulated ferromagnetic element Ni in multiwalled carbon nanotubes acted for immunomagnetic separation of pathogenic cells.Third,efficient fluorescent reagent 1-pyrenebutyric acid was conjugated to multi-walled carbon nanotube sidewall via the strongπ-πstacking interaction and connected with antibody protein like a "bridge". The nano-fluorescent bioconjuate can be dispersed in water.There was a good linear relationship(R=0.9938) between the enhanced fluorescence intensity and the concentration of V.alginolyticus,with a linear in the range of 3.0×10~4 to 1.5×10~7 cfu mL~(-1).A detection limit(3s) of 8.4×10~3 cfu mL~(-1) V.alginolyticus was achieved.The relative standard deviation for 11 replicate detections of 2.0×10~5 cfu mL~(-1) V. alginolyticus was 1.4%(RSD),Immuno-magnetic-fluorescence-multiwalled carbon nanotubes have been shown to be a promising highly selective sorbent for ultrasenstive and rapid detection of pathogen Vibrio alginolyticus.
引文
[1]Avouris,P.Molecular electronics with carbon nanotubes.Acc.Chem.Res.2002,35,1026-1034.
    [2]Ajayan,P.M.Nanotubes from carbon.Chem.Rev.1999,99,1787-1799.
    [3]Rao,C.N.R.;Satishkumar,B.C.;Govindaraj,A.;Nath,M.Nanotubes.ChemPhysChem 1999,99,1787-1799.
    [4]Iijima,S.Helical microtubules of graphitic carbon.Nature 1991,354,56-58.
    [5]Balasubramanian,K.;Burghard,M.Chemically functionalized carbon nanotubes.Small 2005,1,180-192.
    [6]Journet,C.;Maser,W.K.;Bernier,P.;Loiseau,A.;de la Chapelle,M.L.;Lefrant,S.;Deniard,P.;Lee,R.;Fischer,J.E.Large-scale production of single-walled carbon nanotubes by the electric-arc technique.Nature 1997,388,756-758.
    [7]Terrones,M.Science and technology of the twenty-first century:Synthesis,properties and applications of carbon nanotubes.Annu.Rev.Mater.Res.2003,33,419-501.
    [8]Zheng,F.;Liang,L.;Gao,Y.F.;Sukamto,J.H.;Aardahl,C.L.Carbon nanotube synthesis using mesoporous silica templates.Nano.Lett.2002,2,729-732.
    [9]Cheng,H.M.;Li,F.;Sun,X.;Brown,S.D.M.;Pimenta,M.A.;Marucci,A.;Dresselhaus,G.;Dresselhaus,M.S.Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons.Chem.Phys.Lett.1998,289,602-610.
    [10]聂海瑜.碳纳米管的制备.塑料工业 2004,32,11-14.
    [11]Yuan,L.M.;Saito,K.;Pan,C.X.;Williams,F.A.;Gordon,A.S.Nanotubes from methane flames.Chem.Phys.Lett.2001,340,237-241.
    [12]Guo,T.;Nikolaev,P.;Thess,A.;Colbert,D.T.;Smalley,R.E.Catalytic growth of single-walled manotubes by laser vaporization.Chem.Phys.Lett.1995,243,49-54.
    [13]Hsu,W.K.;Terrones,M.;Hare,J.P.;Terrones,H.;Kroto,H.W.;Walton,D.R.M.Electrolytic formation of carbon nanostructures.Chem.Phys.Lett.1996,262,161-166.
    [14]Treacy,M.M.J.;Ebbesen,T.W.;Gibson,J.M.Exceptionally high Young's modulus observed for individual carbon nanotubes.Nature 1996,381,678-680.
    [15]Edwards,B.C.Design and deployment of a space elevator.Acta.Astronautica.2000,47,735-744.
    [16]Pugno,N.M.Space elevator:out of order? Nano Today 2007,2,44-47.
    [17]王敏.单壁碳纳米管的制备与纯化:[硕士学位论文].黑龙江:黑龙江大学,2007.
    [18]Belin,T.;Epron,F.Characterization methods of carbon nanotubes:a review.Mater.Sci.Eng.,B 2005,119,105-118.
    [19]Dillon,A.C.;Jones,K.M.;Bekkedahl,T.A.;Kiang,C.H.;Bethune,D.S.;Heben,M.J.Storage of hydrogen in single-walled carbon nanotubes.Nature 1997,386,377-379.
    [20]Liu,C.;Fan,Y.Y.;Liu,M.;Cong,H.T.;Cheng,H.M.;Dresselhaus,M.S.Hydrogen storage in single-walled carbon nanotubes at room temperature.Science 1999,286,1127-1129.
    [21]Planeix,J.M.;Coustel,N.;COQ,B.;Brotons,V.;Kumbhar,P.S.;Dutartre,R.;Geneste,P.;Bernier,P.;Ajayan,P.M.Application of carbon nanotubes as supports in heterogeneous catalysis.J.Am.Chem.Soc.1994,116,7935-7936.
    [22]Rinzler,A.G.;Hafner,J.H.;Nikolaev,P.;Lou,L.;Kim,S.G.;Tomanek,D.;Nordlander,P.;Colbert,D.T.;Smalley,R.E.Unraveling nanotubes:field emission from an atomic wire.Science 1995,269,1550-1553.
    [23]Martel,R.;Schmidt,T.;Shea,H.R.;Hertel,T.;Avouris,P.Single-and multi-wall carbon nanotube field-effect transistors.Appl.Phys.Lett.1998,73,2447-2449.
    [24]Dalton,A.B.;Collins,S.;Munoz,E.;Razal,J.M.;Ebron,V.H.;Ferraris,J.P.;Coleman,J.N.;Kim,B.G.;Baughman,R.H.Super-tough carbon-nanotube fibres-These extraordinary composite fibres can be woven into electronic textiles.Nature 2003,423,703.
    [25] Zhang, M.; Fang, S. L.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H. Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005, 309, 1215-1219.
    [26] Zhang, M.; Atkinson, K. R.; Baughman, R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 2005, 306, 1358-1361.
    [27] http://www.nanooze.org/english/blog.html
    [28] Berber, S.; Kwon, Y. K.; Tomanek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 2000, 84, 4613-4616.
    [29] Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 2001, 87, 215502/1-4.
    [30] Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 2000, 287, 1801-1804.
    [31] Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. J. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622-625.
    [32] Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L.; Lieber, C. M. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 1998, 394, 52-55.
    [33] Hafner, J. H.; Cheung, C. L.; Woolley, A. T.; Lieber, C. M. Structural and functional imaging with carbon nanotube AFM probes. Prog. Biophys. Mol. Biol. 2001,77,73-110.
    [34] Wu, W.; Wieckowski, S.; Pastorin, G; Benincasa, M.; Klumpp, C; Briand, J. P.; Gennaro, R.; Prato, M.; Bianco, A. Targeted delivery of Amphotericin B to cells using functionalized carbon nanotubes. Angew. Chem. Int. Ed. 2005, 44, 6358-6362.
    [35]Lu,F.S.;Gu,L.R.;Meziani,M.J.;Wang,X.;Luo,P.G.;Veca,L.M.;Cao,L.;Sun,Y.P.Advances in bioapplications of carbon nanotubes.Adv.Mater.2009,21,139-152.
    [36]Yang,W.R.;Thordarson,P.;Gooding,J.J.;Ringer,S.P.;Bract,F.Carbon nanotubes for biological and biomedical applications.Nanotechnology 2007,18,412001-1-12.
    [37]Bianco,A.;Hoebekel,J.;Kostarelos,K.;Prato,M.;Partidos,C.D.Carbon nanotubes:On the road to deliver.Curr.Drug Delivery 2005,2,253-259.
    [38]Tasis,D.;Tagmatarchis,N.;Bianco,A.;Prato,M.Chemistry of carbon nanotubes.Chem.Rev.2006,106,1105-1136.
    [39]Banerjee,S.;Hemraj-Benny,T.;Wong,S.S.Covalent surface chemistry of single-walled carbon nanotubes.Adv.Mater.2005,17,17-29.
    [40]肖素芳,王宗花,罗国安.碳纳米管的功能化研究进展.分析化学2005,33,261-266.
    [41]Hirsch,A.Functionalization of single-walled carbon nanotubes.Angew.Chem.Int.Ed.2002,41,1853-1859.
    [42]Liu,J.;Rinzler,A.G.;Dai,H.J.;Hafner,J.H.;Bradley,R.K.;Boul,P.J.;Lu,A.;Iverson,T.;Shelimov,K.;Huffrnan,C.B.;Rodriguez-Macias,F.;Shon,Y.S.;Lee,T.R.;Colbert,D.T.;Smalley,R.E.Fullerene pipes.Science 1998,280,1253-1256.
    [43]Hiura,H.;Ebbesen,T.W.;Tanigaki,K.Opening and purification of carbon nanotubes in high yields.Adv.Mater.1995,7,275-283.
    [44]Ajayan,P.M.;Iijima,S.Capillarity-induced filling of carbon nanotubes.Nature 1993,361,333-334.
    [45]Chen.J;Hamon,M.A.;Hu,H.;Chen,Y.S.;Rao,A.M.;Eklund,P.C.;Haddon,R.C.Solution properties of single-walled carbon nanotubes. Science 1998, 282, 95-98.
    [46] Hamon, M. A.; Chen, J.; Hu, H.; Chen, Y. S.; Itkis, M. E.; Rao, A. M.; Eklund, P. C; Haddon, R. C. Dissolution of single-walled carbon nanotubes. Adv. Mater. 1999, 11, 834-840.
    [47] Hamon, M .A.; Hui, H.; Bhowmik, P.; Itkis, H. M. E.; Haddon, R. C. Ester-functionalized soluble single-walled carbon nanotubes. Appl. Phys. A: Mater. Sci.Process. 2002, 74, 333-338.
    [48] Qu, L. W.; Martin, R. B.; Huang, W. J.; Fu, K. F.; Zweifel, D.; Lin, Y.; Sun, Y. P.; Bunker, C. E.; Harruff, B. A.; Gord, J. R.; Allard, L. F. Interactions of functionalized carbon nanotubes with tethered pyrenes in solution. J. Chem. Phys. 2002, 117,8089-8094.
    [49] Sun, Y. P.; Huang, W. J.; Lin, Y.; Fu, K. F.; Kitaygorodskiy, A.; Riddle, L. A.; Yu, Y. J.; Carroll, D. L. Soluble dendron-functionalized carbon nanotubes: Preparation, characterization, and properties. Chem. Mater. 2001, 13,2864-2869.
    [50] Sano, M.; Kamino, A.; Shinkai, S. Construction of carbon nanotube "stars" with dendrimers. Angew. Chem. Int. Ed. 2001, 40, 4661-4663.
    [51] Gu, Z.; Peng, H.; Hauge, R. H.; Smalley, R. E.; Margrave, J. L. Cutting single-wall carbon nanotubes through fluorination. Nano Lett. 2002, 2, 1009-1013.
    [52] Stevens, J. L.; Huang, A. Y.; Peng, H. Q.; Chiang, I. W.; Khabashesku, V. N.; Margrave, J. L. Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines. Nano Lett. 2003, 3, 331-336.
    [53] Saini, R. K.; Chiang, I. W.; Peng, H. Q.; Smalley, R. E.; Billups, W. E., Hauge, R. H.; Margrave, J. L. Covalent sidewall functionalization of single wall carbon nanotubes. J. Am. Chem. Soc. 2003, 125, 3617-3621.
    [54] Hu, H.; Zhao, B.; Hamon, M. A.; Kamaras, K.; Itkis, M. E.; Haddon, R. C. Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene. J. Am. Chem. Soc. 2003, 125, 14893-14900.
    [55] Coleman, K. S.; Chakraborty, A. K.; Bailey, S. R.; Sloan, J.; Alexander, M. Iodination of single-walled carbon nanotubes. Chem. Mater. 2007, 19, 1076-1081.
    [56] Georgakilas, V.; Tagmatarchis, N.; Pantarotto, D.; Bianco, A.; Briand, J. P.; Prato, M. Amino acid functionalisation of water soluble carbon nanotubes. Chem. Commun. 2002, 24, 3050-3051.
    [57] Fanchini, G.; Unalan, H.E.; Chhowalla, M. Modification of transparent and conducting single wall carbon nanotube thin films via bromine functionalization. Appl. Phys. Lett. 2007, 90, 92114-1-3.
    [58] Banerjee, S.; Wong, S. S. Rational Sidewall Functionalization and Purification of Single-Walled Carbon Nanotubes by Solution-Phase Ozonolysis. J. Phys. Chem. B 2002, 106, 12144-12151.
    [59] Coleman, K. S.; Bailey, S. R.; Fogden, S.; Green, M. L. H. Functionalization of single-walled carbon nanotubes via the Bingel reaction. J. Am. Chem. Soc. 2003, 125, 8722-8723.
    [60] Holzinger, M.; Vostrowsky, O.; Hirsch, A.; Hennrich, F.; Kappes, M.; Weiss, R.; Jellen, F. Sidewall functionalization of carbon nanotubes. Angew. Chem. Int. Ed. 2001, 40, 4002-4005.
    [61] Chattopadhyay, D.; Lastella, S.; Kim, S.; Papadimitrakopoulos, F. Length separation of zwitterion-functionalized single wall carbon nanotubes by GPC. J. Am. Chem. Soc. 2002, 124, 728-729.
    [62] Li, B.; Shi, Z. J.; Lian, Y. F.; Gu, Z. N. Aqueous soluble single-wall carbon nanotube. Chem. Lett. 2001, 7, 598-599.
    [63] Pompeo, F.; Resasco, D. E. Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nano Lett. 2002, 2, 369-373.
    [64] Kahn, M. G. C; Banerjee, S.; Wong, S. S. Solubilization of oxidized single-walled carbon nanotubes in organic and aqueous solvents through organic derivatization. Nano Lett. 2002, 2, 1215-1218.
    [65] Haremza, J. M.; Hahn, M. A.; Krauss, T. D. Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes. Nano Lett. 2002, 2, 1253-1258.
    [66] Banerjee, S.; Wong, S. S. Synthesis and characterization of carbon nanotube-nanocrystal heterostructures. Nano Lett. 2002, 2, 195-200.
    [67] Ravindran, S.; Chaudhary, S.; Colburn, B.; Ozkan, M.; Ozkan, C. S. Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications. Nano Lett. 2003, 3, 447-453.
    [68] Azamian, B. R.; Coleman, K. S.; Davis, J. J.; Hanson, N.; Green, M. L. H. Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chem. Commun. 2002, 4, 366-367.
    [69] Lordi, V.; Yao, N.; Wei, J. Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater. 2001, 13,733-737.
    [70] Smith, B. W.; Monthioux, M.; Luzzi, D. E. Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials. Chem. Phys. Lett. 1999, 315, 31-36.
    [71] Smith, B. W.; Luzzi, D. E. Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis. Chem. Phys. Lett. 2000, 321, 169-174.
    
    [72] Khlobystov, A. N.; Britz, D. A.; Briggs, G. A. D. Molecules in carbon nanotubes. Acc. Chem. Res. 2005, 38, 901-909.
    
    [73] Wu, W.; Zhu, H. R.; Fan, L. Z.; Yang, S. H. Synthesis and Characterization of a Grapevine Nanostructure Consisting of single-Walled carbon nanotubes with covalently attached [60]fullerene balls. Chem. Eur. J. 2008, 14, 5981-5987.
    
    [74] Star, A.; Liu, Y.; Grant, K.; Ridvan, L.; Stoddart, J. F.; Steuerman, D. W.; Diehl, M. R.; Boukai, A. Heath, J. R. Noncovalent side-wall functionalization of single-walled carbon nanotubes. Macromolecules 2003, 36, 553-560.
    
    [75] O'Connell, M. J.; Boul, P.; Ericson, L. M.; Huffman, C.; Wang, Y. H.; Haroz, E.; Kuper, C; Tour, J.; Ausman, K. D.; Smalley, R. E. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 2001, 342, 265-271.
    
    [76] Star, A.; Stoddart, J. F.; Steuerman, D.; Diehl, M.; Boukai, A.; Wong, E. W.; Yang, X.; Chung, S. W.; Choi, H.; Heath, J. R. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew. Chem. Int. Ed. 2001,40, 1721-1725.
    
    [77] Lu, Y. R.; Bangsaruntip, S.; Wang, X. R.; Zhang, L.; Nishi, Y.; Dai, H. J. DNA functionalization of carbon nanotubes for ultrathin atomic layer deposition of high kappa dielectrics for nanotube transistors with 60 mV/decade switching. J. Am. Chem. Soc. 2006, 128, 3518-3519.
    
    [78] Heller, D. A.; Jeng, E. S.; Yeung, T. K.; Martinez, B. M.; Moll, A. E.; Gastala, J. B.; Strano, M. S. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 2006, 311, 508-511.
    [79] Guo, Z. J.; Sadler, P. J.; Tsang, S. C. Immobilization and visualization of DNA and proteins on carbon nanotubes. Adv. Mater. 1998, 10, 701-703.
    [80] Balavoine, F.; Schultz, P.; Richard, C; Mallouh, V.; Ebbesen, T. W.; Mioskowski, C. Helical crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors. Angew. Chem. Int. Ed. 1999,38, 1912-1915.
    [81] Thielemans, W.; McAninch, I. M.; Barren, V.; Blau, W. J.; Wool, R. P. Impure carbon nanotubes as reinforcements for acrylated epoxidized soy oil composites. J. Appl. Polym. Sci. 2005, 98, 1325-1338.
    [82] Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 2001, 123, 3838-3839.
    [83] Valcarcel, M.; Cardenas, S.; Simonet, B. M; Moliner, M. Y.; Lucena, R. Carbon nanostructures as sorbent materials in analytical processes. Trends Anal. Chem. 2008, 27, 34-43.
    [84] Valcarcel, M; Cardenas. S.; Simonet, B. M. Role of carbon nanotubes in analytical science. Anal. Chem. 2007, 79, 4788-4797.
    [85] Tarley, C. R. T. ; Barbosa, A. F.; Segatelli, M. G ; Figueiredo, E. C; Luccas, P. O. Highly improved sensitivity of TS-FF-AAS for Cd (II) determination at ng L-1 levels using a simple flow injection minicolumn preconcentration system with multiwall carbon nanotubes. J. Anal. At. Spectrom. 2006, 21, 1305-1313.
    [86] Ding, Q.; Liang, P.; Song, F.; Xiang, A. M. Separation and preconcentration of silver ion using multiwalled carbon nanotubes as solid phase extraction sorbent. Sep. Sci. Technol. 2006, 41, 2723-2732.
    [87] Liang, H. D. ; Han, D. M. Multi-walled carbon nanotubes as sorbent for flow injection on-line microcolumn preconcentration coupled with flame atomic absorption spectrometry for determination of cadmium and copper. Anal. Lett. 2006, 39, 2285-2295.
    
    [88] Liang, P.; Liu, Y; Guo, L.; Zeng, J.; Lu, H. B. Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom. 2004, 19, 1489-1492.
    
    [89] Barbosa, A. E; Segatelli, M. G; Pereira, A. C; Santos, A. d. S.; Kubota, L. T.; Luccas, P. O.; Tarley, C. R. T. Solid-phase extraction system for Pb (II) ions enrichment based on multiwall carbon nanotubes coupled on-line to flame atomic absorption spectrometry. Talanta 2007, 71, 1512-1519.
    
    [90] Shang, X. H. Flow injection on-line solid phase extraction using multi-walled carbon nanotubes as sorbent for cold vapor atomic fluorescence spectrometric determination of trace mercury in water samples. At. Spectrosc. 2007, 28, 35-40.
    
    [91] Li, Y. H.; Ding, J.; Luan, Z. K.; Di, Z. C; Zhu, Y. F.; Xu, C. L.; Wu, D. H.; Wei, B. Q. Competitive adsorption of Pb~(2+), Cu~(2+) and Cd~(2+) ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 2003, 41, 2787-2792.
    
    [92] Wang, X. K.; Chen, C. L.; Hu, W. P.; Ding, A. P.; Xu, D.; Zhou, X. Sorption of ~(243)Am(III) to multiwall carbon nanotubes. Environ. Sci. Technol. 2005, 39, 2856-2860.
    
    [93] Liang, P.; Liu, Y; Guo, L. Determination of trace rare earth elements by inductively coupled plasma atomic emission spectrometry after preconcentration with multiwalled carbon nanotubes. Spectrochim. Acta Part B 2005, 60, 125-129.
    
    [94] Ei-Sheikh, A. H.; Sweileh, J. A.; Al-Degs, Y. S. Effect of dimensions of multi-walled carbon nanotubes on its enrichment efficiency of metal ions from environmental waters. Anal. Chim. Acta 2007, 604, 119-126.
    [95] Kandah, M. I.; Meunier, J. L. Removal of nickel ions from water by multi-walled carbon nanotubes. J Hazard. Mater. 2007, 146, 283-288.
    [96] Peng, X. J.; Luan, Z. K.; Ding, J.; Di, Z. C; Li, Y. H.; Tian, B. H. Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Mater. Lett. 2005, 59, 399-403.
    [97] Callegari, A.; Marcaccio, M; Paolucci, D.; Paolucci, F.; Tagmatarchis, N.; Tasis, D.; Vazquez, E.; Prato, M.. Anion recognition by functionalized single wall carbon nanotubes. Chem. Commun. 2003, 20, 2576-2577.
    [98] Cai, Y. Q.; Jiang, G. B.; Liu, J. F.; Zhou, Q. X. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A, 4-n-Nonylphenol, and 4- tert-octylphenol. Anal. Chem. 2003, 75, 2517-2521.
    [99] Liu, G. H.; Wang, J. L.; Zhu, Y. F.; Zhang, X. R. Application of multiwalled carbon nanotubes as a solid-phase extraction sorbent for chlorobenzenes. Anal. Lett. 2004, 37, 3085-3104.
    [100] Long, R. Q.; Yang, R. T. Carbon nanotubes as superior sorbent for dioxin removal. J. Am. Chem. Soc. 2001, 123, 2058-2059.
    [101] Cai, Y. Q.; Jiang, G. B.; Liu, J. F.; Zhou, Q. X. Multi-walled carbon nanotubes packed cartridge for the solid-phase extraction of several phthalate esters from water samples and their determination by high performance liquid chromatography. Anal. Chim. Acta 2003, 494, 149-156.
    [102] Zhou, Q. X.; Wang, W. D.; Xiao, J. P.; Wang, J. H.; Liu, G. G.; Shi, Q. Z.; Guo, G. L. Comparison of the enrichment efficiency of multiwalled carbon nanotubes, C18 silica, and activated carbon as the adsorbents for the solid phase extraction of atrazine and simazine in water samples. Microchim. Acta 2006, 152, 215-224.
    [103] Wang, L. P.; Zhao, H. X.; Qiu, Y. M.; Zhou, Z. Q. Determination of four benzodiazepine residues in pork using multiwalled carbon nanotube solid-phase extraction and gas chromatography-mass spectrometry. J. Chromatogr., A 2006, 1136,99-105.
    
    [104] Wang, S.; Zhao, P.; Min, G.; Fang, G. Z. Multi-residue determination of pesticides in water using multi-walled carbon nanotubes solid-phase extraction and gas chromatography-mass spectrometry. J. Chromatogr., A 2007, 1165, 166-171.
    
    [105] Fang, G. Z.; He, J. X.; Wang, S. Multiwalled carbon nanotubes as sorbent for on-line coupling of solid-phase extraction to high-performance liquid chromatography for simultaneous determination of 10 sulfonamides in eggs and pork. J. Chromatogr., A 2006, 1127,12-17.
    
    [106] Suarez, B.; Simonet, B. M.; Cardenas, S.; Valcarcel, M. Determination of non-steroidal anti-inflammatory drugs in urine by combining an immobilized carboxylated carbon nanotubes minicolumn for solid-phase extraction with capillary electrophoresis-mass spectrometry. J. Chromatogr., A 2007, 1159, 203-207.
    
    [107] Wang, W. D.; Huang, Y. M.; Shu, W. Q.; Cao, H. Multiwalled carbon nanotubes as adsorbents of solid-phase extraction for determination of polycyclic aromatic hydrocarbons in environmental waters coupled with high-performance liquid chromatography. J. Chromatogr., A 2007, 1173, 27-36.
    
    [108] Zhou, Q. X.; Xiao, J. P.; Ding, Y. J. Sensitive determination of fungicides and prometryn in environmental water samples using multiwalled carbon nanotubes solid-phase extraction cartridge. Anal. Chim. Acta 2007, 602, 223-228.
    
    [109] Cai, Y. Q.; Cai, Y. E.; Mou, S. F.; Lu, Y. Q. Multi-walled carbon nanotubes as a solid-phase extraction adsorbent for the determination of chlorophenols in environmental water samples. J. Chromatogr., A 2005,1081, 245-247.
    [110] Nepal, D.; Geckeler, K. E. Proteins and carbon nanotubes: Close encounter in water. Small 2007, 3, 1259-1265.
    [111] Du, Z.; Yu, Y. L.; Chen, X. W.; Wang, J. H. The isolation of basic proteins by solid-phase extraction with multiwalled carbon nanotubes. Chem. Eur. J. 2007, 13,9679-9685.
    [112] Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; McLean, R. S.; Onoa, G. B.; Samsonidze, G. G.; Semke, E. D.; Usrey, M.; Walls, D. J. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 2003, 302, 1545-1548.
    [113] Chen, Y.; Liu, H. P.; Ye, T.; Kim, J.; Mao, C. D. DNA-Directed Assembly of Single-Wall Carbon Nanotubes. J. Am. Chem. Soc. 2007, 129, 8696-8697.
    [114] Han, X. G.; Li, Y. L.; Deng, Z. X. DNA-wrapped single-walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays. Adv. Mater. 2007, 19, 1518-1522.
    [115] Jeynes, J. C. G.; Mendoza, E.; Chow, D. C. S.; Watts, P. C. R; McFadden, J.; Silva, S. R. P. Generation of chemically unmodified pure single-walled carbon nanotubes by solubilizing with RNA and treatment with ribonuclease A. Adv. Mater. 2006, 18, 1598-1602.
    [116] Numata, M.; Asai, M.; Kaneko, K.; Bae, A. H.; Hasegawa, T.; Sakurai, K.; Shinkai, S. Inclusion of cut and as-grown single-walled carbon nanotubes in the helical superstructure of schizophyllan and curdlan (ss-1,3-glucans). J. Am. Chem. Soc. 2005, 127, 5875-5884.
    [117] Hasegawa, T.; Fujisawa, T.; Numata, M.; Umeda, M.; Matsumoto, T.; Kimura, T.; Okumura, S.; Sakurai, K.; Shinkai, S. Single-walled carbon nanotubes acquire a specific lectin-affinity through supramolecular wrapping with lactose-appended schizophyllan. Chem. Commun. 2004, 19, 2150-2151.
    [118] Chen, X.; Lee, G. S.; Zettl, A.; Bertozzi, C. R. Biomimetic Engineering of Carbon Nanotubes by Using Cell Surface Mucin Mimics. Angew. Chem. Int. Ed. 2004,43,6112-6116.
    [119] Liu, Y.; Liang, P.; Zhang, H. Y.; Guo, D. S. Cation-controlled aqueous dispersions of alginic-acid-wrapped multi-walled carbon nanotubes. Small 2006, 2, 874-878.
    [120] Numata, M.; Sugikawa, K.; Kaneko, K.; Shinkai, S. Creation of hiera rchicalcarbon nanotube assemblies through alternative packing of complementary semi-artiricial beta-1,3-glucan/carbon nanotube composites. Chem. Eur. J. 2008, 14,2398-2404.
    [121] Sayago, I.; Santos, H.; Horrillo, M. C; Aleixandre, M.; Fernandez, M. J.; Terrado, E.; Tacchini, I.; Aroz, R.; Maser, W. K.; Benito, A. M.; Martinez, M. T.; Gutierrez, J.; Munoz, E. Carbon nanotube networks as gas sensors for NO_2 detection. Talanta 2008, 77, 758-764.
    [122] Gordon, P. A.; Saeger, P. B. Molecular modeling of adsorptive energy storage: Hydrogen storage in single-walled carbon nanotubes. Ind. Eng. Chem. Res. 1999, 38, 4647-4655.
    [123] Sudan, P.; Zuttel, A.; Mauron, P.; Emmenegger, C; Wenger, P.; Schlapbach, L. Physisorption of hydrogen in single-walled carbon nanotubes. Carbon 2003, 41, 2377-2383.
    [124] Li, Q. L.; Yuan, D. X.; Lin, Q. M. Evaluation of multi-walled carbon nanotubes as an adsorbent for trapping volatile organic compounds from environmental samples. J. Chromatogr., A 2004, 1026, 283-288.
    [125] Kuznetsova, A.; Yates, J. T.; Simonyan, V. V.; Johnson, J. K.; Huffman, C. B.; Smalley, R. E. Optimization of Xe adsorption kinetics in single walled carbon nanotubes. J. Chem. Phys. 2001, 115, 6691-6698.
    [126]Froudakis,G.E.;Schnell,M.;Muhlhauser,M.;Peyerimhoff,S.D.;Andriotis,A.N.;Menon,M.;Sheetz,R.M.Pathways for oxygen adsorption on single-wall carbon nanotubes.Phys.Rev.B 2003,68,115435-1-5.
    [127]Liu,H.J.;Zhai,J.P.;Chan,C.T.;Tang,Z.K.Adsorption of O_2 on a(4,2)carbon nanotube.Nanotechnology 2007,18,065704-1-5.
    [128]Matranga,C.;Bockrath,B.Hydrogen-bonded and physisorbed CO in single-walled carbon nanotube bundles.J.Phys.Chem.B 2005,109,4853-4864.
    [129]Arab,M.;Picaud,F.;Ramseyer,C.;Babaa,M.R.;Valsaque,F.;McRae,E.Characterization of single wall carbon nanotubes by means of rare gas adsorption.J.Chem.Phys.2007,126,054709-1-10.
    [130]Siber,A.Adsorption of He atoms in external grooves of single-wall carbon nanotube bundles.Phys.Rev.B 2002,66,205406-1-6.
    [131]Santucci,S.;Picozzi,S.;Di Gregorio,F.;Lozzi,L.;Cantalini,C.;Valentini,L.;Kenny,J.M.;Delley,B.NO_2 and CO gas adsorption on carbon nanotubes:Experiment and theory.J.Chem.Phys.2003,119,10904-10910.
    [132]陈师勇,莫照兰,徐永立,张培军.水产养殖病原微生物检测技术研究进展.海洋科学 2002,26,31-35.
    [133]Pavan,M.V.R.;Pulickel,M.A.;Omkaram,N.;Anurag,S.Interactions Between Carbon Nanotubes and Bacteria.Mater.Res.Soc.Symp.Proc.2007,953,0953-G01-08.
    [134]Brady-Estevez,A.S.;Kang,S.;Elimelech,M.A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens.Small 2008,4,481-484.
    [135]Deng,S.G.;Upadhyayula,V.K.K.;Smith,G.B.;Mitchell,M.C.Adsorption equilibrium and kinetics of microorganisms on single-wall carbon nanotubes.IEEE Sens.J.2008,8,954-962.
    [136] Upadhyayula, V. K. K.; Deng, S. G.; Mitchell, M. C; Smith, G. B.; Nair, V. K.; Ghoshroy, S. Adsorption kinetics of Escherichia coli and Staphylococcus aureus on single-walled carbon nanotube aggregates. Water. Sci. Technol. 2008, 58, 179-184.
    
    [137] Zhou, R. H.; Wang, P.; Chang, H. C. Bacteria capture, concentration and detection by alternating current dielectrophoresis and self-assembly of dispersed single-wall carbon nanotubes. Electrophoresis 2006, 27, 1376-1385.
    
    [138] Huang, T. S.; Tzeng, Y.; Liu, Y. K.; Chen, Y. K.; Walker, K. R.; Guntupalli, R.; Liu, C. Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications. Diam. Relat. Mater. 2004, 13, 1098-1102.
    
    [139] Gutierrez, M. C; Garcia-Carvajal, Z. Y; Hortiguela, M. J.; Yuste, L.; Rojo, F.; Ferrer, M. L.; del Monte, F. Biocompatible MWCNT scaffolds for immobilization and proliferation of E. coli. J. Mater. Chem. 2007, 17, 2992-2995.
    
    [140] Rojas-Chapana, J.; Troszczynska, J.; Firkowska, I.; Morsczeck, C; Giersig, M. Multi-walled carbon nanotubes for plasmid delivery into Escherichia coli cells. Lab. Chip 2005, 5, 536-539.
    
    [141] Gu, L. R.; Elkin, T.; Jiang, X. P.; Li, H. P.; Lin, Y.; Qu, L. W.; Tzeng, T. R. J.; Joseph, R.; Sun, Y. P. Single-walled carbon nanotubes displaying multivalent ligands for capturing pathogens. Chem. Commun. 2005, 7, 874-876.
    
    [142] Gu, L. R.; Lin, Y.; Qu, L. W.; Sun, Y. P. Carbon nanotubes as a scaffold to display paired sugars in solution. Biomacromolecules 2006, 7, 400-402.
    
    [143] Lin, Y.; Elkin, T.; Taylor, S.; Gu, L. R.; Chen, B. L.; Veca, L. M.; Zhou, B.; Yang, H.; Brown, J.; Joseph, R.; Jones, E.; Jiang, X. P.; Sun, Y. P. Preparation, characterization, and evaluation of immuno carbon nanotubes. Microchim. Acta. 2006, 152, 249-254.
    [144] Elkin, T.; Jiang, X. P.; Taylor, S.; Lin, Y.; Gu, L. R.; Yang, H.; Brown, J.; Collins, S.; Sun, Y. P. Immuno-carbon nanotubes and recognition of pathogens. ChemBioChem. 2005, 6, 640-643.
    [145] Villamizar, R. A.; Maroto, A.; Rius, F. X.; Inza, I.; Figueras, M. J. Fast detection of Salmonella Infantis with carbon nanotube field effect transistors. Biosens. Bioelectron. 2008, 24, 279-283.
    [146] Lin, Y.; Jiang, X. P.; Elkin, T.; Fernando, K. A. S.; Gu, L. R.; Taylor, S.; Yang, H.; Jones, E.; Wang, W.; Sun, Y. P. Carbon nanotubes for immunomagnetic separation of Escherichia coli O157 : H7. J Nanosci. Nanotechno. 2006, 6, 868-871.
    [147] So, H. M.; Park, D. W.; Jeon, E. K.; Kim, Y. H.; Kim, B. S.; Lee, C. K.; Choi, S. Y.; Kim, S. C; Chang, H.; Lee, J. O. Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small 2008, 4, 197-201.
    [1]Iijima,S.Helical microtubules of graphitic carbon.Nature 1991,354,56-58.
    [2]Dai,L.M.;Mau,A.W.H.Controlled synthesis and modification of carbon nanotubes and C60:carbon nanostructures for advanced polymeric composite materials.Adv.Mater.2001,13,899-913.
    [3]Niyogi,S.;Hamon,M.A.;Hu,H.;Zhao,B.;Bhowmik,P.;Sen,R.;Itkis,M.E.;Haddon,R.C.Chemistry of single-walled carbon nanotubes.Acc.Chem.Res.2002,35,1105-1113.
    [4]Liu,C.;Fan,Y.Y.;Liu,M.;Cong,H.T.;Cheng,H.M.;Dresselhaus,M.S.Hydrogen storage in single-walled carbon nanotubes at room temperature.Science 1999,286,1127-1129.
    [5]Tans,S.J.;Devoret,M.H.;Dai,H.J.;Thess,A.;Smalley,R.E.;Geerligs,L.J.;Dekker,C.Individual single-wall carbon nanotubes as quantum wires.Nature(London) 1997,386,474-477.
    [6]Planeix,J.M.;Coustel,N.;Coq,B.;Brotons,V.;Kumbhar,P.S.;Dutartre,R.;Geneste,P.;Bernier,P.;Ajayan,P.M.Application of carbon nanotubes as supports in heterogeneous catalysis.J.Am.Chem.Soc.1994,116,7935-7936.
    [7]Che,G.L.;Lakshmi,B.B.;Fisher,E.R.;Martin,C.R.Carbon nanotubule membranes for electrochemical energy storage and production. Nature(London) 1998, 393, 346-349.
    [8] Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. J. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622-625.
    [9] Luo, H. X.; Shi, Z. J.; Li, N. Q.; Gu, Z. N.; Zhuang, Q. K. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal. Chem. 2001, 73, 915-920.
    [10] Valcarcel, M.; Cardenas. S.; Simonet, B. M. Role of carbon nanotubes in analytical science. Anal. Chem. 2007, 79, 4788-4797.
    [11] Cai, Y. Q.; Jiang, G. B.; Liu, J. F.; Zhou, Q. X. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A, 4-n-Nonylphenol, and 4- tert-octylphenol. Anal. Chem. 2003, 75, 2517-2521.
    [12] Long, R. Q.; Yang, R. T. Carbon nanotubes as superior sorbent for dioxin removal. J. Am. Chem. Soc. 2001, 123, 2058-2059.
    [13] Liu, G. H.; Wang, J. L.; Zhu, Y. F.; Zhang, X. R. Application of multiwalled carbon nanotubes as a solid-phase extraction sorbent for chlorobenzenes. Anal. Lett. 2004,37,3085-3104.
    [14] Cai, Y. Q.; Jiang, G. B.; Liu, J. F.; Zhou, Q. X. Multi-walled carbon nanotubes packed cartridge for the solid-phase extraction of several phthalate esters from water samples and their determination by high performance liquid chromatography. Anal. Chim. Acta 2003, 494, 149-156.
    [15] Zhou, Q. X.; Wang, W. D.; Xiao, J. P.; Wang, J. H.; Liu, G. G.; Shi, Q. Z.; Guo, G. L. Comparison of the enrichment efficiency of multiwalled carbon nanotubes, C18 silica, and activated carbon as the adsorbents for the solid phase extraction of atrazine and simazine in water samples. Microchim. Acta 2006, 152, 215-224.
    [16] Wang, L. P.; Zhao, H. X.; Qiu, Y. M.; Zhou, Z. Q. Determination of four benzodiazepine residues in pork using multiwalled carbon nanotube solid-phase extraction and gas chromatography-mass spectrometry. J. Chromatogr., A 2006, 1136,99-105.
    
    [17] Tarley, C. R. T. ; Barbosa, A. F.; Segatelli, M. G. ; Figueiredo, E. C; Luccas. P. O. Highly improved sensitivity of TS-FF-AAS for Cd (II) determination at ng L~(-1) levels using a simple flow injection minicolumn preconcentration system with multiwall carbon nanotubes. J. Anal. At. Spectrom. 2006, 21, 1305-1313.
    
    [18] Ding, Q.; Liang, P.; Song, F.; Xiang, A. M. Separation and preconcentration of silver ion using multiwalled carbon nanotubes as solid phase extraction sorbent. Sep. Sci. Technol. 2006, 41, 2723-2732.
    
    [19] Liang, H. D. ; Han, D. M. Multi-walled carbon nanotubes as sorbent for flow injection on-line microcolumn preconcentration coupled with flame atomic absorption spectrometry for determination of cadmium and copper. Anal. Lett. 2006, 39, 2285-2295.
    
    [20] Liang, P.; Liu, Y; Guo, L.; Zeng, J.; Lu, H. B. Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom. 2004, 19, 1489-1492.
    
    [21] Barbosa, A. F.; Segatelli, M. G; Pereira, A. C; Santos, A. d. S.; Kubota, L. T.; Luccas, P. O.; Tarley, C. R. T. Solid-phase extraction system for Pb (II) ions enrichment based on multiwall carbon nanotubes coupled on-line to flame atomic absorption spectrometry. Talanta 2007, 71, 1512-1519.
    
    [22] Shang, X. H. Flow injection on-line solid phase extraction using multi-walled carbon nanotubes as sorbent for cold vapor atomic fluorescence spectrometric determination of trace mercury in water samples. At. Spectrosc. 2007, 28, 35-40.
    [23]Munoz,J.;Gallego,M.;Valcarcel,M.Speciation of organometallic compounds in environmetal samples by gas chromatography after flow preconcentration on fullerenes and nanotubes.Anal.Chem.2005,77,5389-5395.
    [24]IARC.In:IARC Monographs on the evaluation of carcinogenic risks to humans [R].Lyon,France:International Agency for Research on Cancer,1993,58,41-117.
    [25]Baleizao,C.;Gigante,B.;Garcia,H.;Corma,A.Chiral vanadyl salen complex anchored on supports as recoverable catalysts for the enantioselective cyanosilylation of aldehydes.Comparison among silica,single wall carbon nanotube,activated carbon and imidazolium ion as support.Tetrahedron 2004,60,10461-10468.
    [26]Hu,H.;Bhowmik,P.;Zhao,B.;Hamon,M.A.;Itkis,M.E;Haddon,R.C.Determination of the acidic sites of purified single-walled carbon nanotubes by acid-base titration.Chem.Phys.Lett.2001,345,25-28.
    [27]王茜,只秉文,夏炎,左育民.氧瓶-离子色谱法测定树脂中的卤素和硫元素.离子交换与吸附2003,19,468-472.
    [28]Lindberg,B.J.;Hamrin,K.;Johansson,G.;Gelius,U.;Fahlmann,A.;Nordling,C.;Siegbahn,K.Molecular spectroscopy by means of ESCA Ⅱ.sulfur compounds,correlation of electron binding energy with structure.Phys.Scripta.1970,1,286-298.
    [29]Frost,M.C.;Meyerhoff,M.E.Synthesis,characterization,and controlled nitric oxide release from S-nitrosothiol-derivatized fumed silica polymer filler particles.J Biomed.Mater.Res.A 72A 2005,4,409-419.
    [30]Jurbergs,H.A.;Holcombe,J.A.Characterization of immobilized poly(1-cysteine) for cadmium chelation and preconcentration.Anal.Chem.1997,69,1893-1898.
    [31] Li, Y. H.; Ding, J.; Luan, Z. K.; Di, Z. C; Zhu, Y. F.; Xu, C. L.; Wu, D. H.; Wei, B. Q. Competitive adsorption of Pb~(2+), Cu~(2+) and Cd~(2+) ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 2003, 41, 2787-2792.
    [1]Dimitrios,T.;Nikos,T.;Alberto,B.;Maurizio,P.Chemistry of carbon nanotubes.Chem.Rev.2006,106,1105-1136.
    [2]Wang,J.;Lin,Y.H.Functionalized carbon nanotubes and nanofibers for biosensing applications.Trends Anal.Chem.2008,27,619-626.
    [3]Valcarcel,M.;Cardenas,S.;Simonet,B.M.Role of carbon nanotubes in analytical science.Anal Chem.2007,26,4788-4797.
    [4]Zhou,Q.X.;Xiao,J.P.;Wang,W.D.;Liu,G.G.;Shi,Q.Z.;Wang,J.H.Determination of atrazine and simazine in environmental water samples using multiwalled carbon nanotubes as the adsorbents for preconcentration prior to high performance liquid chromatography with diode array detector.Talanta 2006,68,1309-1305.
    [5]Zhao,H.X.;Wang,L.P.;Qiu,Y.M.;Zhou,Z.Q.;Zhong,W.K.;Li,X.Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of three barbiturates in pork by ion trap gas chromatography-tandem mass spectrometry(GC/MS/MS) following microwave assisted derivatization.Anal.Chim.Acta 2007,586,399-406.
    [6]Zhou,Q.X.;Xiao,J.P.;Wang,W.D.Using multi-walled carbon nanotubes as solid phase extraction adsorbents to determine dichlorodiphenyltrichloroethane and its metabolites at trace level in water samples by high performance liquid chromatography with UV detection. J. Chromatogr. A 2006, 1125, 152-158.
    [7] Chanbasha, B.; Anass, A. A.; Madhava, B. S.; Suresh, V.; Hian, K. L. Development and application of porous membrane-protected carbon nanotube micro-solid-phase extraction combined with gas chromatography/mass spectrometry. Anal. Chem. 2006, 78, 2853-2858.
    [8] Liang, P.; Ding, Q.; Song, F. Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples. J. Sep. Sci. 2005, 28, 2339-2343.
    [9] Liu, H. M.; Li, J. B.; Liu, X.; Jiang, S. X. A novel multiwalled carbon nanotubes bonded fused-silica fiber for solid phase microextraction-gas chromatographic analysis of phenols in water samples. Talanta 2009, 78, 929-935.
    [10] Valcarcel, M.; Cardenas, S.; Simonet, B. M; Moliner, M. Y.; Lucena, R. Carbon nanostructures as sorbent materials in analytical processes. Trends Anal. Chem. 2008, 27, 34-43.
    [11] Cai, Y. Q.; Jiang, G B.; Liu, J. F.; Zhou, Q. X. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol. Anal. Chem. 2003, 75, 2517-2521.
    [12] Long, R. Q.; Yang, R. T. Carbon nanotubes as superior sorbent for dioxin removal. J. Am. Chem. Soc. 2001, 123, 2058-2059.
    [13] Liu, G H.; Wang, J. L.; Zhu, Y. F.; Zhang, X. R. Application of multiwalled carbon nanotubes as a solid-phase extraction sorbent for chlorobenzenes. Anal. Lett. 2004, 37, 3085-3104.
    [14] Cai, Y. Q.; Jiang, G B.; Liu, J. F.; Zhou, Q. X. Multi-walled carbon nanotubes packed cartridge for the solid-phase extraction of several phthalate esters from water samples and their determination by high performance liquid chromatography. Anal. Chim. Acta 2003, 494, 149-156.
    
    [15] Zhou, Q. X.;. Wang, W. D; Xiao, J. P.; Wang, J. H.; Liu, G G; Shi, Q. Z.; Guo, G L. Comparison of the enrichment efficiency of multiwalled carbon nanotubes, C18 silica, and activated carbon as the adsorbents for the solid phase extraction of atrazine and simazine in water samples. Microchim. Acta 2006, 152, 215-224.
    
    [16] Wang, L. P.; Zhao, H. X.; Qiu, Y. M.; Zhou, Z. Q. Determination of four benzodiazepine residues in pork using multiwalled carbon nanotube solid-phase extraction and gas chromatography-mass spectrometry. J. Chromatogr., A 2006, 1136,99-105.
    
    [17] Tarley, C. R. T.; Barbosa, A. E; Segatelli, M. G; Figueiredo, E. C; Luccas, P. O. Highly improved sensitivity of TS-FF-AAS for Cd(II) determination at ng L-1 levels using a simple flow injection minicolumn preconcentration system with multiwall carbon nanotubes. J. Anal. At. Spedrom. 2006, 21, 1305-1313.
    
    [18] Ding, Q.; Liang, P.; Song, F.; Xiang, A. M. Separation and preconcentration of silver ion using multiwalled carbon nanotubes as solid phase extraction sorbent. Sep. Sci. Technol. 2006, 41, 2723-2732.
    
    [19] Liang, H. D.; Han, D. M. Multi-walled carbon nanotubes as sorbent for flow injection on-line microcolumn preconcentration coupled with flame atomic absorption spectrometry for determination of cadmium and copper. Anal. Lett. 2006, 39, 2285-2295.
    
    [20] Liang, P.; Liu, Y.; Guo L.; Zeng, J. ; Lu, H. B. Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spedrom. 2004, 19, 1489-1492.
    
    [21] Barbosa, A. F.; Segatelli, M. G; Pereira, A. C; Santos, A. d. S.; Kubota, L. T.; Luccas, P. O.; Tarley, C. R. T. Solid-phase extraction system for Pb (II) ions enrichment based on multiwall carbon nanotubes coupled on-line to flame atomic absorption spectrometry. Talanta 2007, 71, 1512-1519.
    [22] Shang, X. H. Flow injection on-line solid phase extraction using multi-walled carbon nanotubes as sorbent for cold vapor atomic fluorescence spectrometric determination of trace mercury in water samples. At. Spectrosc. 2007,28, 35-40.
    [23] Munoz, J.; Gallego, M.; Valcarcel, M. Speciation of organometallic compounds in environmetal samples by gas chromatography after flow preconcentration on fullerenes and nanotubes. Anal. Chem. 2005, 77, 5389-5395.
    [24] Riggs, J. E.; Guo, Z.; Carroll D. L.; Sun, Y. P. Strong luminescence of solubilized carbon nanotubes. J. Am. Chem. Soc. 2000, 122, 5879-5880.
    [25] Hill, D. E.; Lin, Y.; Rao, A. M.; Allard L. F.; Sun, Y. P. Functionalization of carbon nanotubes with polystyrene. Macromolecules 2002, 35, 9466-9471.
    [26] Sano, M.; Kamino, A.; Shinkai, S. Construction of carbon nanotube "stars" with dendrimers. Angew. Chem., Int. Ed. 2001, 40, 4661-4663.
    [27] Watts, P. C. P.; Hsu, W. K.; Chen, G. Z.; Fray, D. J.; Kroto, H. W.; Walton, D. R. M. A low resistance boron-doped carbon nanotube-polystyrene composite. J. Mater. Chem. 2001, 11, 2482-2488.
    [28] Tang, B. Z.; Xu, H. Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromolecules 1999, 32, 2569-2576.
    [29] Shim, M.; Javey, A.; Kam, N. W. S.; Dai, H. Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J. Am. Chem. Soc. 2001,123,11512-11513.
    [30] Gao, M.; Huang, S.; Dai, L.; Wallace, G.; Gao, R.; Wang, Z. Aligned coaxial nanowires of carbon nanotubes sheathed with conducting polymers. Angew. Chem., Int. Ed. 2000, 39, 3664-3667.
    [31] Gong, X.; Liu, J.; Baskaran, S.; Voise, R. D;. Young, J. S. Surfactant-assisted processing of carbon nanotube/polymer composites. Chem. Mater. 2000, 12, 1049-1052.
    [32] Zhu, Y. Q.; Hsu, W. K.; Kroto, H. W.; Walton, D. R. M. Carbon nanotube template promoted growth of NbS_2 nanotubes/nanorods. Chem. Commun. 2001, 21,2184-2185.
    [33] Zhao, W.; Song, C; Pehrsson, P. E. Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J. Am. Chem. Soc. 2002, 124, 12418-12419.
    [34] Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 2001, 123, 3838-3839.
    [35] Kong, J.; Chapline, M.; Dai, H. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv. Mater. 2001, 13, 1384-1386.
    [36] Azamian, B. R.; Davis, J. J.; Coleman, K. S.; Bagshaw, C. B.; Green, M. L. H. Bioelectrochemical single-walled carbon nanotubes. J. Am. Chem. Soc. 2002, 124, 12664-12665.
    [37]Terrones, M; Redlich, P.; Grobert, N.; Trasobares, S.; Hsu, W. K.; Terrones, H.; Zhu, Y. Q.; Hare, J. P.; Reeves, C. L.; Cheetham, A. K.; Ruhle, M.; Kroto H. W.; Walton, D. R. M. Carbon nitride nanocomposites: formation of aligned CxNy nanofibers. Adv. Mater. 1999, 11, 655-658.
    [38] Zhao, L. P.; Gao, L. Novel in situ synthesis of MWNTs-hydroxyapatite composites. Carbon 2004, 42, 423-426.
    [39] Munge, B.; Liu, G. D.; Collins, G.; Wang, J. Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies. Anal. Chem. 2005, 77, 4662-4666.
    [40]Pantarotto,D.;Partidos,C.D.;Hoebeke,J.;Brown,F.;Kramer,E.;Briand,J.P.;Muller,S.;Prato,M.;Bianco,A.Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses.Chem.Biol.2003,10,961-966.
    [41]Han X.G.;Li,Y.L;Deng,Z.X.DNA-wrapped single-walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays.Adv.Mater.2007,19,1518-1522.
    [42]Davide,P.;Charalambos,D.P.;Roland,G.;Johan,H.;Jean,P.B.;Maurizio,P.;Alberto,B.Synthesis,structural characterization,and immunological properties of carbon nanotubes functionalized with peptides.J.Am.Chem.Soe.2003,125,6160-6164.
    [43]Liu,Y.;Li,Y.;Yan,X.P.Preparation,characterization,and application of L-cysteine functionalized multiwalled carbon nanotubes as a selective sorbent for separation and preconcentration of heavy metals.Adv.Funet.Mater.2008,18,1536-1543.
    [44]Barceloux,D.G.Copper.Clin.Toxicol.1999,37,217-230.
    [45]Kristiansen,J.;Christensen,J.M.;Henriksen,T.;Nielsen,N.H.;Menne,T.Determination of nickel in fingernails and forearm skin(stratum corneum).Anal.Chim.Acta 2000,403,265-272.
    [46]Hainfeld,J.F.;Liu,W.;Halsey,C.M.R.;Freimuth,P.;Powell,R.D.Ni-NTA-Gold clusters target His-tagged proteins.J.Struet.Biol.1999,127,185-198.
    [47]Arnold,H.Metal-affinity separations:a new dimension in protein processing.Nat.Biotechnol.1991,9,151-156.
    [48]Vladka,G.P.;Viktor,M.Perspectives of immobilized-metal affinity chromatography.J.Biochem.Biophys.Methods.2001,49,335-360.
    [49] Fang, Z. L. Flow Injection Atomic Absorption Spectrometry, Wiley, Chichester, U.K., 1995.
    [50] Hou, J. H.; Yan, R. X.; Ding, D. F.; Yang, L. Q.; Wang, C. Y.; Wu, Z. Q.; Yu, X. J.; Li, W. D.; Li, M. G. Oral administration of a fusion protein containing eight GLP-1 analogues produced in Escherichia coli BL21(DE3) in streptozotocin-induced diabetic rats. Biotechnol. Lett. 2007, 29, 1439-1446.
    [51] Jiang, K. Y.; Schadler, L. S.; Siegel, R. W.; Zhang, X. J.; Zhang H. F.; Terrones, M. Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation. J. Mater. Chem. 2004, 14, 37-39.
    [52] SaloVaananen, P. P.; Koivistoinen, P. E. Determination of protein in foods: comparison of net protein and crude protein (N × 6.25) values. Food. Chem. 1996,51,21-31.
    [53] Johnson, A. K.; Zawadzka, A. M.; Deobald, L. A.; Crawford, R. L.; Paszczynski, A. J. Novel method for immobilization of enzymes to magnetic nanoparticles. J. Nanopart. Res. 2008, 10, 1009-1025.
    [54] Mallik, R.; Hage, D. S. Development of an affinity silica monolith containing human serum albumin for chiral separations. J. Pharmaceut. Biomed. 2008, 46, 820-830.
    [55] Karagulyan, H. K.; Gasparyan, V. K.; Decker, S. R. Immobilization of Fungal β-Glucosidase on Silica Gel and Kaolin Carriers. Appl. Biochem. Biotechnol. 2008, 146, 39-47.
    [1] Chen, Q.; Yan, Q. P.; Ma, S. Progress on pathogenicity research of Vibrio alginolyticus. Marine Sciences. 2006, 30, 38-98.
    [2] Balebona, M. C; Andreu, M. J.; Bordas, M. A.; Zorrilla, I.; Morinigo, M. A.; Borrego, J. J. Pathogenicity of Vibrio alginolyticus for cultured gilt-head sea bream (Sparus aurata L.). Appl. Environ. Microbiol. 1998, 64, 4269-4275.
    [3] Liu, P. C; Lin, J. Y.; Hsiao, P. T.; Lee, K. K. Isolation and characterization of pathogenic Vibrio alginolyticus from diseased cobia Rachycentron canadum. J. Basic Microbiol. 2004, 44, 23-28.
    [4] Lee, K. K.; Yu, S. R.; Yang, T. I.; Liu, P. C; Chen, F. R. Isolation and characterization of Vibrio alginolyticus isolated from diseased kuruma prawn, Penaeus japonicus. Lett. Appl. Microbiol. 1996, 22, 111-114.
    [5] Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56-58.
    [6] Niyogi, S.; Hamon, M. A.; Hu, H.; Zhao, B.; Bhowmik, P.; Sen, R.; Itkis, M. E.; Haddon, R. C. Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 2002,35, 1105-1113.
    [7] Dai, L. M.; Mau, A. W. H. Controlled synthesis and modification of carbon nanotubes and C60: carbon nanostructures for advanced polymeric composite materials. Adv. Mater. 2001, 13, 899-913.
    [8] Lu, F. S.; Gu, L. R.; Meziani, M. J.; Wang, X.; Luo, P. G.; Veca, L. M.; Cao, L.; Sun, Y. P. Advances in Bioapplications of Carbon Nanotubes. Adv. Mater. 2009,21, 139-152.
    [9] Prato, M.; Kostarelos, K.; Bianco, A. Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res. 2008, 41, 60-68.
    [10] Huang, W. J.; Taylor, S.; Fu, K. F.; Lin, Y.; Zhang, D. H.; Hanks, T. W.; Rao, A. M. Sun, Y. P. Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano. Lett. 2002, 2, 311-314.
    [11] Nadine, W. S. K.; Dai, H. J. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 2005, 127,6021-6026.
    [12] Weng, X. X.; Bi, H. Y.; Liu, B. H.; Kong, J. L. On-chip chiral separation based on bovine serum albumin-conjugated carbon nanotubes as stationary phase in a microchannel. Electrophoresis 2006, 27, 3129-3135.
    [13] Yu, X.; Munge, B.; Patel, V.; Jensen, G.; Bhirde, A.; Gong, J. D.; Kim, S. N.; Gillespie, J.; Gutkind, J. S.; Papadimitrakopoulos, F.; Rusling, J. F. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J. Am. Chem. Soc. 2006, 128, 11199-11205.
    [14] Hu, P.; Tanii, T.; Zhang, G. J.; Hosaka, T.; Ohdomari, I. Ultrasensitive detection of biomolecules using functionalized multi-walled carbon nanotubes. Sens. Actuators, B 2007, 124, 161-166.
    [15] Pavan, M. V. R.; Pulickel, M. A.; Omkaram, N.; Anurag, S. Interactions Between Carbon Nanotubes and Bacteria. Mater. Res. Soc. Symp. Proc. 2007, 953, 0953-G01-08.
    [16] Brady-Estevez, A. S.; Kang, S.; Elimelech, M. A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small 2008, 4, 481-484.
    [17] Deng, S. G.; Upadhyayula, V. K. K.; Smith, G. B.; Mitchell, M. C. Adsorption equilibrium and kinetics of microorganisms on single-wall carbon nanotubes. IEEE Sens. J. 2008, 8, 954-962.
    [18] Upadhyayula, V. K. K.; Deng, S. G.; Mitchell, M. C; Smith, G. B.; Nair, V. K.; Ghoshroy, S. Adsorption kinetics of Escherichia coli and Staphylococcus aureus on single-walled carbon nanotube aggregates. Water. Sci. Technol. 2008, 58, 179-184.
    [19] Upadhyayula, V. K. K.; Deng, S. G.; Smith, G. B.; Mitchell, M. C. Adsorption of Bacillus subtilis on single-walled carbon nanotube aggregates, activated carbon and NanoCeram. Water Res. 2009, 43, 148-156.
    [20] Akasaka, T; Watari, F. Capture of bacteria by flexible carbon nanotubes. Acta Biomater. 2009, 5, 607-612.
    [21] Zhou, R. H.; Wang, P.; Chang, H. C. Bacteria capture, concentration and detection by alternating current dielectrophoresis and self-assembly of dispersed single-wall carbon nanotubes. Electrophoresis 2006, 27, 1376-1385.
    [22] Huang, T. S.; Tzeng, Y.; Liu, Y. K.; Chen, Y. K.; Walker, K. R.; Guntupalli, R.; Liu, C. Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications. Diam. Relat. Mater. 2004, 13, 1098-1102.
    [23] Gutierrez, M. C; Garcia-Carvajal, Z. Y.; Hortiguela, M. J.; Yuste, L.; Rojo, F.; Ferrer, M. L.; del Monte, F. Biocompatible MWCNT scaffolds for immobilization and proliferation of E. coli. J. Mater. Chem. 2007, 17, 2992-2995.
    [24] Rojas-Chapana, J.; Troszczynska, J.; Firkowska, I.; Morsczeck, C; Giersig, M. Multi-walled carbon nanotubes for plasmid delivery into Escherichia coli cells. Lab. Chip 2005, 5, 536-539.
    [25] Gu, L. R.; Lin, Y.; Qu, L. W.; Sun, Y. P. Carbon nanotubes as a scaffold to display paired sugars in solution. Biomacromolecules 2006, 7, 400-402.
    [26] Gu, L. R.; Elkin, T.; Jiang, X. P.; Li, H. P.; Lin, Y.; Qu, L. W.; Tzeng, T. R. J.; Joseph, R.; Sun, Y. P. Single-walled carbon nanotubes displaying
    multivalent ligands for capturing pathogens. Chem. Commun. 2005, 7, 874-876.
    [27] Lin, Y.; Elkin, T.; Taylor, S.; Gu, L. R.; Chen, B. L.; Veca, L. M.; Zhou, B.; Yang, H.; Brown, J.; Joseph, R.; Jones, E.; Jiang, X. P.; Sun, Y. P. Preparation, characterization, and evaluation of immuno carbon nanotubes. Microchim. Acta. 2006, 152, 249-254.
    [28] Elkin, T.; Jiang, X. P.; Taylor, S.; Lin, Y.; Gu, L. R.; Yang, H.; Brown, J.; Collins, S.; Sun, Y. P. Immuno-carbon nanotubes and recognition of pathogens. ChemBioChem 2005, 6, 640-643.
    [29] Villamizar, R. A.; Maroto, A.; Rius, F. X.; Inza, I.; Figueras, M. J. Fast detection of Salmonella Infantis with carbon nanotube field effect transistors. Biosens. Bioelectron. 2008, 24, 279-283.
    [30] Lin, Y.; Jiang, X. P.; Elkin, T.; Fernando, K. A. S.; Gu, L. R.; Taylor, S.; Yang, H.; Jones, E.; Wang, W.; Sun, Y. P. Carbon nanotubes for immunomagnetic separation of Escherichia coli 0157 : H7. J Nanosci. Nanotechno. 2006, 6, 868-871.
    [31] So, H. M.; Park, D. W.; Jeon, E. K.; Kim, Y. H.; Kim, B. S.; Lee, C. K. Choi, S. Y.; Kim, S. C; Chang, H.; Lee, J. O. Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small 2008, 4, 197-201.
    [32] Shim, M.; Kam, N. W. S.; Chen, R. J.; Li, Y. M.; Dai, H. J. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano. Lett. 2002, 2, 285-288.
    [33] Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 2001, 123, 3838-3839.
    [34]Jung,D.H.;Ko,Y.K.;Jung,H.T.Aggregation behavior of chemically attached poly(ethylene glycol) to single-walled carbon nanotubes(SWNTs) ropes.Mater.Sci.Eng.,C 2004,24,117-121.
    [35]Sessler,J.L.;Kubo,Y.;Harriman,A.The photochemistry of pyrene-cytosine conjugates:Modelling the carcinogenic action of aromatic hydrocarbons.J.Phys.Org.Chem.1992,5,644-648.
    [36]黄量,于德泉.紫外光谱在有机化学中的应用.北京科学出版社,1988.
    [37]SaloVaananen,P.P.;Koivistoinen,P.E.Determination of protein in foods:comparison of net protein and crude protein(N×6.25) values.Food.Chem.1996,51,21-31.
    [38]Johnson,A.K.;Zawadzka,A.M.;Deobald,L.A.;Crawford,R.L.;Paszczynski,A.J.Novel method for immobilization of enzymes to magnetic nanoparticles.J.Nanopart.Res.2008,10,1009-1025.
    [39]Mallik,R.;Hage,D.S.Development of an affinity silica monolith containing human serum albumin for chiral separations.J.Pharmaceut.Biomed.2008,46,820-830.
    [40]Karagulyan,H.K.;Gasparyan,V.K.;Decker,S.R.Immobilization of fungal β-glucosidase on silica gel and kaolin carriers.Appl.Biochem.Biotechnol.2008,146,39-47.
    [41]陈师勇,莫照兰,徐永立,张培军.水产养殖病原微生物检测技术研究进展.海洋科学2002,26,31-35.
    [42]Vaseashta,A;Dimova-Malinovska,D.Nanostructured and nanoscale devices,sensors and detectors.Sci.Technol.Adv.Mater.2005,6,312-318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700