用户名: 密码: 验证码:
烧结型NdFeB永磁体表面功能性膜层的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第三代稀土钕铁硼(NdFeB)永磁体因其高的饱和磁通量、矫顽力、磁能积(BH)max、良好的机械加工特性和相对低廉的价格,在声学、航空、电子、自动化、生物和通讯等许多领域得到广泛应用。但NdFeB永磁体的耐腐蚀性能非常差,在腐蚀介质或潮湿环境中易形成腐蚀原电池,使磁体组成和结构发生变化,导致磁性能下降乃至最终粉化,严重阻碍和限制了其在众多领域的广泛应用。抗腐蚀性能已经成为评价NdFeB永磁体应用性能的关键指标,因此提高NdFeB永磁体在实际应用环境中的耐腐蚀性能具有十分重要的意义。
     迄今为止所报道的关于烧结型NdFeB永磁体表面腐蚀保护膜层的研究主要侧重于工艺研究及其短期耐腐蚀性能测试,而对膜层在实际腐蚀环境中的腐蚀保护能力的长期跟踪测试、膜层电化学腐蚀行为变化、失效机理方面的探讨则鲜有报道。膜层对NdFeB磁体长期的腐蚀保护性能研究对于该磁体的广泛应用更具有指导意义。
     基于以上问题,本文在研究和借鉴近年来国内外有关烧结型NdFeB永磁体及其它金属材料腐蚀研究方法的基础上,通过大量的正交试验,在烧结型NdFeB永磁体表面制备出多种具有优异耐腐蚀性能的膜层,并利用电化学极化、电化学阻抗谱和浸泡等测试跟踪膜层在实际腐蚀环境对永磁体的腐蚀保护能力的变化,分析和探讨了膜层的电化学腐蚀行为及失效机理。本论文通过电沉积和溶胶凝胶技术相结合的方法,首次制备了封孔的Ni-TiO2复合膜层、Ni-Co合金镀层、Ni-Co-TiO2合金复合镀层和硅烷处理的Zn-TiO2梯度膜层。本文的主要研究内容如下:
     (1)以环境友好和操作工艺相对简易为前提,结合溶胶凝胶技术及脉冲电沉积技术,在烧结型NdFeB永磁体表面制备了密封的Ni-TiO2复合膜层(SCC)。作为对比,对未封孔的Ni-TiO2复合膜层(UCC)也做了相应研究。电化学阻抗和极化测试结果表明SCC具有比UCC更为优异的耐腐蚀性能,能够为烧结型NdFeB永磁体提供更好的腐蚀保护。为了更深入研究SCC对永磁体的实际保护性能,采用电化学阻抗谱技术测试及分析了SCC在中性3.5wt.%NaCl腐蚀介质长期浸泡过程中耐腐蚀性能的变化及失效机理。浸泡实验结果显示,SCC的电化学腐蚀行为分三个阶段。第一阶段是浸泡时间1 h到240 h,这一阶段观察到三个部分重叠的时间常数,此时SCC的阻抗模值|Z|仍然非常高,说明此阶段膜层可以对基体提供优异的腐蚀保护。第二阶段是浸泡时间240 h到264 h,该阶段观察到两个明显的时间常数,且SCC的阻抗模值|Z|急剧下降,但SCC仍然对基体提供了良好的保护。第三阶段是浸泡时间达到288 h,此阶段只观察到一个明显的时间常数,同时SCC的阻抗模值|Z|下降更多,表明SCC对基体的腐蚀保护作用已经消失。
     (2)应用电沉积技术在烧结型NdFeB永磁体表面制备了耐腐蚀性能优异的Ni-Co合金镀层。采用扫描电子显微镜(SEM)、能量散射谱(EDS)、X射线衍射(XRD)、动电位极化曲线、电化学阻抗谱(EIS)和浸泡腐蚀等测试手段表征该合金镀层的微观结构、形貌及耐腐蚀性能。微观结构分析表明,Ni-Co合金镀层是溶质原子(Co原子)占据溶剂(Ni原子)晶格中的结点位置而形成的置换固溶体(fcc);Ni基质金属中Co元素的添加,导致了Ni基质金属的择优取向从(200)晶面变为(111)晶面。表面形貌测试说明,由于Ni-Co合金镀层晶粒发生细化,所以具有比纯镍镀层更为致密的形貌;动电位测试结果显示,Ni-Co合金镀层具有比纯镍镀层更正的腐蚀电位(Econ),更小的腐蚀电流密度(icon);EIS的长期浸泡实验结果表明该合金镀层在浸泡576 h后对基体仍具有良好的腐蚀保护能力,而纯镍镀层在浸泡144 h小时后,其腐蚀保护能力已经丧失。这进一步揭示了Ni-Co合金镀层比纯镍镀层有更好的耐腐蚀性能。
     (3)为了进一步扩大烧结型NdFeB永磁体使用范围,本论文运用复合电沉积方法在烧结型NdFeB永磁材料表面制备了Ni-Co-TiO2复合镀层。通过EIS和电化学极化测试研究了该镀层在0.5 mol L-1 H2SO4, 0.6 mol L-1 NaOH,0.6 mol L-1 Na2SO4和中性的3.5wt.%NaCl腐蚀介质中的电化学腐蚀行为。实验结果表明,该复合镀层在多种腐蚀介质中对永磁体均具有良好的腐蚀保护性能。为了更深入研究该镀层的腐蚀保护能力及实用性,本文采用EIS研究了Ni-Co-TiO2合金复合镀层在中性3.5wt.%NaCl腐蚀介质长期浸泡过程中的电化学腐蚀行为变化及其原因。长期浸泡实验结果揭示了在3.5wt.%NaCl腐蚀环境中该复合镀层能够为烧结型NdFeB永磁体提供长期腐蚀保护的原因:Ni-Co-TiO2复合镀层表面生成了钝化膜。
     (4)以环境友好、操作工艺相对简化和降低工艺成本为前提,结合溶胶凝胶技术和电沉积技术,在烧结型NdFeB永磁体表面制备了具有机械隔离和电化学保护的双重腐蚀保护作用的膜层,即阳极性Zn-TiO2硅溶胶梯度膜层(TZT)。利用电化学阻抗谱和极化测试研究了TZT在中性3.5wt.%NaCl腐蚀介质中的耐腐蚀性能。为了进一步研究TZT的耐腐蚀性能,在中性3.5wt.%NaCl腐蚀介质中进行了长期浸泡实验。对比Zn-TiO2镀层浸泡264 h及TZT浸泡336h后的表面腐蚀形貌发现,由于溶胶层对腐蚀介质的阻挡作用,使腐蚀介质的传输受到阻碍,TZT显示出更好的耐腐蚀性能,从而对烧结型NdFeB永磁体提供了更好的腐蚀保护。
The sintered NdFeB (neodymium-iron-boron) permanent magnet as the third-era permanent magnet, which exhibits excellent magnetic properties such as high remanence, high coercivity, large energy product, good machinability and comparatively low price, has been used for many applications in various fields such as acoustics, aviation, electronics, automation, biomedical and communications. However, the anticorrosive properties of sintered NdFeB permanent magnet are very poor, and easily form the galvanic corrosion in corrosive media and humid environment, which results in the changes in the composition and microstructure of magnet, and then the decline of the magnetism. This severely impedes and limits the extensive application of NdFeB magnet in various fields. The anticorrosive properties of NdFeB magnet have become a key index to estimate its application properties. Therefore, it is very important to improve the corrosion resistance of NdFeB permanent magnets.
     So far, most of the researches on the corrosion protection of sintered NdFeB permanent magnet were emphasizing particularly on the investigation on technical study and tests of the short-term protective properties of coatings or films prepared on sintered NdFeB permanent magnet in corrosive media. Unfortunately, few works were focusing on the tests of the long-term anticorrosive properties and the changes in electrochemical corrosion behaviors in corrosive media, as well as the failure mechanism, which may be an indicator of the actual corrosion protection properties of coatings or films provided for sintered NdFeB permanent magnet.
     Based on the problems mentioned above, different films or coatings possessed excellent anticorrosive properties were prepared by dint of large numbers of orthogonal experiments, which were on the basis of the investigation on the corrosion protection of sintered NdFeB permanent magnet and other metals. The potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) techniques and immersion tests were employed to study the changes in the actual corrosion protection properties of films or coatings provided for permanent magnet in service environment. Sealed Ni-TiO2 composite coating, Ni-Co alloy coating, Ni-Co-TiO2 composite coating and silicane treated Zn-TiO2 grade film were firstly prepared on sintered NdFeB permanent magnet by the combination of electrodeposition and sol-gel methods. The major research works in the present study are as follows:
     (1) Taking into account environment friendly and simplifying operation technics, a protective sealed Ni-TiO2 composite coating (SCC) was prepared on sintered NdFeB permanent magnet by pulse current electrodeposition and sol-gel combined technique. For a comparison, unsealed Ni-TiO2 composite coating was also investigated. The potentiodynamic polarization and electrochemical impedance spectroscopy tests showed that SCC exhibited more excellent anticorrosive properties than UCC, and therefore provided better corrosion protection for sintered NdFeB permanent magnet. The electrochemical impedance spectroscopy (EIS) technique was employed to study the changes in electrochemical corrosion behaviors and failure mechanism of films or coatings in 3.5 wt.% NaCl corrosive media. The results of corrosion tests indicated that the evolution of electrochemical corrosion behavior of SCC could be divided into three stages. The first stage was the immersion time ranging from 1 h to 240 h in which three partially overlapped time constants could be observed and the impedance modulus|Z| of SCC remained at a very high value, suggesting the excellent protective properties provided for the substrate. The second stage was the immersion time ranging from 240 h to 264 h in which two well-defined time constants could be observed, and the impedance modulus |Z| of SCC decreased sharply. At the second stage, the SCC still provided good protection for the substrate. The third stage was the immersion time of 288 h in which only one well-defined time constant could be observed and the impedance modulus|Z| of SCC decreased more, and then the protective properties of SCC for substrate practically disappeared.
     (2) A protective Ni-Co alloy coating was electrodeposited on sintered NdFeB permanent magnet applying electrodeposition technique. The microstructure, surface morphologies and chemical composition of coatings were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS), respectively. The corrosion protection properties of alloy coating for sintered NdFeB permanent magnet in neutral 3.5 wt.% NaCl corrosive media were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Microstructure analysis showed that the microstructure of Ni-Co alloy coating was substitutional solid solution with the Co as solute and Ni as solvent, respectively; the addition of cobalt element into matrix metal Ni altered the preferential orientation of matrix metal Ni from (20 0) crystal face to (111) crystal face. Surface morphologies tests indicated that, compared with pure Ni coating, the surface morphologies of Ni-Co alloy coating were more compact and uniform due to the grain-refining. The results of potentiodynamic polarization test suggested that, compared with pure nickel coating, Ni-Co alloy coating exhibited much nobler corrosion potential (Econ) and lower corrosion current density (icon), indicating better anticorrosive properties. The long-term immersion test by dint of EIS indicated that the Ni-Co alloy coating still presented high impedance value of 1.9×1O5Ω·cm2 with the immersion time of 576 h suggesting the excellent anticorrosive properties. The corrosion protection properties of pure nickel coating provided for sintered NdFeB permanent magnet practically disappeared with the immersion time of 144 h, which also indicated that the Ni-Co alloy coating provided better corrosion protection properties for the sintered NdFeB permanent magnet compared with pure nickel coating.
     (3) In order to further enlarge the application fields of sintered NdFeB permanent magnet, a protective Ni-Co-TiO2 composite coating was prepared on the sintered NdFeB permanent magnet by composite electrodeposition technique. The electrochemical corrosion behaviours of the composite coating in 0.5 mol L-1 H2SO4,0.6 mol L-1 NaOH,0.6 mol L-1 Na2SO4 and neutral 3.5 wt.% NaCl corrosive media were evaluated by potentiodynamic polarization measurements and electrochemical impedance spectroscopy (EIS), showing good corrosion, protection for sintered NdFeB permanent magnet in diverse corrosive media. In order to further investigate the protective properties of the composite coating for sintered NdFeB permanent magnet and the practicability of the composite coating, the long-term immersion test was carried out in neutral 3.5 wt.% NaCl corrosive media using EIS. The results of long-term corrosion test showed that the Ni-Co-TiO2 composite coating could provide long-term protection in neutral 3.5 wt.% NaCl corrosive media for sintered NdFeB permanent magnet due to the formation of passive film.
     (4) Taking into account environment friendly, simplifying operation technics and reducing the technical cost, a anodic Zn-TiO2/Si sol gradient film (TZT), whose role in corrosion protection for sintered NdFeB permanent magnet was the combination of mechanical isolation and electrochemical protection, was prepared on sintered NdFeB permanent magnet by electrodeposition and sol-gel combined technique. The anticorrosive properties of TZT in neutral 3.5 wt.% NaCl corrosive media were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) technique. In order to further study the corrosion protection of film, the immersion tests were employed in neutral 3.5 wt.% NaCl corrosive media. Comparing the surface morphlogies of TZT with the immersion time of 336 h with that of the Zn-TiO2 composite coating with the immersion time of 264 h, it can be seen that, due to the blocking effect of sealing layer, TZT could suppress the corrosion process by holding back the transfer or diffusion of corrosive media, and therefore showed the excellent corrosion protection properties for sintered NdFeB permanent magnet.
引文
[1]田民波.磁性材料.北京:清华大学出版社.2001:91-120.
    [2]周寿增.稀土永磁材料及其应用.北京:冶金工业出版社.1999:194-300.
    [3]罗阳.第一代稀土永磁NdFeB.磁性材料与器件行业协会.1986:69-84.
    [4]李飞.烧结型铁硼磁体的开发与应用.稀土.2000,21(3):59-60.
    [5]B.E. Davies, R.S. Mottram, I.R. Harris. Recent developments in the sintering of NdFeB. Materials Chemistry and Physics.2007,67(1-3):272-281.
    [6]孙桂琴.磁性材料在汽车中的应用.金属功能材料.1999,6(6):247-249.
    [7]祝捷.稀土永磁体的新应用.稀土.2001,22(3):67-68.
    [8]林河成.我国钕铁硼永磁体的生产及应用.有色冶金.2000,29(2):7-10.
    [9]罗阳.烧结NdFeB磁体在中国与日本的应用(一).稀土信息.2009,05:6-8.
    [10]罗阳.烧结NdFeB磁体在中国与日本的应用(二).稀土信息.2009,06:4-7.
    [11]罗阳.烧结NdFeB磁体在中国与日本的应用(三).稀土信息.2009,07:4-5.
    [12]Y. Matsuura. Recent development of Nd-Fe-B sintered magnets and their applications. Journal of Magnetism and Magnetic Materials.2006,303(2):344-347。
    [13]谢发勤,郜涛,邹光荣NdFeB磁体组成相的电化学腐蚀行为.腐蚀科学与防护技术.2002,14(5):260-262.
    [14]蒋建华,曾振鹏,吴建生,殷俊林,黄钢祥,夏朝晖.烧结NdFeB系永磁材料的TEM观察.上海交通大学学报.2000,34(8):1093-1096.
    [15]王菊萍.烧结型钕铁硼永磁材料表面改性技术研究,西南大学硕士论文.2007年6月.
    [16]G Bai, R.W. Gao, Y. Sun, GB. Han, B. Wang. Study of high-coercivity sintered NdFeB magnets. Journal of Magnetism and Magnetic Materials.2007(1),308:20-23.
    [17]F. Vial, F. Joly, E. Nevalainen, M. Sagawa, K. Hiraga, K.T. Park. Improvement of coercivity of sintered NdFeB permanent magnets by heat treatment. Journal of Magnetism and Magnetic Materials.2002,242-245:1329-1334.
    [18]张静贤,张同俊,崔琨.NdFeB永磁材料腐蚀机理与防护.材料开发与应用.2001,16(4):38-41.
    [19]D.F. Cygan, M.J. McNallan. Corrosion of NdFeB permanent magnets in humid environments at temperatures up to 150℃. Journal of Magnetism and Magnetic Materials.1995,139(1-2): 131-138.
    [20]A.A. El-Moneim. Passivity and its breakdown of sintered NdFeB-based magnets in chloride containing solution. Corrosion Science.2007,46(10):2517-2532.
    [21]Y.W. Song, H. Zhang, H.X. Yang, Z.L. Song. A comparative study on the corrosion behavior of NdFeB magnets in different electrolyte solutions. Materials and Corrosion.2008,59(10): 794-801.
    [22]谢发勤,郜涛,邹光荣.NdFeB磁体组成相的电化学腐蚀行为.腐蚀科学与防护技术.2002,14(5):260-262.
    [23]I. Gurappa. Corrosion characteristics of permanent magnets in acidic environments. Journal of Alloys and Compounds.2003,360(1-2):236-242.
    [24]Josef Fidler, Johannes Bernardi, Thomas Schrefl. Permanent magnets-New microstructural aspects. Scripta Metallurgica et Materialia.1995,33(10-11):1781-1791.
    [25]刘卫强,岳明,张久兴,王公平.烧结NdFeB永磁合金本征腐蚀特性研究进展.粉末冶金技术.2006,24(3):195-198.
    [26]W. Fernengel, W. Rodewald, R. Blank, P. chrey, M. Katter, B. Wall, The influence of Co on the corrosion resistance of sintered NdFeB magnets. Journal of Magnetism and Magnetic Materials.1999,196-197:288-290.
    [27]L.Q. Yu, Y.H. Wen, M. Yan. Effects of Dy and Nbon the magnetic properties and corrosion resistance of sintered NdFeB. Journal of Magnetism and Magnetic Materials.2004,283(2-3): 353-356.
    [28]E.H.C. Sinnecker, E. Ferrara, P. Tiberto. Magnetic Properties of Ga Substituted Nd-Fe-B Composite. Journal of Magnetism and Magnetic Materials.1999,196-197:291-292.
    [29]张守民.NdFeB稀土永磁材料研究进展.稀土.2001,22(1):45-49.
    [30]W. Block.11th International Workshop on Rare-Earth Magnets and their Application.1991,108.
    [31]H.H. Man, H.C. Man, L.K. Leung. Corrosion protection of NdFeB magnets by surface coatings-Part Ⅰ:salt spray test. Journal of Magnetism and Magnetic Materials.1996,152(1-2): 40-46.
    [32]饶厚曾,李国华,赵文海.钕铁硼永磁体电镀Ni-P非晶态合金镀层.稀土.2004,25(2):37-40.
    [33]任广军,王颖,陈素明.烧结型钕铁硼电镀镍工艺.料料保护.2002,35(3):41-43.
    [34]C.B. Ma, F.H. Cao, Z. Zhang, J.Q. Zhang. Electrodepositon of amorphous Ni-P coatings onto NdFeB permanent substrates. Applied Surface Science.2006,253(4):2251-2256.
    [35]张蕾,景璀.钕铁硼永磁材料电镀锌镍合金工艺.电子工艺技术.2009,30(4):230-232.
    [36]H. Zhang, Y.W. Song, Z.L. Song. Electrodeposited nickel/alumina composite coating on NdFeB permanent magnets. Materials and Corrosion.2008,59(4):324-328.
    [37]马志鸿,孟晓维.NdFeB磁体的酸碱处理及电沉积.稀土.1995,16(4):13-16.
    [38]曾祥德.烧结型NdFeB永磁体的电镀工艺.电镀与精饰.2001.23(4):23-25.
    [39]张守民,周永洽.钕铁硼磁体的AlCl+LiAlH有机溶液镀铝研究.南开大学学报(自然科学 版).1999,32(2):14-17.
    [40]张守民,周永洽.NdFeB磁体在有机电解质中的电镀铝研究.南开大学学报(自然科学版).1999,32(4):63-65.
    [41]张玉昌,陈秀芝,郑玉芹,吴昌衡,庄育智.稀土.1987,2:1-4.
    [42]A. Ali, A. Ahmad. Corrosion protection of sintered NdFeB magnets by CAPVD Ti2N coating. Materials and Corrosion.2009,60(5):372-375.
    [43]A. Ali, A. Ahmad, K. M. Deen. Impeding corrosion of sintered NdFeB magnets with titanium nitride coating. Materials and Corrosion. DOI:10.1002/maco.200905265.
    [44]崔保义.稀土永磁材料防腐技术-化学镀研究.磁性材料及器件.1995,26(2):34-39.
    [45]龚捷,杨仕清,张万里,王豪才.钕铁硼永磁材料化学镀镍工艺研究.稀土.1998,19(3):36-40.
    [46]郑华均,郑国渠,马淳安.化学镀镍磷合金工艺研究及其在钕铁硼永磁体抗蚀上的应用.表面技术.2002,31(2):42-45.
    [47]于升学,杨雪梅,杨洪生.Nd-Fe-B永磁体化学镀Ni-Cu-P工艺研究.稀土.2002,23(2):71-72.
    [48]吴杰,金花子,崔新宇,李铁藩,熊天英NdFeB磁体超声波化学镀Ni-P的研究.腐蚀科学与防护技术.2003,15(1):44-46.
    [49]金花子,吴杰,崔新宇,赵颖,熊天英NdFeB磁体的二次化学镀耐蚀性能.腐蚀科学与防护技术.2003,15(3):144-146.
    [50]吴磊,应华根,吴进明,罗伟,严密.NdFeB磁体表面化学镀Ni-Co-P合金及防腐性能研究.材料工程.2001,增刊1:202-206.
    [51]应华根,罗伟,严密.烧结NdFeB磁体表面化学镀Ni-Cu-P合金及防腐性能.北京科技大学学报.2007,29(2):162-166.
    [52]吴元脲,应华根,罗伟,严密.超声波化学预镀改善烧结NdFeB表面Ni-P合金结合力.中国有色金属学报.2008,18(8):1512-1516.
    [53]M. Yan, H.G Ying, T.Y. Ma. Preparation of coatings with high adhesion strength and high corrosion resistance on sintered Nd-Fe-B magnets through electroless plating. Materials Chemistry and Physics.2009,113(2-3):764-767.
    [54]M. Yan, H.G. Ying, T.Y. Ma, W. Luo. Effects of Yb3+on the corrosion resistance and deposition rate of electroless Ni-P deposits. Applied Surface Science.2008,255(5):2176-2179.
    [55]董首山.化学转化膜 第一讲 引言.腐蚀科学与防护技术.1989,1(2):39-42.
    [56]董首山.化学转化膜 第三讲 铬酸盐处理.腐蚀科学与防护技术.1990,2(1):47-49,44.
    [57]董首山.化学转化膜 第二讲 磷酸盐转化膜.腐蚀科学与防护技术.1989,1(2):45-46.
    [58]王春明,林伟,赵鹏亮.钕铁硼磁性材料磷化过程电位影响因素研究.材料保护.2005, 38(2):20-23.
    [59]吕保林,王红强,刘庆业,高宏权,李庆余.NdFeB永磁体表面磷化处理及其磷化膜的研究.材料保护.2007,40(3):30-32.
    [60]李青,王菊平,张亮,徐淑强.烧结型NdFeB永磁材料表面磷化膜的制备及耐蚀性能研究.中国稀土学报.2008,26(3):339-345.
    [61]S.M. Tamborim Takeuchi, D.S. Azambuja, A.M. Saliba-Silva, I. Costa. Corrosion protection of NdFeB magnets by phosphating with tungstate incorporation. Surface and Coating Technology. 2006,200(24):6826-6831.
    [62]孙贺民.锌铬膜—一种全新的表面处理技术.材料保护,1994,27(8):21-23.
    [63]S.X. Yu, L. Chen. Preparation Technology and Performances of Zn-Cr Coating on Sintered NdFeB Permanent Magnet. Journal of rare earths.2006,24(2):223-226.
    [64]肖文涛.关于R-Fe-B合金的腐蚀和防腐蚀问题.国外金属材料.1989,3:22-28.
    [65]张玉昌,门宏新.NdFeB磁体的电泳涂层工艺研究.稀土.1992,13(4):65-67.
    [66]赵红一,吴向宁.NdFeB磁体表面有机涂覆研究.电工合金文集.1991,4:24-26,30.
    [67]高令远,范桂荣.永磁材料NdFeB有机涂层的研究.材料保护.1996,29(2):9-11.
    [68]C.W. Cheng, F.T. Cheng, H.C. Man, W.M. Chan, W.O. Chan. Corrosion protection of Nd-Fe-B magnets by bismaleimide coating. Journal of Applied Physics.1999,85:5690-5692.
    [69]过家驹.Nd-Fe-B合金的腐蚀及防蚀表面处理.金属热处理.1999,2:32-33,49.
    [70]谢原寿,柳全丰,单强虹.Nd-Fe-B粉末合金的多层电镀防护技术.材料保护.1998,31(6):6-8.
    [71]龚捷,杨仕清.NdFeB稀土永磁材料双层镀Ni-P/Cr.材料工程.2000,2:28-30,33.
    [72]Ji-Ming Hu, Xiang-Lian Liu, Jian-Qing Zhang, Chu-Nan Cao. Corrosion protection of Nd-Fe-B magnets by silanization. Progress in Organic Coatings.2006,55(4):388-392.
    [73]Z. Chen, N. Alice, J.Z. Yi, X.F. Chen. Multi-layered electroless Ni-P coatings on powder-sintered Nd-Fe-B permanent magnet. Journal of Magnetism and Magnetic Materials. 2006,302(1):216-222.
    [74]S.M. Tamborim Takeuchi, D.S. Azambuja, I. Costa. Cerium conversion layer for improving the Corrosion resistance of phosphated NdFeB magnets. Surface & Coatings Technology.2006, 201(6):3670-3675.
    [75]L. Song, Y. Wang, W. Lin, Q. Liu. Primary investigation of corrosion resistance of Ni-P/TiO2 composite film on sintered NdFeB permanent magne. Surface & Coatings Technology.2008, 202(21):5146-5150.
    [76]A. Ali, A. Ahmad. Multilayer ceramic coating for impeding corrosion of sintered NdFeB magnets. Journal of rare earths.2009,27(6):372-375.
    [1]刘粤慧,刘平安.x射线衍射分析原理与应用.第一版.北京:化学工业出版社.2003,211-212.
    [2]李伟,肖爱平,冷娟.近红外光谱技术及其在农作物中的应用.中国农学通报.2009,25(3):56-59.
    [3]赵玉清,杨天鸣,罗源,孙丽英.近红外透射光谱法测定黄芪提取液中总皂苷含量.化学与生物工程.2009,26(2):73-75.
    [4]杜希文.材料分析方法.哈尔滨:哈尔滨工业大学出版社.2006,166-205.
    [5]曹楚南.腐蚀电化学原理.第三版.北京:化学工业出版社.2002,99-119.
    [6]曹楚南,张鉴清.电化学阻抗普导论.第一版.北京:科学出版社.2005,141.
    [7]郦振声,杨明安.现代表面工程技术.第一版.北京:机械工业出版社.2007,556-557.
    [8]姜银方.现代表面工程技术.第一版.北京:化学工业出版社.2005,230-232,244.
    [1]曾华梁,吴仲达,陈钧武,吕佩仁,秦月文.电镀工艺手册.第二版.北京:机械工业出版社.2003,188-205.
    [2]郭鹤桐.复合镀层.第一版.天津:天津大学出版社.1991:1-12.
    [3]张志焜,崔作林.纳米技术与纳米材料.第一版.北京:国防工业出版社.2000,14-81.
    [4]C.T.J. Low, R.G.A. Wills, F.C. Walsh. Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surface & Coatings Technology.2006,201(1-2):371-383.
    [5]周月波,张海军.Ni-CeO2纳米复合镀层的摩擦磨损性能.电镀与涂饰.2008,37(3):448-451.
    [6]王清滨,田秋,宿辉,邹桂真,曹茂盛.纳米复合镀层的研究进展.材料工程.2004,6:45-48.
    [7]欧忠文.纳米材料在表面工程中应用的研究进展.中国表面工程,2000,(2):5-81.
    [8]向国朴.脉冲电镀的理论与运用.第一版.天津:天津科学技术出版社.1989:1-20.
    [9]M.S. Chandrasekar, Malathy Pushpavanam. Pulse and pulse reverse plating-Conceptual, advantages and applications. Electrochimica Acta.2008,53(8):3313-3322.
    [10]L. Chen, L. Wang, Z. Zeng, T. Xu. Influence of pulse frequency on the microstructure and wear resistance of electrodeposited Ni-Al2O3 composite coatings. Surface & Coatings Technology. 2006,201(3-4):599-605.
    [11]刘京,胡吉明,张鉴清,曹楚南.金属表面硅烷化防护处理及其研究现状.中国腐蚀与防 护学报. 2006,26(1):59-64.
    [12]A. ranquet, Le Pen C, Terryn H. Effect of bath concentration and curing time on the structure of non-functional thin organosilane layers on aluminium. Electrochimica Acta,2003,48(9): 1245-1255.
    [13]F. Beari, M. Brand, P. Jenkner. Organofunctional alkoxysilanes in dilute aqueoussolution:new accounts on the dynamic structural mutability. Journal of Organometallic Chemistry.2001, 625(2):208-216.
    [14]K. Gurunathan, D.P. Amalnerkar, D.C. Trivedi. Synthesis and characterization of conducting polymer composite(PAn/Ti02) for cathode material in rechargeable battery. Materials Letters. 2003,57(9-10):1642-1648.
    [15]C.M. Bertelsen, F.J. Boerio. Linking mechanical properties of silanes to their chemical structure: an analytical study of y-GPS solutions and films. Progress in Organic Coatings.2001,41(4): 239-246.
    [16]W. Shang, B. Chen, X.Shi, Y. Chen, X. Xiao. Electrochemical corrosion behavior of composite MAO/sol-gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol-gel technique. Journal of Alloys and Compounds.2009,474(1-2):541-545.
    [17]H. Duan, K. Du, C. Yan, F. Wang. Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D. Electrochimica Acta.2006,51(14):2898-2908.
    [18]Danqing Zhu, WimJ. van Ooij. Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl] tetrasulfide in sodiumchloride solution.Part 2:mechanism for corrosion protection. Corrosion Science.2003,45(10):2177-2197.
    [19]M.L. Zheludkevicha, R. Serra, M.F. Montemor, I.M. Miranda Salvadoa, M.G.S. Ferreira. Corrosion protective properties of nanostructured sol-gel hybrid coatings to AA2024-T3. Surface & Coatings Technology.2006,200(9):3084-3094.
    [20]M.G.S. Ferreira, R.G. Duarte, M.F. Montemor, A.M.P. Simoes. Silanes and rare earth salts as chromate replacers for pre-treatments on galvanised steel. Electrochimica Acta.2004, 49(17-18):2927-2935.
    [21]A. Cabral, R.G. Duarte, M.F. Montemor, M.L. Zheludkevich, M.G.S. Ferreira. Analytical characterisation and corrosion behaviour of bis-[triethoxysilylpropyl]tetrasulphide pre-treated AA2024-T3. Corrosion Science.2005,47(3):869-881.
    [22]曹楚南,张鉴清.电化学阻抗谱导论.第一版.北京:科学出版社.2002,26-27.
    [23]程英亮,吴海兰,李玲玲,陈振华,王慧敏,张昭,吴有伍.ZK60镁合金磷酸盐及锡酸盐化学转化膜.中国有色金属学报.2007,17(5):676-682.
    [1]Z.F. Lodhi, J.M.C. Mol, A. Hovestad, L.'t Hoen-Velterop, H. Terryn, de Wit J.H.W. Corrosion resistance of Zn-Co-Fe alloy coatings on high strength steel. Surface & Coatings Technology. 2009,203(10-11):1415-1422.
    [2]Waheed A. Badawy, Khaled M. Ismail, Ahlam M. Fathi. Effect of Ni content on the corrosion behavior of Cu-Ni alloys in neutral chloride solutions. Electrochimica Acta.2005,50(18): 3603-3608.
    [3]应华根,罗伟,严密.烧结NdFeB磁体表面化学镀Ni-Cu-P合金及防腐性能.北京科技大学学报.2007,29(2):162-167.
    [4]张蕾,景璀.钕铁硼永磁材料电镀锌镍合金工艺.电子工艺技术.2009,30(4):230-232.
    [5]龚睿,柳林.钨含量对Ni-W合金镀层结构及耐蚀性能的影响.稀有金属材料与工程.2008,37(1):130-134.
    [6]屠振密,李宁,安茂忠,王素琴.电镀合金实用技术.第一版.北京:国防工业出版社. 2006,222-226.
    [7]B. Tury, M. Lakatos-Varsanyi, S. Roy. Ni-Co alloys plated by pulse currents. Surface & Coatings Technology.2006,200(24):6713-6717.
    [8]Renata Orinakova, Andrej Orinak, Guido Vering, Ivan Talian, Roger M. Smith, Heinrich F. Arlinghaus. Influence of pH on the electrolytic deposition of Ni-Co films. Thin Solid Films 2008,516(10):3045-3050.
    [9]Wolfgang E.G. Hansal, Barbara Tury, Martina Halmdienst, Magda Lakatos Vars'anyi, Wolfgang Kautek. Pulse reverse plating of Ni-Co alloys:Deposition kinetics of Watts, sulfamate and chloride electrolytes. Electrochimica Acta.2006,52(3):1145-1151.
    [10]B. Tury, M. Lakatos-Varsa'nyi, S. Roy. Effect of pulse parameters on the passive layer formation on pulse plated Ni-Co alloys. Applied Surface Science.2007,253(6):3103-3108.
    [11]Meenu Srivastava, V. Ezhil Selvi, V.K. William Grips, K.S. Rajam. Corrosion resistance and microstructure of electrodeposited nickel-cobalt alloy coatings. Surface & Coatings Technology.2006,201(6):3051-3060.
    [12]Sh. Hassani AE K. Raeissi AE M. A. Golozar. Effects of saccharin on the electrodeposition of Ni-Co nanocrystalline coatings. Journal of Applied Electrochemistry.2008,38(5):689-694.
    [13]S. Goldbach, R. de Kermadec, F. Lapicque. Electrodeposition of Ni-Co alloys from sulfamate baths. Journal of Applied Electrochemistry.2000,30(3):277-284
    [14]钟远辉,戴品强,许伟长,陈闪闪.脉冲电沉积纳米晶Ni-Co合金镀层腐蚀特性研究.稀有金属材料与工程.2009,38(6):1053-1057.
    [15]钟远辉,戴品强,戴春福.脉冲电沉积纳米晶Ni-Co合金镀层热稳定性的研究.材料工程.2009.4:52-56.
    [16]王成,江峰,王福会.3.5%NaCl溶液中AISI304不锈钢的电化学行为及有机硅涂层的防护.腐蚀科学与防护技术.2003,15(4):200-203.
    [17]Hong-Hua Ge, Guo-Ding Zhou, Wen-Quan Wu. Passivation model of 316 stainless steel in simulated cooling water and the effect of sulfide on the passive film. Applied Surface Science. 2003,221(1-4):321-334.
    [18]Waheed A. Badawya, Rabab M. El-Sherif, Hassan Shehata. Electrochemical stability of Cu-10Al-5Ni alloy in chloride-sulfate electrolytes. Electrochimica Acta.2009,54(19): 4501-4505.
    [19]Waheed A. Badawy, Khaled M. Ismail, Ahlam M. Fathi. Effect of Ni content on the corrosion behavior of Cu-Ni alloys in neutral chloride solutions. Electrochimica Acta.2005,50(18): 3603-3608.
    [20]曹楚南,张鉴清.电化学阻抗谱导论.第一版.北京:科学出版社.2002,1-36.
    [21]A.C. Lloyd, J.J. Noel, D.W. Shoesmith, N.S. McIntyre. The open-circuit ennoblement of alloy C-22 and other Ni-Cr-Mo alloys. JOM Journal of the Minerals, Metals and Materials Society. 2005,57(1):31-35.
    [22]M.R. Barbosa, J.A. Bastos, J.J. Garc|a-Jareno, F. Vicente. Chloride role in the surface of nickel electrode. Electrochimica Acta.1998,44(6-7):957-965.
    [1]饶厚曾,李国华,赵文海.钕铁硼永磁体电镀Ni-P非晶态合金镀层.稀土.2004,25(2):37-40.
    [2]任广军,王颖,陈素明.烧结型钕铁硼电镀镍工艺材.料料保护.2002,35(3):4143
    [3]C.B. Ma, F.H. Cao, Z. Zhang, J.Q. Zhang. Electrodepositon of amorphous Ni-P coatings onto NdFeB permanent substrates. Applied Surface Science.2006,253(4):2251-2256.
    [4]曾祥德.烧结型NdFeB永磁体的电镀工艺.电镀与精饰.2001,23(4):23-25.
    [5]张守民,周永洽.NdFeB磁体在有机电解质中的电镀铝研究.南开大学学报(自然科学版).1999,32(4):63-65.
    [6]M. Yan, H.G.Ying, T.Y. Ma. Preparation of coatings with high adhesion strength and high corrosion resistance on sintered Nd-Fe-B magnets through electroless plating. Materials Chemistry and Physics.2009,113(2-3):764-767.
    [7]张蕾,景璀.钕铁硼永磁材料电镀锌镍合金工艺,电子工艺技术.2009,30(4):230-232.
    [8]马志鸿,孟晓维.NdFeB磁体的酸碱处理及电沉积.稀土.1995,16(4):13-16.
    [9]M. Yan, H.G Ying, T.Y. Ma, W. Luo. Effects of Yb3+on the corrosion resistance and deposition rate of electroless Ni-P deposits. Applied Surface Science.2008,255(5):2176-2179.
    [10]郭鹤桐.复合镀层.第一版.天津:天津大学出版社.1991:1-12.
    [11]Meenu Srivastava, V.K. William Grips, K.S. Rajam. Electrochemical deposition and tribological behaviour of Ni and Ni-Co metal matrix composites with SiC nano-particles. Applied Surface Science.2007,253(8):3814-3824.
    [12]L. Shi, C.F. Sun, F. Zhou, W.M. Liu. Electrodeposited nickel-cobalt composite coating containing nano-sized Si3N4. Materials Science and Engineering A.2005,397(1-2):190-194.
    [13]L.M. Chang, H.F. Guo, M.Z. An. Electrodeposition of Ni-Co/Al2O3 composite coating by pulse reverse method under ultrasonic condition. Materials Letters.2008,62(19):3313-3315.
    [14]Meenu Srivastava, V.K. William Grips, Anjana Jain, K.S. Rajam. Influence of SiC particle size on the structure and tribological properties of Ni-Co composites. Surface & Coatings Technology.2007,202(2):310-318.
    [15]L. Shi, C.F. Sun, P. Gao, F. Zhou, W.M. Liu. Mechanical properties and wear and corrosion resistance of electrodeposited Ni-Co/SiC nanocomposite coating. Applied Surface Science. 2006,252(10):3591-3599.
    [16]L.M. Chang, M.Z. An, H.F. Guo, S.Y. Shi. Microstructure and properties of Ni-Co/nano-Al2O3 composite coatings by pulse reversal current electrodeposition. Applied Surface Science.2006, 253(4):2132-2137.
    [17]L. Shi, C.F. Sun, P. Gao, F. Zhou, W.M. Liu. Electrodeposition and characterization of Ni-Co-carbon nanotubes composite coatings. Surface & Coatings Technology.2006, 200(16-17):4870-4875.
    [18]L. Shi, C.F. Sun, W.M. Liu. Electrodeposited nickel-cobalt composite coating containing MoS2. Applied Surface Science.2008,254(21):6880-6885.
    [19]Hong-Hua Ge, Guo-Ding Zhou, Wen-Quan Wu. Passivation model of 316 stainless steel in simulated cooling water and the effect of sulfide on the passive film. Applied Surface Science. 2003,211(1-4):321-334.
    [20]Waheed A. Badawya, Rabab M. El-Sherif, Hassan Shehata. Electrochemical stability of Cu-10Al-5Ni alloy in chloride-sulfate electrolytes. Electrochimica Acta.2009,54(19): 4501-4505.
    [21]Waheed A. Badawy, Khaled M. Ismail, Ahlam M. Fathi. Effect of Ni content on the corrosion behavior of Cu-Ni alloys in neutral chloride solutions. Electrochimica Acta.2005,50(18): 3603-3608.
    [22]曹楚南,张鉴清.电化学阻抗谱导论.第一版.北京:科学出版社.2002,1-36.
    [23]A.C. Lloyd, J.J. Noel, D.W. Shoesmith, N.S. McIntyre. The open-circuit ennoblement of alloy C-22 and other Ni-Cr-Mo alloys. JOM Journal of the Minerals, Metals and Materials Society. 2005,57(1):31-35.
    [1]饶厚曾,李国华,赵文海.钕铁硼永磁体电Ni-P非晶态合金镀层.稀土.2004,25(2):37-40.
    [2]任广军,王颖,陈素明.烧结型钕铁硼电镀镍工艺材.料料保护.2002,35(3):41-43.
    [3]C.B. Ma, F.H. Cao, Z. Zhang, J.Q. Zhang. Electrodepositon of amorphous Ni-P coatings onto NdFeB permanent substrates. Applied Surface Science.2006,253(4):2251-2256.
    [4]曾祥德.烧结型NdFeB永磁体的电镀工艺.电镀与精饰.2001,23(4):23-25.
    [5]张守民,周永洽.NdFeB磁体在有机电解质中的电镀铝研究.南开大学学报(自然科学版).1999,32(4):63-65.
    [6]M. Yan, H.G. Ying, T.Y. Ma. Preparation of coatings with high adhesion strength and high corrosion resistance on sintered Nd-Fe-B magnets through electroless plating. Materials Chemistry and Physics.2009,13(2-3):764-767.
    [7]张蕾,景璀.钕铁硼永磁材料电镀锌镍合金工艺.电子工艺技术.2009,30(4):230-232.
    [8]H. Zhang, Y.W. Song, Z.L. Song. Electrodeposited nickel/alumina composite coating on NdFeB permanent magnets. Materials and Corrosion.2008,59(4):324-328.
    [9]马志鸿,孟晓维.NdFeB磁体的酸碱处理及电沉积.稀土.1995,16(4):13一16.
    [10]M. Yan, H.G Ying, T.Y. Ma, W. Luo. Effects of Yb3+on the corrosion resistance and deposition rate of electroless Ni-P deposits. Applied Surface Science.2008,255(5):2176-2179.
    [11]曾华梁,吴仲达,陈钧武,吕佩仁,秦月文.电镀工艺手册.第二版.北京:机械工业出版社.2003,117-135.
    [12]B.M. Praveen, T.V. Venkatesha. Electrodeposition and properties of Zn-nanosized TiO2 composite coatings. Applied Surface Science.2008,254(8):2418-2424.
    [13]B.M. Praveen, T.V. Venkatesha, Y. Arthoba Naik, K. Prashantha. Corrosion studies of carbon nanotubes-Zn composite coating. Surface & Coatings Technology.2007,201(12):5836-5842.
    [14]A. Gomes, M.I. da Silva Pereira, M.H. Mendonca, F.M.Costa. Zn-TiO2 composite films prepared by pulsed electrodeposition. Journal of Solid State Electrochem.2005,9:190-196.
    [15]C.M. Bertelsen, F.J. Boerio. Linking mechanical properties of silanes to their chemical structure: an analytical study of of y-GPS solutions and films. Progress in Organic Coatings.2001,41(4): 239-246.
    [16]Y. Zhou, H. Zhang, B. Qian, Friction and wear properties of the co-deposited Ni-SiC nanocomposite coating. Applied Surface Science.2007,253(20):8335-8339.
    [17]曹楚南,张鉴清.电化学阻抗谱导论.第一版.北京:科学出版社.2002,26,52-59.
    [18]Danqing Zhu, WimJ. van Ooij. Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in sodiumchloride solution.Part 2:mechanism for corrosion protection. Corrosion Science.2003,45(10):2177-2197.
    [19]M.L. Zheludkevicha, R. Serra, M.F. Montemor, I.M. Miranda Salvadoa, M.G.S. Ferreira. Corrosion protective properties of nanostructured sol-gel hybrid coatings to AA2024-T3. Surface & Coatings Technology.2006,200(9):3084-3094.
    [20]M.G.S. Ferreira, R.G. Duarte, M.F. Montemor, A.M.P. Simoes. Silanes and rare earth salts as chromate replacers for pre-treatments on galvanised steel. Electrochimica Acta.2004, 49(17-18):2927-2935.
    [21]A. Cabral, R.G. Duarte, M.F. Montemor, M.L. Zheludkevich, M.G.S. Ferreira. Analytical characterisation and corrosion behaviour of bis-[triethoxysilylpropyl]tetrasulphide pre-treated AA2024-T3. Corrosion Science.2005,47(3):869-881.
    [22]H. Duan, K. Du, C. Yan, F. Wang. Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D. Electrochimica Acta.2006,51(14):2898-2908.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700