用户名: 密码: 验证码:
长江口淡—咸水混合过程对营养盐在悬浮物—水之间分配的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陆—海交汇处河口混合区具有多方面的功能。河口中盐度、悬浮泥沙浓度等因素的时空变化频繁,并通过吸附及解吸等过程在一定程度上控制着营养元素在颗粒固相和液相之间的相态分配。当进入河口与近海的陆源生物要素的赋存形式、数量与季节发生改变时会导致相应生态系统的结构和功能产生变化。中国河流普遍具有水浅、多沙和径流量大的显著特征,因此,研究中国河口区元素固—液相态变化过程具有区域特殊性意义。而长江河口区是研究陆—海相互作用的重要场所,可作为研究生物地球化学过程的天然实验室。本论文即针对取自长江口的样品,系统地研究了pH,悬浮颗粒物浓度、盐度、温度、体系中营养盐的总量和溶氧等重要环境因素对营养元素固—液相态变化的影响。
     基于现场调查和实验室中的模拟,认识如下:
     1.长江淡水端元中营养盐(溶解无机氮和无机磷)呈指数增长,与此相反,同期活性硅酸盐的浓度呈指数降低了一半左右。随着长江中氮和磷浓度持续增大而硅浓度持续降低,其结果是长江水中营养盐组成(即N:Si:P比值)发生了巨大变化。虽然N:P比值波动较大,但其总趋势是逐渐增大,1965—1975年长江水中N:P比值约为60,而到了1985年后N:P比值陡升至125,且随后基本围绕此值上下波动。与此同期,Si:N比值则从20世纪60年代的15以上呈指数降低至现在接近于1。
     2.随着长江水中营养盐的巨大变化,长江口中营养盐的浓度和比例也发生了显著改变。虽然长江口无机磷浓度年平均值变化不大,但长江口无机氮浓度年平均值从20世纪60年代到21世纪初增大了1倍;而同期活性硅酸盐浓度年平均值则降低为以前的1/3。
     至于长江口营养盐比值,其长期变化趋势与长江水中营养盐比值的变化相似,但变化幅度略小。长江口N:P比值60年代约为20,接近于Redfield比值(即N:P=16),2002年已增大到35,约为Redfield比值的2倍;Si:N比值从远大于Redfield比值(即Si:N=1)的3.9降低至2002年略小于Redfield比值的0.8,表明Si将有可能成为长江口生态系统中的限制因子。
     3.营养盐的分布特点是从口门向外海逐渐递减。长江冲淡水终年存在向长江口东北部输送营养盐的趋势。夏季,高营养盐水舌向东北方向延伸,与冲淡水分布趋势相似;冬季,径流量减少,冲淡水沿岸南下,高营养盐水舌也随之向东南延伸,同时高浓度营养盐的分布范围也向河口方向退缩。
     4.模拟实验研究显示:磷酸盐吸附量随悬浮颗粒物浓度的变化而变化,尽管水体中颗粒物浓度升高后,单位质量颗粒物上磷酸盐的吸附量降低,但是绝对吸附量仍然增加,也就是说,当水体中悬浮颗粒物浓度较高,悬浮颗粒物对磷酸盐处于吸附状态时,水相中磷酸盐浓度随悬浮物浓度的升高呈降低趋势。随着磷酸盐浓度的增加,体系中SPM对磷酸盐的吸附百分率逐渐降低。无机磷固一液分配程度随着盐度的增加,逐渐增强。SPM对磷酸盐的吸附为吸热反应。SPM对无机P的吸附随溶液中有机质的增加而增大,随溶液中DO含量的增加而增大。且磷酸盐在长江口水体固一液相之间的分配过程不可逆。
     5.在实验的pH范围内,悬浮颗粒物对NH_4~+-N的吸附百分率E(%)随着体系pH值的增加而增大,呈“S”形曲线。水体pH、悬浮颗粒物浓度和溶氧的增大总是促进着NH_4~+-N吸附百分率的增加,而盐度、温度和体系中NH_4~+-N量的增大则使吸附百分率规律性地减小。盐水解吸实验和相同条件下的吸附实验表明,NH_4~+-N在长江口水体固—液相之间的分配过程是不可逆的。温度的实验表明,悬浮颗粒物对NH_4~+-N的吸附可能是一个放热反应过程。
     6.悬浮颗粒物中SiP_3~(2-)的解吸量随盐度的升高而增加;悬浮颗粒物对NO_3~-最大解吸量出现在S=15附近。在极值以前,解吸量随盐度增大而增大;在极值以后则相反。悬浮颗粒物中NO_3~-的解吸在pH实验的范围内(5—9)基本保持不变;而悬浮颗粒物中SiO_3~(2-)的解吸则随着pH值的增大逐渐增加,趋势与盐度对其解吸影响一致。体系DO的变化对颗粒物中SiO_3~(2-)的解吸基本没有影响,随着体系DO的升高,悬浮颗粒物中NO_3~-的解吸量有增大的趋势。
     7.本文基于模拟实验研究的模式分析以及对长江口几种营养盐的历史观测资料都表明,溶解态SiO_3~(2-)与NO_3~-~现出显见的混合保守性,PO_4~(3-)在底层呈现出混合保守性,在表层低盐度表现为一定的溶出,NH_4~+-N在表层低盐度下呈现出溶出,高盐度表现为溶入行为,在底层的低盐度表现为部分的保守行为,高盐度区域也表现为溶入行为。通过比较模式分析结果与现场观测资料,可以认为,综合考虑悬浮泥沙浓度、盐度和水体pH等其他环境因子协同变化对营养盐溶解态浓度在长江口混合区——特别是在盐度小于20的高浊度区——模拟实验的结果更能反映出现场的真实情况。
Estuarine mixing zone between the land and the ocean has multiple functions.Water properties like the concentration of suspended particle matter, Salinity,temperature, DOC, DO and pH in the estuary vary in time and space, and alter thenutrients partitioning between solid phase and solution via adsorption and desorption.Seaward nutrient fluxes change considerably in the estuary and it is important tounderstand the effects of estuarine processes on the phase transformation of nutrientin order that the flux of dissolved phase can be properly made.
     Chinese estuaries are shallow with abundant water and high concentration ofsuspended sediments, and of particularly interested in studying particulate-solutiontransformation. The Chanjiang Estuary serves as an important land-ocean interactionregion and can be taken as a natural laboratory for studying estuarine biogeochemicalprocesses. In this study, effects of salinity, pH, temperature, dissolved oxygen, organicmatter and SPM on the solid-liquid phase partitioning for nutrients (PO_4~(3-), NH_4~+,SiO_3~(2-), NO_3~-) were examined with the samples from Changjing Estuary.
     Based on the data obtained from in-situ observation and laboratory simulation,some of the results can be summarized below.
     1. The concentration of suspended particle matter in the Chanjiang Estuary variesconsiderably. Within the maximum turbidity zone, concentration of suspended particlematter reaches up to m ore than 5×10~3 mg L~(-1). The pH range within the Changjiangestuary is limited to 7.7-8.3.
     2. Simulation results show that adsorption edges for phosphate adsorption on toSPM under different conditions illustrate the upended sigmoid curve characteristic oftransition phosphate. Changes in pH for the samples have a significant effect on thesolid-liquid partition of phosphate. The adsorption percentage of the phosphate wasincreased with pH-specifically increasing the pH of the water samples inducedpartitioning of phosphate to solid phases. The percentage of the adsorption andpartitioning coefficients for phosphate in the Changjiang Estuary deceasedsignificantly with higher concentrations of phosphate.
     3. For phosphorus, desorption was higher in seawater than that in fresh water. Asharp increase in percent desorption with an increase in salinity was obviouslyobserved in low salinity(S<15) water. The amount of phosphorus released increased with an increase pH was previously observed for phosphorus in mixtures. All theprocesses discussed here play a major role in the retention of phosphate in particlesand ultimately in estuaries. Based on the sorption K_d values presented here, we wouldexpect that phosphate would be trapped in the estuarine environment as the metals aremostly associated with the particulate phase in estuaries. The model developed here isin accordance with the observed distribution patterns of phosphate in the ChangjiangEstuary.
     4. The adsorption edges for NH_4-N adsorption to SPM under different conditionsillustrate the sigmoid curve characteristic of transition NH_4-N. Changes in pH for thesamples from the Changjiang Estuary have a significant effect on the solid-liquidpartition of NH_4-N. The adsorption percentage of the NH_4-N in the experiments wasincreased with pH of the water samples induced partitioning of NH_4-N to solidphases.
     5. The adsorption percentage of the NH_4-N in the experiments was increasedwith the increasing of SPM, DO of the water samples, while the adsorptionpercentage of the NH_4-N in the experiments was decreased with the increasing ofsalinity, temperature and the concentration of NH_4-N in the samples.
     6. The desorption percentage of the SiO_3~(2-) in the experiments was increasedsalinity. When S=15, there was a maximum in the desorption percentage of the NO_3~-.The desorption percentage of the NO_3~- in the experiments was increased when S<15,while S>15, the desorption percentage of the NO_3~- in the experiments was decreased.The desorption percentage of the SiO_3~(2-) in the experiments was increased pH, also.While the desorption percentage of the NO_3~- would be constant with the change of thepH. Dissolved oxygen would not affect the desorption percentage of the SiO_3~(2-) OffSPM, and the desorption percentage of the NO_3~- was increased with DO
     7. The Changjiang estuary is known to contribute significantly to theeutrophication that has caused drastic changes to the ecosystem of the East China Sea.However, evidence for historical changes in nutrient concentrations and compositionand the consequent effects on the ecosystem in the coastal water is sparse. Somelong-term data for nutrient concentrations and Si: N: P ratios in the freshwater and theestuary and the long-term response of the ecosystem structure in the estuary. Thesedata reveal increases in the dissolved inorganic nitrogen and phosphate concentrationsin the Changjiang freshwater by a factor of five from the1950s to the end of the 2000sand a reduction in dissolved silicate by two thirds over the same period. Concomitantly, an increase in DIN concentration and a reduction in silicateconcentration both by a factor of two were observed in the surface water of theChangjiang estuary.
引文
Abril J. M., (1998) Basic microscopic theory of the distribution, transfer and uptake kinetics of dissolved radionuclides by suspended particulate matter-Part I: Theory development. Journal of Environmental Radioactivity 3 (41): 307-324.
    Aminot A., Kerouel R. (1997) Assessment of heat treatment for nutrient preservation in seawater samples. Anal. Chim. Acta, 351: 299-309.
    Aminot A., Kerouel R. (1998) Pasteurization as an alternative method for preservation of nitrate and nitrite in seawater samples. Marine Chemistry, 61: 203-208.
    Andersen F.O. & Ring P. (1999) Comparison of phosphorus release from littoral and profundal sediments in a shallow eutrophic lake. Hydrobiologia, 408/409: 175-183.
    Anna L., Carlos M. D., Susana A., Hilary K., (2005) Nutrient dynamics and ecosystem metabolism in the Bay of Blanes (NW Mediterranean). Biogeochemistry, 73: 303-323.
    APHA, AWWA and WEE, (1998) Standard Methods for the Examination of water and wastewater, 18th (edn.). Washington, DC: American Public Health Association, p 458.
    Army, T.J. and Miller, E.V. (1959) Effects of lime, soil type and temperature on phosphate nutrition of turnips grown on phosphorus deficient soils. Agron. J. 51: 376-378.
    Balls, P.W., (1989) The partition of trace metals between dissolved and particulate phases in European coastal waters: A compilation of field data and comparison with laboratory studies. Netherlands Journal of Sea Research, 23: 7-14.
    Balls, P. W. (1994) Nutrient inputs to estuaries from nine Scottish east coast rivers; influence of estuarine processes on inputs to the North Sea. Estuarine, Coastal and Shelf Science, 39: 329-352.
    Barrow, N. J. (1974) The slow reactions between soil and anions. I. Effects of time, temperature and water content of a soil on the decrease in effectiveness of phosphate for plant growth. Soil Sci., 118: 380-386.
    Barrow N. J., (1983) On the reversibility of phosphate sorption by soils. European Journal of Soil Science, 34 (4): 751-758.
    Battarbee R.W. (1999) The importance of palaeolimnology to lake restoration. Hydrobiologia, 395/396: 149-159.
    Bavestrello G, Cattaneo-Vietti R., Cerrano C., Danovaro R. and Fabiano M. (1995) Annual depositional rates and role of the resuspention processes along a Vertical Cliff Ligurian Sea Italy. J. Coastal Res. 11: 690-696.
    Beardsley, R.C., Limeburner, R., Yu, H. et al., (1985) Discharge of the Changjiang (Yangtze River) into the East China Sea., Continental Shelf Research, 4, 57-76
    Benoit G, Oktay-Marshell S. D., Cantu II A., et al., (1994) Partitioning of Cu, Pb, Ag, Zn, Fe, Al, and Mn between filter retained particles, colloids and solution in six Texas estuaries. Marine Chemistry, 45: 307-336.
    
    Benoit G, Rozan T. F., (1999) The influence of size distribution on the particle concentration effect and trace metal portioning in rivers. Geochim. Cosmochim. Acta.,63: 113-127.
    Bentley D., Hartb V., Guarya J.C. and Stathamb P.J. (1999)Dissolved nutrient distributions in the Central English Channel. 19: 2083-2099.
    Bhuiyan J.r. L.R., Sedberry J.E. (1995) Phosphorus sorption characteristics of selected soils of Louisiana. Commun. Soil. Sci. Plant. Anal., 26(7-8): 1059-1072.
    Bien G. S., Contois D. E., Thomas W. H., et al., (1958) The removal of soluble silica from fresh water entering the sea. Geochem et Cosmochem Acta, 14: 35-54.
    Billen G , Lancelot C and Meybeck M. (1991) N , P and Si retention along the aquatic continuum from land to ocean. In: Mantoura R F C., Martin J M and Wollast R.(eds) Ocean Margin Processes in Global Change. Wiley & Sons, Chichester, pp. 19-44.
    Boesch D.F. (2002) Challenges and opportunities for science in reducing nutrient over-enrichment of coastal ecosystems. Estuaries, 25: 886-900.
    Bodini A. (2000) Reconstructing trophic interactions as a tool for understanding and managing ecosystems: application to a shallow eutrophic lake. Can.J.Fish Aquat.Sci., 57: 1999-2009.
    Bostrom B, Andersen JM, Fleischer S, Jansson M. (1988) Exchange of phosphorus across the sediment and water interface. Hydrobiologia, 170: 229- 44.
    Boynton W. R., Garber J. H., Summers R., et al,. (1995) Inputs, transformations and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries. Eestuaries, 18: 285-314.
    Brattebo, H., 0degaard, H., (1986) Phosphorus removal by granular activated alumina. Water. Res. 20: 977-986.
    Broberg O., Pettersson K., (1988) Analytical determination of orthophosphate in water. Hydrobiology, 170: 5-59.
    Brockmann U., Billen G, Gieskes W. W. C., (1988) North Sea nutrients and eutrophication. In Salomons W., Bayne B. L., Duursma E. K. et al (eds). Pollution of the North Sea-an Assessment. Berlin: Springer-Verlag, p348-389.
    Bubba M.D. Brix H. (2003) Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm. Water. Res., 37 (14): 3390-3400.
    Butler, E. I., and Tibbitts S. (1972). Chemical survey of the Tamar. Estuary I. Properties of the waters. J. Mar. Biol. Ass., 52: 681- 699.
    Burns P. A., Salomon M., (1969) Phosphate adsorption by kaolin in saline environments. Proceedings of the National Shellfisheries Association, 59: 121-125.
    Carlton R.G, and Wetzel R.G. (1988) Phosphorus flux from lake sediments: Effect of epipelic algal oxygen production. Limnol. Oceanogr. 33: 562-570.
    Caraco N. F. and Cole J J. (1999) Human impact on nitrate export: An analysis using major world rivers. Ambio, 28: 167-170.
    Carritt D. E., Goodgal S., (1954) Sorption reactions and some ecological implications. Deep Sea Res, 1: 224-243.
    Chang W.Y.B., Rossmann R. (1988) Changes in the abundance of bleu-green algae related to nutrient loading in the near shore of Lake Michigan. Hydrogiologia., 157:271-278.
    Chase E. M., Sayles F. L., (1980) Phosphorus in suspended sediments of the Amazon River. Estuarine, Coastal and Shelf Science, 11: 383-391.
    Chen Y. S. R., Butler J. N., (1983) Kinetic study of phosphate reaction with aluminum oxide and Kaolinite. Environ. Sci. Technol., 7: 327-332.
    Chien, S. H., Savant, N. K. and Mokuwunye, U. (1982) Effects of temperature on phosphate sorption and desorption in two acid soils. Soil Sci., 133: 160-166.
    Christoph Humborg, Venugopalan Ittekkot, Adriana Cociasu et al. (1997) Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature, 386 (27): 385-388.
    Conley D J, Chelske C L and Stoermer E F. (1993) Modification of the biogeochemical cycle of silica with eutrophication. Marine Ecol. Prog, Ser 101: 179-192.
    Conley, D.J., Smith, W.M., Cornwell, J.C. & Fisher, T.R. (1995) Transformation of particle-bound phosphorus at the land-sea interface. Estuarine, Coastal and Shelf Science, 40: 161-176.
    Conley D J, Stalnache P, Pitkanen H, et al. (2000) The transport and retention of dissolved silicate by rivers in Sweden and Fmland.Limnol. Ocenogr, 45: 1850-1853.
    
    Cornwell J. C., Kemp W. M., Kana T. M., (1999) Denitrification in Coastal ecosystems: methods, environment controls and ecosystem controls, a review. Aquatic ecology, 33 (1): 41-54.
    Cowan J., L., Jonathan R., (1996) S eanal and interannual patterns of sediment-Water nutrient and oxygen fluxes in Mobile Bay, Ala (USA): regulating factors and ecological significance. Marine Ecology progress Series, 141: 229-245.
    Dagg, M, Benner, R, Lohrenz, S, Lawrance, D. (2004)Transformation of dissolved and particulate materials on continental shelves influenced by large rivers: plume processes. Coast. She 了 Res., 24: 833-858.
    Del Bubba M,, Arias C.A., and Brix H. (2003) Phosphorus adsorption mximum of sands for use as media in subsurface flow constrcted reed beds as measured by the Langmuir isotherm. Water Research, 37(14): 3390-3400.
    Diaz, R.J., Neubauer, R.J., Schaffner, L.C., Pihl, L., Baden, S.P., (1992) Continuous monitoring of dissolved oxygen in an estuary experiencing periodic hypoxia and the effect of hypoxia on macrobenthos and fish, Marine Coastal Eutrophicaton. Science of the Total Environment (Suppliment), 1055-1068.Davison, W, Heany, S.I. (1978) Ferrous iron-sulfide interactions in anoxic hypo limnetic waters. Limnol. Oceanogr., 23 (6): 1194-1200.
    Doering O.C. (2002) Economic linkage driving the potential response to nitrogen over-enrichment. Estusries 25: 809-818.
    Dodor D.E., Oya K. (2000) Phosphate sorption characteristics of major soils in Okinawa, Japan. Commun Soil Sci Plant Anal, 31(3-4): 277-288.
    Dore J.E., Houlihan T., Hebel D.V., et al. (1999) Freezing as a method of sample preservation for the analysis of dissolved inorganic nutrients in seawater. Marine Chemistry, 53: 173-185.
    Edmond J. M., Sprivack A., (1985) Chemical dynamics of estuary of the Changjiang. Continental Shelf Res., 4: 17-36.
    Edzwald J. K., Toensing D. C., Michael C. L., (1976) Phosphate adsorption reactions with clay minerals. Environ.Sci.&Technol, 10: 485-490.
    Eitaro W., Akihiko H., (1991) Nitrogen in the sea: Fo rm s, A bundances, and Rate Processes. Boca Raton Bo ston: CRC Press.
    Elbaz-Poulichet F, Martin J M, Hang W W, et al., (1987) Dissolved Cd behavior in some selected French and Chinese estuaries, consequences on Cd supply to Ocean. Mar. Chem, 22,125-136.
    Emerson, K., Russo, R.C., Lund, R.E. and Thurston, R.V. (1975) Aqueous Ammonia Equilibrium Calculations: Effect of pH and Temperature, J. Fish. Res. Board Canada, 32, P 2379-2383.
    Ernstberger, H., Edwards, A.C. and Balls, P. W., (2004) The distribution of phosphorus between soluble and particulate phases for seven Scottish East Coast rivers. Biogeochemistry 67, 93-111.
    Elbaz-Poulichet F., HuangW. W., Martin J. M. et al, (1990) Biogeochemical behaviour of dissolved trace elements in the Changjiang estuary. In: Yu G. H., Martine J. M., Zhou J. Y. ed. Biogeochemical Study of the Changjiang Estuary. Beijing:China Ocean Press, 293-311.
    Fang T. H. (2004) Phosphorus speciation and budget of the East China Sea. Continental Shelf Research, 24: 1285-1299.
    Fanning K. A., Pilson M. E. Q., (1973) The lack of inorganic removal of dissolved silica during river-ocean mixing. Geochem et Cosmochem Acta, 37: 2405-2415.
    Filipelli G. M., Delaney M. L., (1996) Phosphorus geochemistry of equatorial Pacific sediments. Geochim. Cosmochim. Acta, 60: 1479-1495.
    Flegal A.R., Smith G.J., and Gill G.A. et al., (1991) Dissolved trace element cycles in the San Francisco Bay estuary. Mar. Chem, 36, 329-363.
    Fox L. E., Sayer S. L., Wofsy S. C., (1985) Factors controlling the concentration of soluble phosphorus in the Mississippi estuary. Limnol. Oceangor., 30: 826-832.
    Fox, L.E., (1989) A model for inorganic control of phosphate concentration in river waters. Coschimica et Cosmochimica Acta, 53: 417-428.
    Fox, L. E., (1990) Geochemistry of dissolved phosphate in the Sepik river and estuary, Papua, New Guinea. Geochimica et Cosmochimica Acta, 54: 1019-1024.
    Frankignoulle M, Abril G, Bouges A, (1998) Carbon dioxide emission from European estuaries. Science, 282,434-436.
    Friedl G., Dinkel C., Wehrli B. (1998) Benthic fluxes of nutrients in the northwestern Black Sea. Marin Chemistry, 62: 77-88.
    Froelich P.N., Bender M.L., Luedtke N.A., Heath G.R., Devries T., (1982) The marine phosphorus cycling. Am. J. Sci., 282: 474-511.
    Froelich P. N., (1988) Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism. Limnology Oceanography, 33: 649-668.
    Galloway J N. (1998) The global nitrogen cycle: changes and consequences. Environ Pollut, 102 (suppl. 1): 15-24.
    
    Geelhoed, J.S., Hiemstra, T., Van Riemsdijk, W.H., 1997. Phosphate and sulfate adsorption on goethite: Single anion and competitive adsorption. Geochim. Cosmochim. Ac. 61,2389-2396.
    Gessner, F., (1960) Untersuchungen uber den phosphathathaushalt des Amazonaz Intern. Rev. Gesamten. Hydrobiol., 45: 339-345.
    Goldberg, E. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 349-352
    Golterman H.L. (1976) Zonation of mineralization in stratified lakes, in: Anderson J.M., Macfayden A. (Eds.), The Role of Terrestrial and Aquatic Organism in Decomposition Processes, vol. 1, E-Publishing Inc., New York.
    Grassholf K., Ehrhardt M. and Kremling K. (1983) Methods of Seawater Analysis. 2nd edn. Verlag Chemie GmbH, D-6940 Weinheim, 419 pp
    Grasshoff K., Kremiln G.K., Ehrhardt M. (1999) Methods of Seawater Analysis. Weinheim: VCH, p27-40.
    Hatje, V., Payne, T. E., Hill, D. M., McOrist, G, Birch, G. F., Szymczak, R., (2003). Kinetics of trace element uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading. Environment International, 29: 619-629.
    Heath, R. T., Francko, D. A. (1988) Comparison of phosphorus dynamics in two Oklahoma reservoirs and a natural lake varying in abiogenic turbidity Can. J. Fish. Aquat. Sci. 45: 1480-1486.
    Holmboe N. and Kristensen E., (2002) Ammonium adsorption in sediments of a tropical mangrove forest (Thailand) and a temperate Wadden Sea area (Denmark). Wetlands Ecology and Management 10: 453-460.
    Honeyman B. D., Santschi P. H., (1988) Metals in aquatic systems. Limnol. Sci. Technol. 22: 862-871.
    House W. A., Jickells T. D., Edwards A. C., et al, (1998) Reactions of phosphorus with sediments. Soil Use and Management, Special Issue 14: 1-9.
    Howarth R.W., Jensen H.S., Marino R., Postma H., (1995) transport to and processing of P in nearshore and oceanic waters. In Tiessen, H. (Eds.), Phosphorus in the global Environment. Wiley, New York, p323-328.
    Howarth R. E. , Billen G. , Swaney D. et al. (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences.Biogeochemistry, 35: 75-139.
    Humborg C, lttekkot V, Cociasu A, et al. (1997) Effect of Danube river dam on Blace Sea biogeochemistry and ecosystem structure.Nature, 386: 385-388.
    Humborg C, Conley D J, Rahm L, et al. (2000) Silicon retention in river basins: Far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments.AMBIO,29: 45-50.
    Hu M.H., Stallard, R.F., Edmond, J.M., (1982) Major ion chemistry of some large Chinese rivers. Nature, 298: 550- 553.
    Ioannou A., Dimirkou A., Papadopoulos P. (1998) Phosphate sorption bygoethite and kaolinite-goethite (k-g) system as described by isotherms. Commun. Soil. Sci. Plant. Anal., 29(13-14): 2175-2190.
    James P M Syvitski, Charles J Vorosmarty, Albert J Kettner, et al. (2005) Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean. Science, 308: 376-380.
    Ji Zh.Y, Yuan J.Sh., Li X.G. (2007) Removal of ammonium from wastewater using calcium form clinoptilolite. Journal of Hazardous Materials, 141: 483-488.
    Jin X.C., Jiang X., Yao Y. et al., (2006) Effects of light and oxygen on the uptake and distribution of phosphorus at the sediment-water interface. Science of the Total Environment, 357: 231-236.
    Johnson C.A., (1986) The regulation of trace element concentrations in river and estuarine waters contaminated by acid mine draiage: the adsorption Cu and Zn on amorphous Fe oxyhydroxides. Geochim. Cosmochim. Acta. 50 (11): 2433-2438.
    Johansson, L., Gustafsson, J.P., (2000) Phosphate removal using blast furnace slag and opoka-mechanisms. Water. Res. 34,259-265.
    
    Karadag D., Koc Y, Turan M., Armagan B. (2006) Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite. Journal of Hazardous Materials, B136: 604-609.
    
    Kennedy, V. S., (1984) The Estuary as a Filter. London: Academic Press.
    Kent K. Cavender-Bares, David M. Karl and Sallie W. Chisholm. (2001) Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 48 (11): 2373-2395.
    Kester, D.R., and Pytkowicz R.M., (1967). Determination of the apparent dissociation constants of phosphoric acid in seawater. Limnol. Oceanogr., 12: 243-252.
    Keister, J.E., Houde, E.D., Breitburg, D.L., (2000) Effects of bottom-layer hypoxia on abundances and depth distributions of organisms in Patuxent River, Chesapeake Bay. Marine Ecology Progress Series 205: 43-59.
    Krom, M. D. and Berner R. A. (1980) Adsorption of phosphate in anoxic marine sediments. Limnol. Oceanogr. 25(5): 797-806.
    Landry, M.R. et al, (1997) Iron and grazing constraints on primary production in the central equatorial Pacific: An EqPac synthesis. Limnol. Oceanogr, 42: 405-418.
    Lebo, M. E. (1991) Particle-bound phosphorus along an urbanized coastal plain estuary. Marine Chemistry, 34: 225-246.
    Lebo M. E, Sharp J H. (1992) Modeling phosphorus cycling in a well-mixed coastal-plain estuary. Est Coastal Shelf Sci, 35(3): 235-252.
    Li D. J, Zhang J, Wu Y, et al. (2002)Oxygen Depletion off the Changjiang (Yangtze River) Estuary. Science In China, Series D, 32(8): 686-694.
    Li,M., Ni, J. R.,Wang, G. Q., and Wei, H. P. (2005) The influence of environmental factors on the adsorption behavior of phosphate by suspended sediments from Changjiang Estuary. Journal of Basic Science and Engineering, 13, 19-25, in Chinese.
    Li M.T., Xu K.Q., Watanabe M., Chen Zh.Y. (2007) Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuarine, Coastal and Shelf Science, 71: 3-12.
    Lin Y.A., Tang R.Y., Li Y. (1997) Coagulation, settling characteristics and action of surface physico - chemical factors of particles in the Changjiang Estuary - II role of surface colloidel property variation on the coagulation and settling of particles. Journal of Sediment Research, 4: 76-84.
    Lipschultz F., Wofsy S.C. and Fox L.E. (1986) Nitrogen metabolism of the eutrophic Delaware River ecosystem. Limnol. Oceanogr. 31: 701-716.
    Liss P. S., Pointon M. J., (1973) Removal of dissolved boron and silicon during estuarine mixing of sea and river waters. Geochem et Cosmochem Acta, 37: 1493-1498.
    Lofts S., Tipping E., (2000) Solid-solution metal partitioning in the Humber rivers: application of WHAM and SCAMP. Sci. Total Environ., 251/152: 381-399.
    Lopez, P., Lluch X.M., Vidal,M. Morgui, J.A., (1996) Adsorption of phosphorus on sediments of the Balearic Islands (Spain) related to their composition. Estuar. Coast. Shelf. S. 42,185-196.
    Lucotte, M. & d'Anglejan, B. 1988 Seasonal changes in phosphorus-iron geochemistry of the St. Lawrence estuary. Journal of Coastal Research, 4: 339-349.
    Lukatelich R. J., McComb A. J. (1986) Nutrient levels and the development of diatom and blue-green algal blooms in a shallow Australian estuary. J. Plankton Res., 8: 597-618
    Mackin James E. and Aller Robert C. (1984) Ammonium adsorption in marine sediments. Limnol. Oceanogr., 29(2): 250-257.
    Madruga M.J. and Cremers A., (1997) Effect of ionic composition and temperature on the radiocaesium fixation in freshwater sediments. Water, Air, & Soil Pollution, 99(1-4): 201-208.
    Mahmut Ozacar, 2003. Adsorption of phosphate from aqueous solution onto alunite. Chemosphere 51, 321-327.
    Mark Trimmer, Joanna C. Nicholls, and Bruno Deflandre. (2003) Anaerobic Ammonium Oxidation Measured in Sediments along the Thames Estuary, United Kingdom. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 69(11): 6447-6454.
    Masahiro Suzumura, Haruyo Kokubun, Nao Arata. (2004) Distribution and characteristics of suspended particulate matter in a heavily eutrophic estuary, Tokyo Bay, Japan. Marine Pollution Bulletin, 49: 496-503.
    Martens C.S., and Rosenfeld J.K. (1978) interstitial water chemistry of anoxic Long Island Sound sediments. 2. Nutrient regeneration and phosphate removal. Limnol. Oceanogr., 23: 605-617.
    Martin J.M., Meybeck M., (1979) Elemental mass-blance of material carried by major world rivers. Marine Chemistry, 7: 173-206.
    Mayer L. M., Gloss S. P., (1980) Buffering of silica and phosphate in a turbid river. Limnol Oceanogr, 25: 12-22.
    Meybeck M, (1982) Carbon, nitrogen and phosphorus transport by world rivers. Amer. J. Sci.,282: 401-450.
    Mead J.A. (1981) A comparison of the Langmuir, Freundlich and Temkin equations to describe phosphate adsorption properties of soils. Aust J Soil Res., 19: 333-375.
    Meybeck M. (1998) The IGBP water group: A Response to a growing global concern. Global Change Newsletters, 36: 8-12.
    Mlilliman J. D., Meade R.H., (1983) World-wide delivery of river sediment to the oceans. Geology, 91: 1-21.
    Milliman J. D., Shen H. T., Yang Z. S. et al., (1985) Transport and deposition of river sediments in the Chang jiang estuary and adjacent continental shelf. Continental Shelf Research, 4: 37-45.
    Millward G. E., Turner A., (1995) Trace elements in estuaries. In: Trace metals in Natural Waters (Salbu and Steinnes Eds.), CRC Press, Boca Raton FL, p223-245.
    Morlock S., Tarlor D., Giblin A., et al. (1997) Effect of salinity on the fate of inorganic nitrogen in sediments of the parker river estuary, Biological Bulletin 193(2): 290-292
    Mortimer C. H. (1971) Chemical exchanges between sediments and water in the Great Lakes-speculations on probable regulatory mechanisms. Limnology and Oceanography, 16: 387-404.
    Muller F. L. L., Tranter M., Balls P. W, (1994) Distribution and transport of chemical constituents in the Clyde Estuary. Estuarine Coastal Shelf Sci, 39: 105-126.
    Nair P.S., (1984) Interlaboratory comparison of a standardized phosphorus adsorption procedure. J Environ Qual, 13: 591-595.
    Naqvi, S.W.A., Jayakumar, D.A., Narvekar, P.V., Naik, H., Sarma, V.V.S.S., DSouza, W., Joseph, S., George, M.D., (2000) Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature 408, 346-349.
    Nestlerode, J.A., Diaz, R.J., (1998) Effects of periodic environmental hypoxia on predation of a tethered polychaete, Glycera americana: implications for trophic dynamics. Marine Ecology Progress Series 172: 185-195.
    Ne'meth, Z., Ga'ncs, L., Ge'mes, G, Kolics, 1998. A. pH dependence of phosphate sorption on aluminum. Corros. Sci. 40,2023-2027.
    Neufeld, R.D., Thodos, G.., (1969). Removal of orthophosphates from aqueous solutions with activated alumina. Environ. Sci. Technol.,3: 661-667.
    Nixon, S.W. (1995) Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia, 41: 199-219. Nour E1-Dien F.A., Ali M.M., Zayed M.A. (1997) Thermodynamic study for the (NH+4 - K+) exchange on K-saturated clinoptilolite. Thermochimica Acta, 307: 65-75.
    
    NRC (National Research Council), 2000. Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution. National Academy Press, Washington DC USA, p. 405.
    Officer C B, Ryther J H. (1980) The possible importance of silicon in marine eutrophication. Marine Ecology Progress Series, 3: 383-391.
    Olsen S.R., Watanabe ES. (1957) A method to determine a phosphorus adsorption maximum of soils as measured bythe Langmuir isotherm. Soil Sci Soc Proc , 144-153.
    Olsen C. R., Cutshall N. H., (1982) Pollutant-particle associations and dynamic in coastal marine environment: A review. Marine Chemistry 11: 501-533.
    Pan G., and Liss P., (1998a) Metastable-equilibrium adsorption theory, II. theoretical ,J of colloid Interface Sci., 201: 77-85.
    Pan G., and Liss P., (1998b). Nietastable-equilibrium adsorption thenryx I. theoretical ,J of colloid Interface Sci., 201: 71 -76.
    
    Pan G., Krom M. D., Herut B, 2002. Adsorption-desorption of phosphate on airborne dust and riverborne particulates in East Mediterranean seawater. Environ. Sci .Tecnol., 36: 3519-3524.
    Paolo Magni, Shigeru Montani, Kuninao Tada., (2002) Semidiural dynamics of salinity, nutrients and suspended particulate matter in an estuary in the Seto Inland Sea, Japan, during a spring tide cycle. Journal of Oceanography, 58: 389-402.
    Paerl, H.W. (1997) Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and ground-water as "new" nitrogen and other nutrient sources. Limnol. Oceanogr, 42: 1154-1165.
    Parick, W.H., Khalid, R.A., (1974) Phosphate relase and sorption by soil and sediments: Effect of aerobic and anaerobic conditions Science, 186: 53-55.
    Park G. A., (1975) Adsorption in the marine environmental, In: Chemical Oceanography, Vol. 1 (editor, Riley J. P., and Skirrow G), 2nd., Academic Press, p241-308.
    Paul J. H., (1983) Uptake of o rganic nitrogen. In: Carpenter E D, Capone D G, eds. Nitrogen in the M arine Environment. New York: Academic Press.
    Payne, T.E., Davis, J.A., Waite, T.D., (1994). Uranium retention by weathered schists—the role of iron minerals. Radiochim Acta 66/67, 297-303.
    Pitt R., Clark S., and Field R., (1999) Groundwater contamination potential from stormwater infiltration practices. Urban Water, 1(3): 217-236.
    Pizarro, J., Belzile, N., Filella, M., Leppard, G.G., Negre, J.C., Perret, D., Bufe, J (1995) Oagulation / sedimentation of submicron particles in a Eutrophic lake. Water Res, 29(2): 617-632.
    
    Polyzopoulos N.A, Keramidas V.Z, Kiosse H. (1985) Phosphate sorption bysome alfisols of Greece as described by commonlyused isotherms. Soil. Sci. Soc. Am Proc. ,49: 81-85.
    
    Prastka K, Sanders R, Jickrl T, (1998) Has the role of estuaries as sourses or sink of dissolved inorganic phosphorus changed over time? Results of a Kd study. Marine Bulletin, 36: 718-728.
    Qi X.H, (2005). Studies on Biogeochemistry of phosphorus in the Coastal Waters of China. Ph.D. Thesis, Ocean University of China. QingDao, China, Unpublished. Richard F A, (1965) Anoxic basins and fjords. In: Riley J P, Skirrow G (eds). Chemical Oceanography. London: Academic Press, P 611-645.
    Russell M. A, Walling D. E, Webb B. W, (1998) The composition of nutrient fluxes from contrasting UK river basins. Hydrological Processes, 12: 1461 -1482.
    Ruttenberg, K. C, (1993) Reassessment of oceanic residence time of phosphorus. Chem. Geol. 107, 405-409.
    Sah R. N. and Mikkelsen D. S, (1986) Effects of temperature and prior flooding on intensity and sorption of phosphorus in soil. Plant & Soil 95: 163-171.
    Sah R. N. and Mikkelsen D. S, (1986) Effects of temperature and prior flooding on intensity and sorption of phosphorus in soil. Plant & Soil 95: 173-181.
    Sandra De Galan, Marc Elskens, Leo Goeyens et al, (2004) Spatial and temporal trends in nutrient concentrations in the Belgian Continental area of the North Sea during the period 1993-2000. Estuarine, Coastal and Shelf Science, 61 (3): 517-528.
    
    Santchi P. H, Lenhart J. J, Honeyman B. D., (1997) Heterogeneous processes affecting trace contaminant distribution in estuaries: the role of natural organic matter. Marine Chemistry, 58: 99-125.
    
    Scientific Committee of Problems of the Environment (SCOPE). (1999)Workshop overview. Sweden: International Workshop on the Global Silica Cycle, 3-5.
    Schelske C.L., Stoermer E.F., Conley D.J., et al. (1983) Early eutrophication in the lower Great Lakes: new evidence from biogenic silica in the sediments. Science, 222: 320-322.
    Schelske C.L., Conley D.J., Stoermer E.F. et al., (1986) Biogenic silica and phosphorus acculation in sediments as indices of eutrophication in the Laurentian Great Lake. Hydrobiologia, 143: 79-86.
    
    Seitzinger S. P, Nixon S. W., Pilson M. E. Q., (1984) Denitrification and nitrous oxide production in a coastal marine ecosystem. Limnology and Oceanography, 29: 73-83.
    Seitzinger S.P., Giblin A.E., (1996) Estimating denitrification in North Atlantic continental shelf sediments. Biogeochemistry, 35: 235-259.
    Seitzinger S. P., Kroeze C., (1998) Global distribution of nitrous oxide production and N inputs in freshwater and coastal ecosystems. Global Biogeochemical cycles, 12: 93-113.
    Shen Z.L. (2001) Historical changes in nutrient structure and its influences on phytoplankton composition in Jiaozhou Bay. Estuary, and Coastal and Shelf Science, 52: 211-224.
    Sillen, 1961 L.G. Sillen, The physical chemistry of sea water. In: M. Sears, Editor, Chemical Oceanography, Am. Assoc. Adv. Sci. (1961), pp. 549-582.
    Sirinawin W, Turner D. R., Wsterlund S. et al., (1998) Trace metal study in the outer Songkla Lake, Thale Sap Songkla, a southern Thai estuary. Marine Chemistry, 62(3-4): 967-980.
    Slomp C. P., Malschaert J. F., et al., (1998) The role of adsorption in sediment-water exchange of phosphate in North Sea continental margin sediments. Limnol. Oceanogr., 43 (5): 832-846.
    Soderberg R.W., Meade J.W. (1991) The effect of ionic strength on un-ionized ammonia concentration, Prog. FislrCult. 53: 118-120
    Standing W. J. F., Oughton D. H., Salbu B., (2002) Remobilisation of ~(109)Cd, ~(65)Zn, and ~(54)Mn from freshwater-labeled river sediments when mixed with seawater. Environmental International, 28 (3): 185-195.
    Stirling H. P., Wormald A. P., (1977) Phosphate/Sediment interaction in Tolo and Harbours, Hongkong and its role in estuarine phosphorus availability Estuarine Coastal. Mar. Sci., 5: 631 -642.
    Stumm W, (1992) Chemistry of the Solid-water Interface: Process at the Mineral-water and Particulate-Water Interface in Natural Systems. New York, J. Wiley & Sons.
    Stumm, W., Morgan, J.J., (1996) Aquatic Chemistry. Chemical Equilibria and Rates in Natural Waters. In: Wiley, New York, NY, pp. 780.
    Stumm, W, Morgan, J.J., (1996) Aquatic Chemistry. Chemical Equilibria and Rates in Natural Waters. In: Wiley, New York, NY, pp. 1040.
    Sung W, (1995) Some observations on surface partitioning Cd, Cu and Zn in estuaries. Environ. Sci. Technol., 29: 1303-1312.
    Tanaka K., (1988). Phosphate adsorption and desorption by the sediment in the Chikugo River estuary, Japan. Bull Seikai Reg Fish Res Lab, 66: 1-12
    Taft J. L., Taylor W. R., (1976) Phosphorus dynamics in some coastal plain estuaries. In Wiley M (eds). Estuarine processes. .VL: Academic, p79-89.
    Tessier A, Carignan R, Dubreuil B et al, (1989) Partitioning of zinc between the water column and the oxic sediments in lakes. Geochim. Cosmachim. Acta., 53 (7): 1511-1522.
    Tessier A, Turner D. R.(Eds.), (1995) Metal speciation and bioavailability in aquatic systems. Wiley, Chichester. p679.
    Treguer P, Nelson D M, van Bennekom A J, et al. (1995) The silica balance in the world ocean: A reestimate. Science, 268: 375-379.
    Trivedi, P., Axe, L., (2000). Modeling Cd and Zn sorption to hydrous metal oxides. Environment Science & Technology, 34,15-23.
    
    Turner A., Tyler A. O., (1997) Modelling adsorption and desorption process in estuaries in Biogeochemistry of Intertidal Sediments. Eds Jickells T. D. and Rae J. E. Cambridge University Press, Cambridge, U. k. p 42-58.
    Turner A., Millward G. E., (2002) Suspended particles: their role in estuarine biogeochemical cycles. Estuarine, Coastal and Shelf Science, 55: 857-883.
    Turner R E, Rabalais N N. (1991) Changes in Mississippi River water quality this century-implications for coastal food webs.Bioscience, 41: 140-147.
    Turner R., Rablais N.,. (1994) Coastal eutrophication near the Mississippi river delta. Nature, 368: 619.
    Turner A., (1996) Trace-metal partitioning in estuaries: importance of salinity and particle concentration. Marine Chemistry, 54: 27-39.
    
    Uncles, R.J., Flickers, P.E., Harris, C, (2003) Dissolved nutrients in the Tweed Estuary, UK: inputs, distributions and effects of residence time. Sci. Total. Environ. 314/315/316,727-736.
    
    Undabeytia T., Nir S., Polubesova T., Rytwo G, Morillo E., Maqueda C. (1999) Adsorption-desorption of chlordimeform on montmorillonite: effect of clay aggregation and competative adsorption with cadmium.Environ. Sci. Technol. 33: 864-869.
    
    Van Bennekom A J and Salomons W. (1981) Pathways of nutrients and organic matter from land to ocean through rivers. In: Martin J.M., Burton J.D. and Eisma D. (eds) Conference Papers: River Inputs to Ocean Systems, pp. 33-51.
    Van Bennedom A., Wetsteijn F. J., (1990) The winter distribution of nutrient in the Southern Bight of the North Sea (1961-1978) and in the estuaries of the Scheldt and the Rhine / Muese. Neth. J. Sea. Res., 25: 75-87.
    Verdouw,H., Dekkers, E.M.J. (1980) Iron and manganese in Lake Vechten (The Netherlands): dynamics and role in the cycle of reducing power, Arch. Hydrobiol. 89(4): 509-532.
    Vitousek P. M. , Aber J. D. , Howarth R. W. et al. (1997) Human alteration of the global nitrogen cycle:sources and consequences.Ecol.Appl. 7: 737-750.
    wang B.D. (2006) Cultural eutrophication in the Changjiang (Yangtze River) plume: History and perspective. Estuarine, Coastal and Shelf Science, 69: 471-477.
    Wang F., Chen J., Forsling W., (1997) Modeling sorption of trace metals on natural sediments by surface complexation model.Environ Sci. Technol., 31(2): 448-453.
    Wang S.R., Jin X.C., Pang Y., (2005) The Sorption Isotherms of Phosphate to Different Nutrient Levels of Sediments in Different pH. Res. Environ. Sci. 18: 53-58 (in Chinese).
    Wang S.R., Jin X.C., Pang Y, (2006) The adsorption characteristics and adsorption thermodynamics parameter of phosphate on lake sediments. Geographi. Res. 25 (1): 19-26 (in Chinese).
    Wang, Z.F., Zhang, B.Z., Zhang, J., et al., (1990) Biogeochemical behavior of dissolved trace metal in the Changjiang Estuary and its adjacent sea area. In: Yu et al., (Ed.), Biogeochemical study of the Changjiang Estuary. Beijing: China Ocean Press, pp. 280-292.
    Wasmund N, Naush G, Matthaeus W. (1998) Phytoplankton Spring blooms in the southern Baltic Sea-Spatial temporal development and long-term trends. Journal of plankton Research, 20(6): 1099-1117.
    Wheeler K., Kokkinakis D., (1990) Ammonium recycling limits nitrate use in the oceanic subarctic Pacific. Limlogy and Oceanography. 35 (1): 267-278.
    Wen L-S., Santschi P. H., Gill G, (1999) Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms in speciation of the dissolved phase. Marine Chemistry, 63: 185-212.
    Wheeler K., Kokkinakis D., (1990) Ammonium recycling limits nitrate use in the oceanic subarctic Pacific. Limlogy and Oceanography. 35 (1): 267-278.
    Whitefield M, Turner D. R., (1987) The rolr of particles in regulating the composition of seawater. In: Aquatic Surface Chemistry (Stmm Eds.), Wiley, New York.
    Window H, Byrd J, Smith Jr R, et al., (1991) Trance metal-nutrient relationships in estuariea. Mar. Chem., 32:17-194.
    Wollast R., DE Broeu F., (1971) Study of the behavior of dissolved silica in the estuary of Scheldt. Geochem et Cosmochem Acta, 35: 613-620.
    Xie, Q.C., Li, Y., (1990) Behaviors of suspended matter in the Changjiang Estuary. In: Yu et al., (Ed.), Biogeochemical study of the Changjiang Estuary. Beijing: China Ocean Press, pp. 88-98.
    
    Xu M.D., Wei H.P., Li M., Huang X.C. (2006) A Study on The Sorption and Desorption of Phosphate by Sediments in the Yangtze River Estuary. Joul. Taiyuan University of technology, 37 (1): 48-50.
    Yu G, Martin J. M. Zhou J. Y. (editers),(1990) Biogeochemical study of the Changjiang estuary. China Ocean Press: Beijing.
    
    Zhang J., Huang W.W., Liu M.G. and Zhou Q., (1990) Drainage basin weathering and major element transport of two large Chinese rivers (Huanghe and Changjiang). J. Geophy. Res., ,95 (C8): 13277-13288.
    
    Zhang J, Letolle R, Martin J M et al.,(1990a) Stable oxygen isotope distribution in the Huanghe (Yellow River) and the Changjiang (Yangtze) estuarine systems. Contin. Shel.Res.,10(4): 369-384.
    Zhang J., (1995) Geochemistry of trace metals from Chinese river/estuary systems: An overview, Estuarine. Coastal and Shelf Science, 41: 631 -658.
    Zhang J., (1996) Nutrient elements in large Chinese estuaries. Continental Shelf Research, 16 (8): 1023-1045.
    Zhang J. (editors) (1998) Land-Sea Interaction in Chinese Coastal Zones. China Ocean Press: Beijing
    
    Zhang J., Zhang Z. F., Liu S. M., et al., (1999) Human impacts on the Large World River: Would the Changjiang (Yangtze River) Be An Illustration. Global Biogeochemical Cycles, 13(4): 1099-1105.
    Zhang J. (2002) Biogeochemistry of Chinese estuaries and coastal waters: nutrients, trace metals and biomarkers. Regional Environmental Change, 3: 65-76.
    Zhang J. (2004) Dynamics of inorganic nutrient species in the Bohai seawaters. Journal of Marine Systems, 44: 189-212.
    Zhang J., Liu S. M., Ren J. L., Wu Y., et al., (2007) Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Progress in Oceanography, 74: 449-478.
    Zhang, Z. B., Liu, L. S., 1985. Theory of Interfacial Stepwise Ion/coordination Particle Exchange and Its Applications. Beijing: China Ocean Press, pp. 240-255.
    J.A.迪安主编尚久方等译,兰氏化学手册1991年3月第13版,科学出版社出版P390-391.
    1991—2000年《洞庭湖水环境质量监测年报》,湖南省洞庭湖环境保护监测站.
    《2002年无锡统计年鉴》,江苏无锡市统计局,北京:中国统计出版社.
    《2006年苏州统计年鉴》,江苏无锡市统计局,北京:中国统计出版社.
    安德森MA,鲁宾AJ.1989,水溶液吸附化学.北京:科学出版社.
    2005年长江泥沙公报.
    陈吉余,沈涣庭,恽才兴等著.(1988)《长江河口动力过程和地貌演变》.上海科学技术出版社,上海,205-283.
    陈吉余,陈祥禄,杨启伦.(1988)上海海岸带和海涂资源综合调查报告.上海:上海科技出版社,P114-116.
    陈静生,高学民,夏星辉等.(1998)长江干流近三十年来水质变化探析.环境化学,17(1):8-13.
    陈静生,关文蓉.(1998)长江中上游水质变化趋势与环境酸化关系初探.环境科学学报,18(3):265-270.
    程潞,李振泉,陆心贤.(1992)中国经济地理.北京:高等教育出版社,P106-110.
    段水旺,章申,陈喜保等.(2000)长江下游氮、磷痕量变化及其输送量的估计.环境科学,21(1):53-56.
    樊安德,杨晓兰,应时理。长江河口及邻近海区的重金属元素。东海海洋,1995,13(3,4):37-71.
    方凯,李利强,田琪.(2003)洞庭湖水环境质量特征和发展趋势.内陆水产,4.《分析化学》武汉大学主编(第五版),高等教育出版社.
    高红莲,王肇鼎,丘耀文.2000,大亚湾养殖海区沉积物中营养盐的解吸—吸附.热 带海洋,19(1):76-80.
    郭建平,吴甫成,熊建安.(2007)洞庭湖水体污染及防治对策研究.湖南文理学院学报,32(1):91—94.
    《海洋监测规范》(GB17378-1998)
    《海洋调查规范》(GB8538-1995)
    胡方西,胡辉,谷国传等著.(2002)《长江口锋面研究》,华东师范大学出版社,上海,p1-6.
    黄尚高,杨嘉东,暨卫东等.(1986)长江口水体活性硅、氮、磷含量的时空变化及相互关系.台湾海峡,5(2):114-123.
    金相灿,王圣瑞等.(2004)湖泊沉积物对磷酸盐的负吸附研究.生态环境,13(4):493-496.
    昆明市委办公厅等.(1999)昆明辉煌五十年.云南科技出版社.
    李崇明.(2002)二峡“黑潮现象原囚及影响分析.第五届中国环境水力学会论文集.北京:中国水利水电出版社.
    李九发,沈涣庭,徐海根.(1995)长江口河口底沙运动规律.海洋与湖沼,26(2):138-145.
    李九发,何青,张探.(2000)长江河口拦门沙河床淤积和泥沙再悬浮过程.海洋与湖沼,31(1):101-109.
    李军.(2005)长江中下游地区浅水湖泊生源要素的生物地球化学循环.博士论文,中国科学院地球化学研究所.
    李强.(2005)洞庭湖水生态环境的演变与保护对策.水土保持研究,12(6):98—100.
    李铁,胡立阁.(2000)营养盐对中肋骨条藻和新用菱形藻生长及氮磷组成的影响.海洋与湖沼,31(1):46-52.
    李茂田,程和琴.(2001)近50年来长江入海溶解态硅通量变化及其影响.中国环境科学,21(3):193-197.
    李峥,沈志良,周淑青,姚云.(2007)长江口及其邻近海域磷的分布变化特征.海洋科学,31(1):28-36.
    林晶,吴莹,张经.(2007)海水中营养元素的保存进展.海洋湖沼通报(待发表).
    林以安,唐仁友,李炎.(1996)长江口区C、N、P的生物地球化学变化对悬浮颗粒物体凝絮沉降的影响.《中国主要河口的生物地球化学研究—化学物质的迁移与环境》(张经主编).北京:海洋出版社,p133—145.
    林以安,李炎,唐仁友.(1997)长江口絮凝聚沉先生与颗粒物表面物理化学因素 作用-Ⅱ颗粒表面性质对聚沉的作用.泥沙研究,4:76-84.
    李晓青,何丹.(2005)洞庭湖区渔业发展探析.30(3):49—51.
    刘恩峰,沈吉,朱育新等.(2004)太湖沉积物重金属及营养盐污染研究.沉积学报,22(3):507—512.
    刘敏,侯立军等.(2002)长江河口潮滩表层沉积物对磷酸盐的吸附特征.地理学报,57(4):397-406.
    刘新成,沈焕庭,黄清辉.(2002)长江入河口区生源要素的浓度变化及通量.海洋与湖沼,33(5):332-340.
    龙爱民,陈绍勇,周伟华等.(2006)南海北部秋季营养盐、溶解氧、pH值和叶绿素a分布特征及相互关系.海洋通报,25(5):9-16.
    毛战坡,彭文启,王世岩,周怀东.(2005)滇池水体富营养化及控制措施评价.中国水利水电科学研究院学报,3(2):135-142.
    潘定安,孙介民.(1996)长江口拦门沙地区的泥沙运动规律.海洋与湖沼,27(2):279-286.
    任玲,杨军.(2000)海洋中氮营养盐循环及其模型研究.地球科学进展,15(1):58-64.
    沈涣庭,郭成涛,朱慧芳等.(1984)长江口最大混浊带的变化规律及其成因探讨.海洋岸河口区动力、地貌、沉积过程论文集,科学出版社,北京:1976-89.
    沈焕庭,李九发,朱慧芳等.(1986a)长江河口悬沙输移特征.华东师范大学学报(自然科学版),1:78.
    沈焕庭,潘定安.(2001a)长江河口最大浑浊带.海洋出版社,北京.
    沈焕庭等著,(2001a)《长江河口物质通量》。海洋出版社,北京,p42-117.
    沈满洪.(2003)滇池流域环境变迁及环境修复的社会机制.中国人口资源与环境,13(6):76-80.
    沈志良,陆家平,刘兴俊.(1987)长江下游无机氮和磷酸盐的分布及其河口的转移过程.海洋科协集刊,28:69-77.
    沈志良,陆家平,刘兴俊.(1991)黄河口附近海区沉积物间隙水中的营养盐.海洋学报,13(3):407-411.
    沈志良,陆家平,刘兴俊等.(1992)长江口区营养盐的分布特征及三峡工程对其影响.海洋科学集刊,33:107-129.
    沈志良,刘群,张淑美,苗辉,张平.(2001)长江和长江口高含量无机氮的主要控制因素.海洋与湖沼,32(5):465-473.
    沈志良.(2002)胶州湾营养盐结构的长期变化及其对生态环境的影响.海洋与湖沼,33(3):322-331.
    孙大志,李绪谦,潘晓峰.(2007)氨氮在土壤中的吸附/解吸动力学行为的研究.环境科学与技术,30(8):16—18.
    王保栋,陈爱萍,刘峰.(2002)1998年夏季长江特大洪水入海的化学水文学特征.海洋科学进展,20(3):44-51.
    王芳,晏维金.(2004)长江输送颗粒态磷的生物可利用性及其环境地球化学意义.环境科学学报,24(3):418-422.
    王汉奎,董俊德,张偲,黄良民,(2002)三亚湾氮磷比值分布及其对浮游植物生长的限制.热带海洋学报,21(1):33-39.
    王克英主编,(1998)洞庭湖治理与开发.长沙:湖南人民出版社,P123-138.
    王肇鼎等.珠江口水域的营养兀素.《中国主要河口的生物地球化学研究—化学物质的迁移与环境》(张经主编).北京:海洋出版社,p16—37.
    王正方,姚龙奎,阮小正.(1983)长江口营养盐分布与变化特征.海洋与湖沼,14(4):324-332.
    吴永红,胡俊,金向东,柯鹏振,陈晓国,刘剑彤.(2005)滇池典型湖湾沉积物氮磷化学特性及疏浚层推算.环境科学,26(4):77-82.
    徐志标,骆其君,徐继林等.(2005)水样种氮磷营养盐含量的稳定性及保存方法比较研究.水产科学,24(4):10-14.
    晏维金,章申,王嘉慧.(2001)长江流域氮的生物地球化学循环及其对输送无机氮的影响地理学报,56(5):505-514.
    羊向东,沈吉,夏威岚,朱育新.(2002)龙感湖近代沉积硅藻组合与营养演化的动态过程.古生物学报,41(3):455—460.
    杨东方,高振会,陈豫,刘展,丁德文.(2002)硅的生物地球化学过程的研究动态.海洋科学,26(3):39-42.
    姚书春,李世杰,刘吉峰等.(2006)太湖THS孔现代沉积物~(137)Cs和~(210)Pb的分布及计年.海洋地质与第四纪地质,26(2)79—83.
    叶仙森,张勇,项有堂等.(2000)长江口海域营养盐的分布特征及其成因.海洋通报,19(1):89-92.
    余立华,李道季,方涛,李云,高磊.(2006)三峡水库蓄水前后长江口水域夏季硅酸盐、溶解无机氮分布及硅氮比值的变化.生态学报,26(9):2817—2826.
    岳维忠,黄小平.(2003)近海沉积物中氮磷的生物地球化学研究进展.台湾海峡,22(3):407-414.
    张经,(1996)盆地的风化作用对河流化学成分的控制,《中国主要河口的生物地球化学研究—化学物质的迁移与环境》(张经主编).北京:海洋出版社,p1 —15.
    张经,应时理,(1996)长江口的颗粒态重金属.《中国主要河口的生物地球化学研究—化学物质的迁移与环境》(张经主编).北京:海洋出版社,p146—159.
    张经(主编),1996.《中国主要河口的生物地球化学研究—化学物质的迁移与环境》.北京:海洋出版社.
    张经,(1996)若干北方河口中的营养要素—黄河、滦河、大辽河、鸭绿江.《中国主要河口的生物地球化学研究—化学物质的迁移与环境》(张经主编).北京:海洋出版社,p205—218.
    张晟,赵黎明,李崇明.(2003)乌们水污染调杏.中国环境监测,19(1):23-26.
    张平.(2001)长江口营养盐结构变化研究.硕士论文,中国科学院,P5.
    张燕,彭补拙,陈捷,吕俊杰.(2005)借助137Cs估算滇池沉积量.地理学报,60(1):71-78.
    张正斌,刘莲生.(1989)海洋物理化学,科学出版社,北京。P552-765.
    赵宝仁,乐肯堂,朱兰部.(1992)长江口海域温、盐度分布的基本特征和上升流现象.海洋科学集刊,33:15-26.
    赵宏宾,刘莲生,张正斌.(1997)海水中磷酸盐在固体粒子上阴离子交换作用—海水中磷酸盐固体粒子相互作用的台型等温线.海洋与湖沼,28(2):172-177.
    周济福,王涛,李家春等.(1999)径流与潮流对长江口泥沙输运的影响.水动力学研究与进展,A辑14(1):90-100.
    朱建荣和沈焕庭.(1997)长江冲淡水扩展机制.华东师范大学出版社,上海。P18-176.
    朱利中,杨坤等.(2001)对硝基苯酚在沉积物上的吸附特征—吸附等温线和吸附热力学.环境科学学报,21(6):674-678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700