用户名: 密码: 验证码:
链层状矿物—坡缕石的酸溶解、吸附和解吸附的表面矿物学机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Surface-Mineralogical Mechanism of Acid Disolution, Adsorption, and Desorption for Chain-Layer Mineral: Palygorskite
  • 作者:蔡元峰
  • 论文级别:博士
  • 学科专业名称:矿物学岩石学矿床学
  • 学位年度:2004
  • 导师:薛纪越
  • 学科代码:070901
  • 学位授予单位:南京大学
  • 论文提交日期:2003-12-10
  • 答辩委员会主席:罗谷风
摘要
本论文在对苏皖地区两个凹凸棒粘土的系统的矿物学研究的基础上,选定安徽明光官山的粉红色和灰白色凹凸棒粘土进行了提出,得到了富镁和贫镁的两个坡缕石。对两个坡缕石同样进行了系统的矿物学研究,粉末XRD定性分析结果显示富镁者呈粉红色、为一正交晶系矿物,贫镁者呈灰白色、较单一的单斜晶系矿物;二者晶体结构中Mg/(Fe3++Al3+)比值分别为3.8(粉红色)和1.4(灰白色者)。经FTIR和NIR反射光谱的研究,确认富镁坡缕石为一三八面体矿物,而贫镁者为介于二八面体和三八面体之间的矿物。
     对富镁和贫镁坡缕石进行了系统的酸浸蚀实验,实验结果显示两个坡缕石的四面体离子(Si4+)在浸蚀过程中具有相同的溶出规律,而八面体离子的溶出规律却具有较大差异。在3和5mol/L的盐酸溶液中,Si4+的浸出呈三阶段特征;而在1mol/L盐酸溶液中,Si4+的浓度随酸浸蚀时间的延长而增大。对灰白色坡缕石而言,所有浓度的盐酸对八面体离子的浸出浓度均随浸蚀时间的延长而增大。而对粉红色坡缕石而言,在1mol/L的盐酸溶液中,浸出的八面体离子的浓度随酸浸蚀时间延长而增大;但在3和5mol/L的盐酸溶液中,浸出八面体离子的浓度随时间的延长表现出三阶段特征。导致Si4+和粉红色坡缕石的八面体离子在3和5mol/L的盐酸溶液中呈三阶段特征的原因可能来自Si4+和Mg2+溶出行为的相互制约。两个坡缕石的Mg/(Fe3++Al3+)比值随盐酸浸蚀时间的延长逐渐趋向一个定值。在1mol/L盐酸中Mg/(Fe3++Al3+)比值是随浸蚀时间延长逐渐增大并稳定在2.0左右(贫镁坡缕石)和4.0左右(富镁坡缕石),而3和5mol/L盐酸中Mg/(Fe3++Al3+)比值在短时间内内增大到极大值,然后逐渐减小并稳定在2.0和4.0左右。在酸浸蚀的开始阶段,阳离子的溶出主要通过晶体表面的扩散作用来进行,此时,裸露表面几层的原子和离子不仅有八面体离子,而且有四面体离子,其中部分四面体为Al3+占位,因此Mg2+/(Fe3++Al3+)的比值偏低。随着浸蚀作用的进行,化学反应逐渐成为主导因素,对Mg2+的选择性优先溶出导致Mg2+的溶出量逐渐增大,而且HCl溶液对坡缕石的结构微空腔的渗透,从而使HCl溶液对坡缕石的浸蚀是全面的,酸中的Mg2+/(Fe3++Al3+)稳定在一个定值上。总之,坡缕石在酸中活化过程受两种机制控制:扩散机制和化学反应机制。
     对酸浸蚀残留物的粉末XRD研究显示:少于7小时盐酸浸蚀时,固体残留物依然是坡缕石;360小时酸浸蚀坡缕石残留物的XRD图谱上衍射线出现明显的宽化,且在各衍射线均出现不同程度的分裂现象,在20~30°范围内形成一宽大的包络峰,表明360小时浸蚀后残留物已经不是坡缕石。据AFM和TEM镜下的残留物的微形貌观察知随酸浸蚀时间的延长,残留物中微小的球状颗粒明显增多。360小时的酸浸蚀后残留物中出现大量的微小的球状颗粒,且其FTIR谱上仅剩余与硅氧振动相关的OH振动、SiO振动和Si ? OH:?Al振动,表
     明该残留物是以Si, Al, O为主要成分的非晶态物质,而残留物的XRF分析显示残留物中SiO2%的含量大于60%,表明360小时酸浸蚀残留物主要是非晶态的SiO2。
     粉红色残留物的漫反射NIR谱的研究显示2300nm附近的吸收峰随酸浸蚀时间的延长而模糊并消失,且1300nm~1600nm范围的吸收峰比未经酸浸蚀者的该区域吸收峰宽;灰白色坡缕石的漫反射NIR谱随酸浸蚀时间的延长未发生明显的变化。两个坡缕石随酸浸蚀时间延长在FTIR谱和NIR谱上的不同表现与化学成分的差异密切相关,粉红色者富镁,灰白色者贫镁。HCl对Mg2+的选择性溶出是导致二者离子浸出规律和残留物谱学特征差异的根本原因。
     酸活化4小时的1个贫镁坡缕石、2个富镁坡缕石和1个未活化粉红色坡缕石吸附铜后的EPR、FTIR和XPS研究显示:Cu2+在坡缕石中是被吸附在晶体结构的微空腔中、四面体片的单位六元环的底部或八面体位,结构微空腔中的铜是以[Cu(H2O)4]2+的形式被圈闭的。坡缕石表面吸附的铜是以两种价态存在的,在未活化坡缕石表面存在Cu2+和Cu+、酸活化坡缕石的表面仅存在Cu+,铜的窄扫描谱的拟合结果表明Cu是以和氧成键的方式被吸附在坡缕石的表面的。至于,铜在坡缕石表面为什么呈两种价态有待进一步的研究。也就是说,在坡缕石中铜是以四种形式存在的:1)坡缕石的表面,2)结构的微空腔中,3)四面体片的六方孔中,4)八面体位。
     饱满吸附铜的坡缕石的铜的解吸附实验显示Cu2+在不到0.25小时的时间内就在溶液中达到的了平衡,且解吸附的量不足吸附量的1%,表明因被圈闭在结构通道的[Cu(H2O)4]2+、四面体片单位六元环底部和八面体位中的Cu2+,由于不易被H+触及,因而很难被解吸附,被解吸附的铜主要来自坡缕石的表面。Cu2+的解吸附表明坡缕石可以被用来治理被重金属离子污染的水体。
Based on systemic mineralogical study of two attapulgite clays from Jiangsu and Anhui Province, the pink and gray attapulgite clay which were collected from Guanshan deposit in Mingguang, Anhui Province, were selected to be purified for magnesium-rich and magnesium-poor palygorskite. The polycrystalline X-Ray Diffraction study show that the magnesium-rich palygorskite belongs to orthorhombic system, magnesium–poor palygorskite is a complex of monoclinic and orthorhombic ones. Magnesium-poor one is gray in color, and the other is pink. The R2+/R3+ ratios of octahedral layer are 1.4 for magnesium-poor palygorskite and 3.8 for magnesium-rich one. The FTIR and diffused NIR results has proved that the magnesium-rich palygorskite is a tri-octahedral mineral, and the magnesium-poor one is one kind of mineral intervened between tri-octahedral and di-octahedral.
     Systemic acid leaching experiments were carried on two magnesium-rich and magnesium -poor palygorskite. The results show that both palygorskite have the same trend for Si4+ leaching, but the different leaching trend of octahedral cations can be seen in those two palygorskite during acid leaching process. As 1 mol/L HCl solution was employed, the Si4+ concentration increased gradually. However at 3 and 5 mol/L HCl, the trends of Si4+ concentration in leachate versus leaching time could be divided into 3 steps. For magnesim-poor palygorskite, the concentrations of octahedral cations are increasing with the increase of leaching time and the concentration of HCl solution. However, the same leaching trend was only seen in 1 mol/L HCl solutions for magnesium-rich palygorskite. It is obvious that three steps can be considered for magnesium-rich one. The conditionality of the leaching behavior of Mg2+ and Si4+ should be considered for the“characteristic three step trend”in 3 and 5 mol/L HCl solution for Si4+ and magnesium-rich one.
     The Mg2+/(Al3++Fe3+) ratio increases steadily with leaching time and then reaches a constant value of 2 for magnesium-poor palygorskite, and >4 for magnesium-rich palygorskite in leached solution of 1 mol/L HCl. However as it leached by 3 and 5 mol/L HCl, the Mg2+/(Al3++Fe3+) ratio reachs a maximum value in a short time (<1.5 h), and then decreases to a constant value of 2 and 4. The different dissolution among different concentration of HCl solution indicates that the concentration has influenced the extraction rate of Mg2+. Based upon this fact, it is believed that at the earlier stage of dissolution by 1 mol/L HCl, the extraction of the cations is controlled by diffusion mechanism, i. e. the cations diffuse from the crystal surface to the solution, and the H+ from solution to the surface. Initially, not only the octahedral cations, but also the tetrahedral cations with Al3+ in tetrahedron site are exposed on the surface of the crystal. Therefore, the Mg2+/(Al3++Fe3+) ratio is lower. The chemical reaction gradually becomes a leading factor along with the developing of the dissolution. The preferential leaching of Mg2+ results in the gradual increase of Mg2+ concentration. The penetration of the H+ from solution to the inner structural channels of the crystal makes the leaching throughout the channels, and the Mg2+/(Al3++Fe3+) ratio reach a constant value. In a word, two leaching state should be considered: diffusion mechanism and chemical reaction mechanism.
     The powder XRD results show that the solid leachate is still palygorskite as the activating time less than 7 h. When leaching time is longer enough to 360 h, the diffraction peaks become wider and split into several peaks. Finally, a big and large overlapped peak is formed at range of 20 to 30o. The microtopography of TEM and AFM show that more and more amorphous spherical particulate is formed along with leaching time. There is a large amount of amorphous spherical particulates in 360 h acid leached solid leachate. The amount of SiO2% is bigger than 60% by XRF analysis. There is only absorption peak related to Si-O, Si ? HO: ?Siand Si ? OH:?Al in FTIR spectra. The above-mentioned facts suggest that the amorphous spherical particulate is amorphous silica.
     The bands near 2300nm become vague and fade away in the diffuse NIR spectra of pink relicts along with leaching time. The bands between 1300 and 1600nm of activated palygorskite are much wider than un-activated one. The diffuse spectra of unactivated and activated gray palygorskte are slightly different. The above-mentioned facts indicate that the different chemical composition brings the different spectra. The pink one is a magnesium-rich palygorskte, and the gray one is a magnesium-poor palygorskite. It is the different contents of Mg2+ and the preferential selectivity of Mg2+ that bring the different FTIR, NIR spectra and different activation mechanism.
     The EPR, FTIR spectra of a magnesium-rich palygorskite, 4 h acid activated two magnesium-rich ones and one magnesium-poor one indicate that the Cu2+ is wrapped in the micro-channel of crystal structure and in the hexagonal cavities of Si-O sheet and a small fraction penetrate into the octahedral vacancies. XPS spectra show that two valences appear on the surface of un-activated palygorskite, and Cu+ can be found on the surface of activated palygorskite. The further work should be carried to exoatiate on why two valences exist. In a word, there are four different occurrences of Cu ions in palygorskite: 1) adsorbed on the surface, 2) entering into the micro-channel of crystal structure, 3) adsorbing in the hexagonal cavities; and 4) penetrating into the octahedral vacancies.
     The desorbing experiment of Cu-adsorbed palygorskite indicates that the chemical equilibrium is reached less than 15 minutes. The amount of desorbed Cu2+ is less than 1%. The above-mentioned facts suggest that the Cu2+ ions wrapped in micro-channels, in hexagonal cavities, and in octahedral vacancies are not accessible to H+, difficult to be desorbed. The desorbed Cu2+ ions come from the surface. It seems that the palygorskite is an outstanding materials to solve the polluted water environment.
引文
(1) 石汉生,苏皖地区凹凸棒粘土特征及其开发应用前景探讨,硕士毕业论文。
    [1] 曹利国, 1998, 能量色散 X 射线荧光方法. 成都科技大学出版社
    [2] 陈天虎, 2000, 改性凹凸棒石粘土吸附对比实验研究. Vol. 23(3): 11-12
    [3] 陈天虎, 徐惠芳, 鲁安怀, 等, 2003, 凹凸棒石酸活化废液制备 LDH 实验研究, I: 合成方法和表征. 矿物学报, Vol. 23(3): 199-203
    [4] 陈贤熔, 1986, 电子自旋共振实验技术. 科学出版社
    [5] 陈允奎, 1993, 红外吸收光谱法及其应用. 上海交通大学出版社
    [6] 陈正国, 1989, 黄泥山坡缕石粘土矿床成因研究. 建材地质, (3): 3-8
    [7] 陈正国, 1991, 国内外坡缕石粘土成因类型. 地质科技情报, Vol. 10(3): 24-28
    [8] 陈正国, 1991, 中国坡缕石粘土矿床成因类型. 现代地质, Vol. 5(3): 307-319
    [9] 崔文龙, 张春燕, 1996, 贵州大方坡缕石除铁增白研究. 建材地质, (4): 39-40
    [10] 邓景发, 等. 1993, 物理化学(第一版). 北京:高等教育出版社, 465-467
    [11] 董必谦, 1991, 西宁盆地坡缕石粘土矿的地质特征. 建材地质, (5): 1-5
    [12] 方磐, 1989, 安徽嘉山坡缕石加热相变的研究. 矿物学报,Vol. 9(4): 322-329
    [13] 方邺森, 任磊夫, 1987, 沉积岩石学教程, 地质出版社, p: 30-32, 151-155
    [14] 方邺森, 许冀泉, 李立文, 1990, 苏皖地区凹凸棒粘土. 南京大学学报, Vol. 2 (1): 15-23
    [15] 冯启明, 易发成, 1996, 白云质坡缕石粘土的特征及其应用开发研究. 矿产综合利用, (6): 41-44
    [16] 冯启明, 易发成, 1999, 青海省湟中县白云质坡缕石粘土酸活化条件及其方法研究. 非金属矿, Vol. 22 (4): 11-13
    [17] 官伟力, 孙士良, 1991, 凹凸棒石选矿及深加工技术现状. 建材地质, No.4
    [18] 桂琳琳, 黄惠忠, 郭国霖译, 1984, X 射线与紫外线光电子能谱. 北京大学出版社
    [19] 何宏平, 1999, 蒙脱石等粘土矿物于金属离子的作用特征及机理研究(博士论文)
    [20] 贺玉珉, 1982, 江苏六合小盘山凹凸棒石粘土矿的物质组成及成因探讨. 江苏地质, No.1: 3~20
    [21] 惠腾恩, 王亚军, 1987, 嘉山凹凸棒石粘土及其棒石含量的定量分析. 中国科技大学学报, Vol. 17(4), 519-5222
    [22] 吉昂, 陶光仪, 卓尚军, 等, 2003, X 射线荧光光谱分析. 科学出版社
    [23] 蒋先明, 何伟平, 1992, 简明红外光谱识谱法. 广西师范大学出版社
    [24] 李虎杰, 郑自立, 2002, 坡缕石粘土的吸附性能研究. 矿产综合利用, No. 5: 24-27
    [25] 李明凯, 邸素梅, 1989, 天水地区含坡缕石粘土岩地质特性及形成环境的研究. 建材地质, (3): 9-15
    [26] 李明凯, 董旭明, 1998, 临泽板桥坡缕石粘土矿的发现. 中国非金属矿工业导刊, (6): 32-34
    [27] 李平, 万朴, 1996, 海泡石坡缕石吸附有机气体研究. 西南工学院学报. Vol. 11(4): 44-50
    [28] 李志群, 1998, 云南坡缕石的地质特征及开发应用研究. 有色金属矿产与勘查. Vol 7(1): 60-62
    [29] 刘长根, 蔡克勤, 1991, 关于坡缕石,海泡石粘土的活化研究现状的评述. 建材地质, (2): 20-26
    [30] 刘长根, 蔡克勤, 1993, 安徽省嘉山县官山沉积型坡缕石的矿物学研究. 矿物学报. Vol. 13(1): 92-96
    [31] 刘长根等, 1990, 官山凹凸棒石粘土矿床矿石的吸蓝量测定及其物相分析, 建材地质, No.6, 27-30
    [32] 刘玉琳, 张友义, 妙凌云, 等, 2001, 甘肃含碘凹凸棒石的发现及其应用前景初探. 岩石矿物学杂质, Vol. 20(4): 504-506
    [33] 陆家和, 陈长彦, 1995, 现代分析技术. 清华大学出版社
    [34] 南京大学地质学系矿物岩石学教研室编, 1980, 粉晶 X 射线物相分析. 地质出版社
    [35] 彭文世, 1982, 矿物红外光谱图集, 北京: 科技出版社
    [36] 裘祖楠, 翁行尚, 李勇, 等, 1997, 活化凹凸棒石对阳离子染料的脱色作用及其应用研究. 中国环境科学, Vol. 17(4): 373-376
    [37] 裘祖文, 1980, 电子自旋共振波谱. 科学出版社
    [38] 任全贵, 1987, 嘉山一带凹凸棒粘土矿床特征与查评方法. 非金属矿, N0.2, 4-9
    [39] 石汉生, 1993, 苏皖地区凹凸棒石粘土特征及其开发应用前景探讨(硕士论文)
    [40] 宋功保, 曹永革, 1998, 坡缕石及其超细粉体内外比表面积的测定和计算. 地质实验室, Vol. 14(3): 185-189
    [41] 宋功保, 刘福生, 曹永革, 等, 1999, 坡缕石的红外光谱研究. 岩石学报, Vol. 15(3): 469-474
    [42] 田煦, 郑自立, 1996, 中国坡缕石矿石特征及物化性能研究. 矿产综合利用, 6: 1-4
    [43] 万朴, 李平, 2000, 海泡石坡缕石的有机吸附研究. 岩石矿物学杂志, Vol. 19(3): 258-26
    [44] 王寒竹, 李介福, 1993, 坡缕石晶体化学和成因研究现状与进展. 地质科技情报. Vol. 12(4): 51-55
    [45] 王奎仁, 周有勤, 项亮, 1993, 凹凸棒石的材料矿物学实验研究. 岩石矿物学杂志, Vol. 12(4): 349-355
    [46] 王名瑟等, 1982, 江苏盱眙龙王山凹凸棒石粘土的特征研究. 江苏地质, No.1
    [47] 王汝成, 翟建平, 陈培荣, 等, 1999, 地球科学现代测试技术. 南京大学出版社
    [48] 王锡岳, 房尚明, 1991, 江苏溧阳坡缕石的发现及初步研究. 江苏地质, Vol. 15(2): 114-116
    [49] 王彦华, 雷家珩, 袁启华, 1999, 烷基铵盐改性坡缕石的结构与表面性质. 非金属矿, Vol. 22(2): 8-10
    [50] 王彦华, 王寒竹, 1998, 安徽嘉山坡缕石结构特征的成因意义. 矿物岩石, Vol. 18(4):7-11
    [51] 王兆民, 王魁雄, 吴宗凡, 1995, 红外光谱学理论与实践. 兵器工业出版社
    [52] 王镇浦, 王镇棣, 1989, 仪器分析(译). 北京大学出版社
    [53] 闻辂, 1989, 矿物红外光谱学. 重庆大学出版社 (第一版), 89-104
    [54] 武兵, 张根娣, 徐彩珍, 1992, 南海某海域海底淤泥中非粘土矿物的 X 射线定量分析. 南京大学学报, Vol. 4 (4): 79-83
    [55] 奚可棠等, 1985, 苏皖沉积性坡缕石的扫描电镜及能谱分析研究, 矿物学报, No.2, 175-178
    [56] 奚治文, 曾永昌, 向立人, 周在德, 1992, 仪器分析. 四川大学出版社
    [57] 谢志强, 黄关明, 1991, 大方县坡缕石矿床地质特征及成因初步探讨. 贵州地质. Vol. 8(1): 32-43
    [58] 许红忠, 石汉生, 方邺森, 等, 1994, 江苏盱眙火山-沉积型凹凸棒粘土的矿物学特征. 南京大学学报(地球科学), Vol. 6 (1): 29-36
    [59] 许冀泉, 方邺森, 李立文, 1980, 江苏六合小盘山凹凸棒石粘土的发现及其意义. 科学通报, No.11, 513-515
    [60] 杨臣信, 1982, 安徽省嘉山县凹凸棒石粘土矿床地质特征. 华东地质科技情报, No.1,17-18
    [61] 杨雅秀, 1992, 青海西宁含坡缕石“白土”的矿物学研究. 建材地质, (2). 29-33
    [62] 杨雅秀, 张小毅, 1991, 甘肃省天水地区上第三系含坡缕石白土的研究. 岩石学报, Vol. (1): 70-78
    [63] 杨于兴, 漆濬, 1989, X 射线衍射分析. 上海交通大小出版社
    [64] 易发成, Long, D. G.. 1997, 坡缕石的热学性质研究. 非金属矿, 5: 29-31,4
    [65] 易发成, 蔡克勤, 1995, 坡缕石的酸活化及其吸附性能研究. 矿产综合利用, 6:41-44
    [66] 易发成, 李虎杰, 1995, 苏皖交界地区坡缕石的矿物学特征. 岩石矿物学杂志, Vol. 14 (3): 262-270
    [67] 易发成, 刘谏, 1996, 坡缕石的稳定性探讨. 矿产综合利用, 6: 13-15
    [68] 易发成, 刘谏, 1996, 坡缕石粘土的酸活化研究. 矿产综合利用. 6: 19-26
    [69] 尹琳, 2000, Zn-粘土催化剂对染料废水的 O3 氧化降解性能的影响. 高校地质学报, Vol. 6(2): 260-264
    [70] 尹琳, 陆现彩, 艾飞, 2003, Ti-凹凸棒石催化剂对染料废水的臭氧氧化降解的影响. 硅酸盐学报, Vol. 31(1): 66-69
    [71] 翟淑芬 聂伟, 1990, 坡缕石的成因. 电子显微学报, Vol. 9(3): 239-239
    [72] 张茂林, 徐伟昌, 2000, 气体吸附法测定坡缕石的比表面积. 江西地质, Vol. 14(1): 62-65
    [73] 张作训等, 1982, 江苏六合盱眙地区凹凸棒粘土矿的成因与矿床评价方法. 江苏地质, No.1
    [74] 郑自立, 1990, 凹凸棒粘土的开发研究. 武汉工业大学学报
    [75] 郑自立, 1991, 苏皖凹凸棒石粘土类型及其成因. 建材地质(增刊)
    [76] 郑自立, 鞠党辰, 1996, 坡缕石的脱水作用及其与八面体阳离子间相互关系研究.矿产综合利用, 6: 16-19
    [77] 郑自立, 鞠党辰,1996, 坡缕石中微孔特征及其吸附机理讨论. 矿产综合利用. 6: 9-12
    [78] 郑自立, 罗淑湘, 1996, 坡缕石的耐酸碱性研究. 矿产综合利用, 6: 33-37
    [79] 郑自立, 罗淑湘, 1996, 坡缕石的热膨胀性研究. 矿产综合利用, 6: 27-29
    [80] 郑自立, 宋绵新, 易发成, 等, 1997, 中国坡缕石. 地质出版社
    [81] 郑自立, 唐家中, 1996, 坡缕石耐压性及相变特征研究. 矿产综合利用, 6: 29-31
    [82] 郑自立, 田煦, 1990, 苏皖凹凸棒石矿物红外光谱特征研究. 岩石学报, Vol. 6(2): 80-85
    [83] 郑自立, 田煦, 1996, 中国坡缕石粉晶 X 射线衍射特征研究. 矿产综合利用, 6: 4-8
    [84] 郑自立, 田煦, 蔡克勤, 等, 1997, 中国坡缕石晶体化学研究. 矿物学报, Vol. 17(2): 107-114
    [85] 郑自立, 吴延之, 1998, 苏皖黄泥山坡缕石粘土矿含矿层微量元素地球化学. 中南工业大学学报, Vol. 29(2): 107-110
    [86] 郑自立, 1997, 坡缕石中的 OH 基和水. 国外建材译丛, Vol. 9(2): 45-51
    [87] 周家贵, 于志臣, 1998, 山东青岛发现坡缕石. 山东地质, Vol. 14(4): 56-57
    [88] Abdul-Latif, N., and Weaver C. G., 1969, Kinetics of acid dissolution of palygorskite (attapulgite) and sepiolite. Clays and Clay Minerals, Vol.17, 169-178
    [89] Adams, J. M., Evans, S., 1979, Exchange and selective surface uptake of cations by layer silicates: using X-ray photoelectron spectroscopy XPS. Clays and Clay Minerals. Vol. 27: 248-252
    [90] Ahlrichs J. L., Serna C., and Serratosa, 1975, Structure hydroxyls in sepiolites. Clays Clay Mineral, Vol.23, 119-124.
    [91] Akyüz, S., Akyüz, T., Davies, J. E. D., 1995, FT-IR and FT-Raman spectral investigations ofAnatolian attapulgite and its interaction with 4, 4′-Bipyridyl. Journal of Molecular Structure. Vol. 349: 61-64
    [92] Akyüz, S., Akyüz, T., Yakar, A. E., 2001, FT-IR spectroscopic investigation of adsorption of 3-aminopyridine on sepiolite and montmorillonite from Anatolia. Journal of Molecular Structure. Vol. 565-566: 487-491
    [93] álvarez-Ayuso E., García-Sánchez A., 2003, Palygorskite as a feasible amendment to stabilize heavy metal polluted soils. Environmental Pollution, Vol. 125: 337-344
    [94] Aramendia, M. A., Borau, V., Jimenez, C., et al., 1997, Characterization of Spanish sepiolites by high-resolution solid-state NMR. Solid State NUCL MAG, Vol. 8 (4): 251-256
    [95] Artioli, G., and Galli, E, 1994, The crystal structures of orthorhombic and monoclinic palygorskite. Materials Science Forum, Vols. 166-169: 647-652
    [96] Auboiroux, M., Melou, F., and Touray, J. C., 1998, Hard and soft acid-base model applied to bivalent cation selectivity on a 2:1 clay mineral. Clays and Clay Minerals, Vol. 46(5): 546 -555
    [97] Augsburger, M. S., Strasser, E., Perino, E., et al., 1998, FTIR and M?ssbauer investigation of a substituted palygorskite: Silicate with a channel structure. J Phys. Chem. Solids, Vol. 59 (2): 175-180
    [98] Bahranowski K, Dula R, Lambanowska M, et al., 1996, ESR study of Cu centers supported on Al-, Ti-, and Zr-pillared montmorillonite clays. Appl. Spectrosc., Vol. 50: 1439-1445
    [99] Bailey SW. (editor), 1991, Reviews in Mineralogy--Hydrous Phyllosilicates (exclusive of micas). Vol. 19: 632-674
    [100] Balan, E., Saitta, A. M., Mauri, F., et al., 2002, First-principles calculation of the infrared spectrum of lizardite. American Mineralogist, Vol. 87: 1286-1290
    [101] Balci S., 1999, Effect of heating and acid pre-treatment on pore size distribution of sepiolite. Clay Minerals, Vol. 34, 647-655
    [102] Barrer, R. M., Mackenzie, N., and MacLeod, D. M., 1954, Sorption by attapulgite. The Journal of Physical Chemistry, Vol. 58: 560-572
    [103] Barron, P. F., Frost, R. L., 1985, Solid state 29Si NMR examination of the 2:1 ribbon magnesium silicates, sepiolite and palygorskite. The Canadian Mineralogist, Vol.10: 758-766
    [104] Benesi H. A, and Jones A. C., 1959, An infrared study of the water-silica gel system. J. Phys. Chem, 63: 179-182
    [105] Besson G., and Drits V. A., 1997, Refined relationships between chemical composition of dioctahedral fine-grained micaceous minerals and their infrared spectra within the OH streatching region. Clays and Clay Minerals, Vol. 45(2): 158-183
    [106] Birsoy, R., 2002, Formation of sepiolite-palygroskite and related minerals from solution. Clays and Clay Minerals, Vol. 50(6): 736-745
    [107] Bishop, J., Madejová, J., Komadel, P., et al., 2002, The influence of structural Fe, Al, Mg on the infrared OH bands in spectra of dioctahedral smectites. Clay Minerals, Vol. 37: 607-616
    [108] Blanco C., and Gonzalez, et al., 1989, Differences between one aluminic palygorskite and another magnesic by infrared spectroscopy. Spectroscopy Letters, Vol. 22(6): 659-673
    [109] Blanco C., Herrero J., Mendioroz S., et al., 1988, Infrared studies of surface acidity and reversible folding in palygorskite. Clays and Clay Minerals, Vol. 36(4), 364-368
    [110] Bolle MP, Adatte T, 2001, Palaeocene early Eocene climatic evolution in the Tethyan realm: clay mineral evidence. Clay Minerals, Vol. 36 (2): 249-261
    [111] Brandley, W. F., 1940, The structure scheme of attapulygite. American Mineralogist, Vol. 25: 405-410
    [112] Brigatti M. F., Franchini G. C., Medici, L., et al. 1998, Behaviour of sepiolite in Co2+, Cu2+ and Cd2+ removal from a simulated pollutant solution. ANN CHIM-ROME Vol. 88 (7-8): 461-470
    [113] Brigatti, M. F., Lugli, C., and Poppi, L., 2000, Kinetics of heavy-metal removal and recovery in sepiolite. Applied Clay Science, Vol. 16: 45-57
    [114] Burns, R. G., and Greaves, R. G., 1971, Correlation of infrared and M?ssbauer site population measurements of actinolites. American Mineralogist, Vol. 56: 2010-2033
    [115] Cámara, F., Garvie, L. A. J., Devouard, B., et al., 2002, The structure of Mn-rich tupers -suatsiaite: a palygorskite-related mineral. American Mineralogist, Vol. 87: 1458-1463
    [116] Cannings, F. R., 1968, An infrared study of hydroxyl groups on sepiolite. The Journal of Physical Chemistry, Vol. 72(3): 1072-1074
    [117] Cao E., Bryant, R., Williams, D. J. A., 1998, An electron-microscopic study of Na-attapulgite particles. COLLOID POLYM SCI, Vol. 276 (9): 842-846
    [118] Carlos A. Meriles, Dimitris Sakellariou, Henrike Heise, et al., 2001, Approach to High -Resolution ex Situ NMR Spectroscopy. Science, 293: 82-85
    [119] Carlos Rodriguez-Navarro, Eduardo Sebastian, Eric Doehne, et al., 1998, The role of Sepiolite-Palygorskite in the decay of ancient Egyptian limestone sculptures. Clays and Clay Minerals, Vol. 46(4): 414-422
    [120] Carlson, T. A., 1978, Photoelectron and auger spectroscopy (2nd Edition). Plenum Press.
    [121] Carlson, T. A., 1978, X-ray photoelctron spectroscopy. Dowden, Hutchinson & Ross, Inc., 224-227
    [122] Cases, J. M., Garllet, Y., Francois, M., et al., 1991, Evolution of the porous structure and surface area of palygorskite under vacuum thermal treatment. Clays and Clay Minerals, 191-201
    [123] Caturla, F., Molina-Sabio, M., and Rodriguez-Reinoso, F., 1999, Adsorption-desorption of water vapor by natural and heat-treated sepiolite in ambient air. Applied Clay Science, Vol. 15: 367-380
    [124] Cetisli, A., and Gedikbey, T., 1990, Dissolution kinetics of sepiolite from Eskisehir (Turkish) in hydrochloric and nitric acids. Clay Minerals, Vol. 25: 207-215
    [125] Chahi A., Duplay, J., and Lucas, J., 1993, Analyses of palygorskites and associated clays from the Jbel Rhassoul (Morocco), chemical characteristics and origin of formation. Clays and Clay Minerals, Vol. 41(4): 401-411
    [126] Chahi, A., Clauer, N., Toulkeridis, T., et al., 1999, Rare-earth elements as tracers of the genetic relationship between smectite and palygorskite in marine phosphorites. Clay Minerals. Vol. 34(3): 419-427
    [127] Chahi, A., Duringer, P., Ais, M., et al., 1999, Diagenetic transformation of dolomite into stevensite in lacustrine sediments from Jbel Rhassoul, Morocco. Journal of Sedimentary Research Section A: Sedimentary Petrology and Processes, Vol. 69(5): 1123-1135
    [128] Chahi, A., Petit, S., and Decarreau, A., 2002, Infrared evidence of dioctahedral -trioctahedral site occupancy in palygorskite. Clays and Clay Minerals, Vol.50, 303-313
    [129] Chiari, G., Giustetto, R., and Ricchiardi, 2003, Crystal structure refinements of palygorskite and Maya Blue from molecular modeling and powder synchrotron diffraction. European Journal of Mineralogy, Vol. 15: 21-33
    [130] Chisholm, J. E., 1990, An X-ray powder diffraction study of palygorskite. The Canadian Mineralogist, Vol. 28: 329-339
    [131] Chisholm, J. E., 1992, Powder diffraction patterns and structural models for palygorskite. The Canadian Mineralogist, Vol. 30: 61-73
    [132] Christ, C. L., Hathaway, J. C., Hosteler, P. B., et al., 1969, Palygorskite: New X-ray data. American Mineralogist, Vol. 54: 191-205
    [133] Clark, B. M., King, T. V. V., Klejwa, M., et al., 1990, High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research, Vol. 95 (B8): 12653 -12680
    [134] Clementz D. M., Pinnavaia T. J., and Mortland M. M., 1973, Stereochemistry of hydrated copper (II) ions on the interlamellar surface of layer silicates: an electron spin resonance study. The Journal of Physical Chemistry, Vol. 77, No.2 : 196-200
    [135] Colson, J., Cojan, I., Thiry, M., 1998, A hydrogeological model for palygorskite formation in the Danian continental facies of the Provence Basin (France). Clay Minerals, Vol. 33(2): 333- 347
    [136] Corma, A., Mifsud, A. and Sanz, E., 1987, Influence of the chemical composition and textural characteristics of palygorskite on the acid leaching of octahedral cations. Clay Minerals, Vol.22: 225-232
    [137] Corma, A., Mifsud, A., and Sanz, E., 1990, Kinetics of the acid leaching of palygorskite: influence of the octahedral sheet composition. Clay Minerals, Vol.25: 197-205
    [138] Davison, N., McWhinnie, W. R., and Hooper, A., 1991, X-ray photoelectron spectroscopy study of Cobalt (II) and Nickel (II) sorbed on hectorite and montmorillonite. Clays and Clay Minerals, Vol. 39 (1): 22-27
    [139] Daza L., Mendioroz, S., and Pajares, J. A., 1991, Mercury adsorption by sulfurized fibrous silicates. Clays and Clay Minerals, Vol. 39(1): 14-21
    [140] Dékány, I., Turi, L., Fonseca, A., et al., 1999, The structure of acid treated sepiolites: small-angle X-ray scattering and multi MAS-NMR investigations. Applied Clay Science, Vol. 14(1-3): 141-160
    [141] Dove P M, Rimstidt, J. D., 1994, Silica-water interactions. In: Heaney P J, et al., eds. Silica: Physical Behavior, Geochemistry, and Materials Applications. Washington D C: Mineralogical Society of America
    [142] Dove P. M., 1999, The dissolution kinetics of quartz in aqueous mixed cation solutions. Geochimica et Cosmochimica Acta, Vol. 63(22): 3715-3727
    [143] Dove P. M., Crerar, D. A., 1990, Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochimica et Cosmochimica Acta, Vol. 54(4): 955-969
    [144] Drits, V. A., and Sokolova, G. V., 1971, Structure of palygorskite. Soviet Phys. Crystallogr., Vol. 16: 183-185
    [145] Espinose de la Caillerie J. -B.d', Fripiat, J. J., 1994, A reassessment of the 29Si MAS-NMR spectra of sepiolite and aluminated sepiolite. Clay minerals, Vol. 29(3): 313-318
    [146] Farmer, V. C., 1974, The infrared spectra of minerals. Monograph 4, London: Mineralogical Society
    [147] Farquhar, M. L., Charnock, J. M., England, K. E. R.,et al., 1996, Adsorption of Cu( II ) on the (001) plane of mica:a REFLEXAFS and XPS study. Journal of Colloid and Interface Science, Vol. 177: 561-567
    [148] Fernández, M. E., Ascencio, J. A., Mendoza-Anaya, D., et al., 1999, Experimental and theoretical studies of palygorskite clays. Journal of Materials Science, Vol. 34(21): 5243-5255
    [149] Ferraris, G., Khomyakov, A. P., Belluso, E., et al., 1998, A new alkaline silicate from Kola Peninsula (Russia) based on a palygorskite-sepiolite polysomatic series. European Journal of Mineralogy, Vol. 10(5): 865-874
    [150] Frost, R. L., Cash, G.A., Kloprogge, J.T., 1998, 'Rocky Mountain leather', sepiolite and attapulgite: an infrared emission spectroscopic study. Vibrational Spectroscopy, Vol. 16 (2): 173-184
    [151] Frost, R. L., Locos, O.B., Ruan, H., et al. 2001, Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites. Vibrational Spectroscopy, Vol. 27 (1): 1-13
    [152] Gadsden, J A., 1975, Infrared spectra of minerals and related inorganic compounds. Butterworth, 47
    [153] Galan E., Carretero I., 1999, A new approach to compositional limits for sepiolite and palygorskite. Clays and Clay Minerals, Vol. 47 (4): 399-409
    [154] Galan, E., 1996, Properties and applications of palygorskite-sepiolite clays. Clay Minerals, Vol. 31: 443-453
    [155] Galan, E., Mesa, J. M., Sanchez, C., 1994, Properties and applications of palygorskite clays from Ciudad Real, central. Applied Clay Science, Vol. 9 (4): 293-302
    [156] Ganor, E., Deutsch, Y., and Foner, H. A., 2000, Mineralogical composition and sources of airborne settling particles on Lake Kinneret (The Sea of Galilee), Israel. Water Air and Soil Pollution, Vol. 118(3-4): 245-262
    [157] García-Sánchez, A., Alastuey, A., and Querol, X., 1999, Heavy metal adsorption by different minerals: application to the remediation of polluted soils. The Science of the Total Environment, Vol. 242(1-3): 179-188
    [158] Gard, J. A., and Follett, E. A. C., 1968, A structure scheme for palygorskite. Clay Minerals, Vol. 7: 367-370
    [159] Gier, S., and Johns, W. D., 2000, Heavy metal-adsorption on micas and clay minerals studied by X-ray photoelectron spectroscopy. Applied Clay Science, Vol. 16(5-6): 289-299
    [160] Gonzalez, F., Pesquera, C., Benito, I., et al., 1989, Mechanism of acid activation of megnesic palygorskite. Clays and Clay Minerals, Vol.37: 258-268
    [161] Gonzalez, F., Pesquera, C., Blanco, C., et al., 1989, Stucture and textural evolution of Al- and Mg-rich palygorskites, I. Under acid treatment. Applied Clay Science, Vol. 4: 373-388
    [162] Gonzalez, L., Ibarra, L. M., Rodriguez A, et al., 1984, Fibrous silica gel obtained from sepiolite by HCl attack. Clay Minerals, Vol. 19(1): 93-98
    [163] Güven, N., 1992, The coordinarion of aluminum ions in the palygorskite structure. Clays and Clay Minerals, Vol. 40(4): 457-461
    [164] Hanisch, F., and Crowley, J. N., 2001, The heterogeneous reactivity of gaseous nitric acid on authentic mineral dust samples, and on individual mineral and clay mineral components. Phys. Chem. Chem. Phys., Vol. 3 (12): 2474-2482
    [165] He, H. P., Guo, J.G., Xie, X. D., et al., 2001, Location and migration of cations in Cu2+-adsorbed montmorillonite. Environment International, Vol. 26: 347-352
    [166] He, H. P., Guo J.G., Xie X.D., et al., 2002, A microstructural study of acid-activated montmorillonite from Choushan, China. Clay Minerals, Vol. 37(2): 337-344
    [167] Heidy, M. E., Van Kaam-Peters, Jürgen K?ster, et al., 1998, The effect of clay minerals on diasterane/sterane ratios. Gechimica et Cosmochimica Acta, Vol. 62(17): 2923-2929
    [168] Heller-Kallai L, and Mosser C, 1995, Migration of Cu ions in Cu montmorillonite heated with and without alkali halides. Clays and Clay Minerals, Vol. 43: 738-743
    [169] Heller-Kallai L, and Rozenson I., 1981, M?ssbauer studies of palygorskite and some aspects of palygorskite mineralogy. Clays and Clay Minerals, Vol. 29(3): 226-232
    [170] Hénin, S., and Caillère, S., 1975, Fibrous minerals. In: J. E. Gieseking, Ed., Soil components, Springer Verlag, Berlin, Vol.2: 335-409
    [171] Hermos?n, M. C., and Cornejo, J., 1986, Methylation of sepiolite and palygorskite with diazomethane. Clays and Clay Minerals, Vol. 34(5): 591-596
    [172] Hisato H., Otsuka R., and Imai N., 1969, Infrared study of sepiolite and palygorskite on heating. American Mineralogist, Vol.53: 1613-1624
    [173] Hochella, M. F. Jr. (1988) Auger electron and X-ray photoelectron spectroscopies. In Spectroscopic Methods in Mineralogy and Geology (ed. F. C. Hawthorne), pp. 573-630, Mineralogical Society of America.
    [174] Huertas, F. J., Chou, L., and Wollast, R., 1999, Mechanism of kaolinite dissolution at room temperature and pressure Part II: Kinetic study. Geochimia et Cosmochimica Acta Vol. 63: 3261-3276
    [175] Hunt, G. R., 1977, Spectral signatures of particulate minerals in visible and near infrared. Geophysics, Vol. 42 (3): 501-513
    [176] Hunt, G. R., 1979, Near-infrared (1.3-2.4μm) spectra of alteration minerals: potential for use in remote sensing. Geophysics, Vol. 44, No. 12: 1974-1986
    [177] Hunt, G. R., and Salisbury, J. W., 1970, Visible and Near-Infrared spectra of minerals and rocks: I silicate minerals. Mordern Geology, Vol. 1: 283-300
    [178] Ilton E. S. and Veblen D. R., 1994, Chromium sorption by phlogopite and biotite in acidic solutions at 25°C: Insights from X-ray photoelectron spectroscopy and electron microscopy. Geochimica et Cosmochimica Acta, 58: 2777-2788
    [179] Ilton, E. S., Moses, C. O., and Veblen, D. R., 2000, Using X-ray photoelectron spectroscopy to discriminate among different sorption sites of Micas: With implications for heterogeneous reduction of chromate at the mica-water interface. Geochimica et Cosmochimica Acta, Vol. 64(8): 1437-1450
    [180] Inagaki, S., Fukushima, Y., Doi, H., et al., 1990, Pore size distribution and adsorption selectivity of sepiolite. Clay Minerals, Vol. 25: 99-105
    [181] Ingles, M., Salvany, J. M., Munoz, A., et al., 1998, Relationship of mineralogy to depositional environments in the non-marine Tertiary mudstones of the southwestern Ebro Basin (Spain). Sedimentary Geology, Vol. 116(3-4): 159-176
    [182] Inoue, K., Saito, M., Naruse, T., 1998, Physicochemical, mineralogical, and geochemical characteristics of lacustrine sediments of the Konya Basin, Turkey, and their significance in relation to climatic change. Geomorphology, Vol. 23(2-4): 229-243
    [183] Jamoussi, F., Aboud, A. B., and López-Galindo, 2003, Palygorskite genesis through silicatetransformation in Tunisian continental Eocene deposits. Clay Minerals, Vol. 38: 187-199
    [184] Jones, B. F., and Galan E., 1988, Sepiolite and palygorskite. In: Bailey S W, ed. Hydrous Phyllosilicates (exclusive of micas). Washington D C: Mineralogical Society of America, Vol. 19, 631-674
    [185] Karakas, Z., and Kadir, S., 1998, Mineralogical and genetic relationships between carbonate and sepiolite-palygorskite formations in the neogene lacustrine Konya basin, Turkey. Carbonates and Evaporites, Vol. 13(2): 198-206
    [186] Kaviratna, H., and Pinnavaia, T. J., 1994, Acid hydrolysis of octahedral Mg2+ sites in 2:1 layered silicates: an assessment of edge attack and gallery access mechanisms. Clays and Clay Minerals. Vol. 42(6): 717-723
    [187] Khademi, H., and Mermut, A. R., 1998, Source of palygorskite in gypsiferous aridisols and associated sediments from central Iran. Clay Minerals, Vol. 33(4): 561-578.
    [188] Khademi, H., and Mermut, A. R., 1999, Submicroscopy and stable isotope geochemistry of carbonates and associated palygorskite in Iranian Aridisols. European Journal of Soil Science, Vol. 50(2): 207-216
    [189] Khorami, J., and Lemieux, A., 1989, Composition of attapulgites from different sources using TG/DTG and FTIR. Thermochimica Acta, Vol. 138: 97-105
    [190] King, T. V. V., and Clark, R. N., 1989, Spectral characteristic of chlorites and Mg-serpentines using high-resolution reflectance spectroscopy. Journal of Geophysical research, Vol. 94, No. B10: 13997-14008
    [191] Kirkman, J. H., Wallace, R. C., 1994, Palygorskite in the regolith from the Mokau district, North Island, New Zealand. Clay Minerals, Vol. 29(2): 265-272
    [192] Kislenko V. N., Verlinskaya, R.M., 1999, Adsorption of lignosulfonate on montmorillonite and palygorskite modified with polyethylenimine, Colloid J, Vol. 61 (5): 627-629
    [193] Kislenko, V. N., and Verlinskaya, R. M., 2001, Adsorption of aminoalkylated poly -acrylamide on montmorillonite and palygorskite. Colloid J, Vol. 63 (1): 74-77
    [194] Komarneni, S., 1989, Mechanism of palygorskite and sepiolite alteration as deduced from solid -state 27Al and 29Si nuclear magnetic resonance spectroscopy. Clays and Clay Minerals, Vol. 37(5): 469-473
    [195] Komarneni, S., Fyfe, C. A., and Kennedy, G. J., 1986, Detection of nonequivalent Si sites in sepiolite and palygorskite by solid-state 29Si magic angle spinning-nuclear magnetic resonance. Clays and Clay Minerals, Vol. 34 (1): 99-102
    [196] Koppelman, M. H., and Dillard, J. G., 1977, A study of the adsorption of Ni II and Cu II by clay minerals. Clays and Clay Minerals, Vol. 25: 457-462
    [197] Koppelman, M. H., and Dillard, J. G., 1979, The application of X-ray photoelcetron spectroscopy (XPS or ESCA) to the study of mineral surface chemistry. In: Proc. Int. Cay Conf., Oxford, 1978, M. M. Mortland and V. C. Farmer, eds., Elsevier, Amsterdam, 153-166
    [198] Koppelman, M. H., Emerson, A. B., and Dillard, J. G., 1980, Adsorbed Cr III on chlorite, illite and kaolinite: an X-ray photoelectron spectroscopic study. Clays and Clay Minerals, 28, 119–124
    [199] Laney, S. E., 1995, Palygorskite and trona-thermonatrite-desert minerals from the Passaic Formation of New Jersey. Northeastern Geology and Environmental Sciences, Vol. 17(1), 68-70
    [200] Lasaga A C. 1990, Atomic treatment of mineral-water surface reactions. In: Hochella Jr MF, et al., eds. Mineral-Water Interface Geochemistry. Washington D C: Mineralogical Society of America
    [201] Leboda, R., Chodorowski, S., Skubiszewska-Zieba, J., et al., 2001, Effect of the carbonaceous matter deposition on the textural and surface properties of complex carbon-mineral adsorbents prepared on the basis of palygorskite. Colloids and Surfaces (A: Physicochemical and Engineering Aspects), Vol. 178 (1-3): 113-128
    [202] Li Zhaohui, Willms C. A., and Kniola, K., 2003, Removal of anionic contaminants using surfactant modified palygorskite and sepiolite. Clays and Clay Minerals, Vol. 51 (4): 445-451
    [203] Long, D.G.F., McDonald, A. M., Yi-Facheng, et al., 1997, Palygorskite in palaeosols from the Miocene Xiacaowan Formation of Jiangsu and Anhui Provinces, PR China. Sedimentary Geology, Vol. 112(3-4): 281-295
    [204] Lopez Galindo, A., Ben Aboud, A., Hach Ali, P. F., et al., 1996, Mineralogical and geochemical characterization of palygorskite from Gabasa (NE Spain). Evidence of a detrital precursor. Clay Minerals, Vol. 31(1): 33-44
    [205] Lopez Galindo, A., Torres Ruiz J, and Gonzalez Lopez J M., 1996, Mineral quantification in sepiolite-palygorskite deposits using X-ray diffraction and chemical data. Clay Minerals, Vol. 31 (2): 217-224
    [206] Lopez, A. F., and Gonzalez Lopez, J. M., 1995, Fibrous clays in the Almazan Basin (Iberian Range, Spain): genetic pattern in a calcareous lacustrine environment. Clay Minerals, Vol. 30(4): 395-406
    [207] MacKenzie, K. J. D., and Meinhold, R. H., 1994, 25Mg nuclear magnetic resonance spectroscopy of minerals and related inorganics: A survey study. American Mineralogist, Vol. 79: 250-264
    [208] Madejová, J., Arvaiová, B., Komadel, P., 1999, FTIR spectroscopic characterization of thermally treated Cu2+, Cd2+, and Li+ montmorillonites. Spectrochimica Acta Part A, Vol. 55: 2467-2476
    [209] Madejová, J., and Komadel, P., 2001, Baseline studies of the clay minerals society source clays: infrared methods. Clays and Clay Minerals, Vol. 49(5): 410-432
    [210] Madejová, J., Komadel, P., and ???el, B., 1994, Infrared study of octahedral site populations in smectites. Clay Minerals, Vol. 29: 319-326
    [211] Mayayo, M. J., Torres Ruiz J., Gonzalez-Lopez-J.M., et al., 1998, Mineralogical and chemical characterization of the sepiolite/Mg-smectite deposit at Mara (Calatayud Basin, Spain). European Journal of Mineralogy, Vol. 10(2): 367-383
    [212] McDonald, R. S., 1958, Surface functionality of amorphous silica by infrared spectroscopy. Jour. Phys. Chem., Vol. 62: 1168-1178
    [213] McKeown, D. A., Bell, M. I., and Etz, E. S., 1999, Raman spectra and vibrational analysis of trioctahedral mica: phlogopite. American Mineralogist, Vol. 84: 970-976
    [214] McKeown, D. A., Bell, M. I., and Etz, E. S., 1999, Vibrational analysis of dioctahedral mica: 2M1 muscovite. American Mineralogist, Vol. 84: 1041-1048
    [215] McKeown, D. A., Post, J. E., and Etz, E. S., 2002, Vibrational analysis of palygorskite and sepiolite. Clays and Clay Minerals, Vol. 50(5): 667-680
    [216] Mellini, M., Fuchs, Y., Viti, C., et al., 2002, Insights into the antigorite structure from M?ssbauer and FTIR spectroscopies. European Journal of Mineralogy, Vol. 14: 97-104
    [217] Melo, D. M. A., Ruiz J. A. C., Melo M. A. F., et al., 2000, Preparation and characterization of terbium palygorskite clay as acid catalyst. Microporous and Mesoporous Materials, Vol. 38 (2-3): 345-349
    [218] Mendelovici E., 1973, Infrared study of attapulgite and HCl treated attapulgite. Clays and Clay Minerals, 21: 115-119
    [219] Mendelovici E., and Portillo, D. C., 1976, Organic derivatives of attapulgite- I. Infrared spectroscopy and X-ray diffraction studies. Clays and Clay Minerals, Vol. 24: 177-182
    [220] Mohamed Mohamed Mokhtar, El Shafei, Gamal M.S., 1995, Treatment and halogenation on low molybdenum silica: diffuse reflectance IR Fourier transform study (DRIFTS). Spectrochimica Acta Part A, Vol. 51(9): 1525-1531
    [221] Molinaroli, E., Ibba, A., 1995, Characterization of palygorskite in dust of desertic provenance in aerosols and rain, Sardinia, western Mediterranean. Giornale-di-Geologia, Vol. 57(1-2), 67-76
    [222] Molina-Sabio M, Caturla F, Rodriguez-Reinoso F, et al., 2001, Porous structure of a sepiolite as deduced from the adsorption of N2, CO2, NH3 and H2O, Microporous and Mesoporous Materials, Vol. 47 (2-3): 389-396
    [223] Moore, D. A., and Reynolds, R. C., Jr., 1997, X-ray diffraction and the identification and anrlysis of clay minerals ( 2nd edition). Oxford university press.
    [224] Mosser C, Michot LJ, Villieras F, et al., 1997, Migration of cations in copper (II) exchanged Montmorillonite and saponite upon heating. Clays and Clay Minerals, Vol. 45: 789-802
    [225] Mosser, C., Mestdagh, M., Decarreau, A., et al., 1990, Spectroscopic (ESR, EXAFS) evidence of Cu for (Al-Mg) substitution in octahedral sheets of smectites. Clay Mineral, Vol. 25: 271-282
    [226] Mosser, C., Mosser, A., Romeo, M., et al., 1992, Natural and synthetic copper phyllosilicates studied by XPS. Clays and Clay Minerals, Vol. 40: 593-599
    [227] Moulder J. F., Stickle W. F., Bobol P. E., et al., (1992) Handbook of X-ray photoelectron. Perkin-Elmer Corporation, EdenPraire M.
    [228] Murray, H. H., 1999, Applied clay mineralogy today and tomorrow. Clay Minerals, Vol. 34(1): 39-49
    [229] Murray, H. H., 2000, Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Applied Clay Science, Vol. 17 (5-6): 207-221
    [230] Myriam, M., Saurez, M., and Martin-Pozas J. M., 1998, Structure and textural modifications of palygorskite and sepiolite under acid treatment. Clays and Clay Minerals, Vol. 46(3): 225-231
    [231] Neaman, A., and Singer, A. 1999, Flocculation of homoionic sodium palygorskite, palygorskite-montmorillonite mixtures and palygorskite containing soil clays. Soil Science. 164(12): 914-921
    [232] Neaman, A., and Singer, A., 2000, Kinetics of hydrolysis of some palygorskite containing soil clays in dilute salt solutions. Clays and Clay Minerals, Vol. 48 (6): 708-712
    [233] Neaman, A., and Singer, A., 2000, Kinetics of palygorskite hydrolysis in dilute salt solutions. Clay Minerals, Vol. 35 (2): 433-441
    [234] Neaman, A., and Singer, A., 2000, Rheological properties of aqueous suspensions of palygorskite. Soil Sci Soc AM J, Vol. 64 (1): 427-436
    [235] Neaman, A., and Singer, A., 2000, Rheology of mixed palygorskite-montmorillonite suspensions. Clays and Clay Minerals, Vol. 48 (6): 713-715
    [236] Neaman, A., Singer, A., and Stahr-K. 1999, Clay mineralogy as affecting disaggregation in some palygorskite containing soils of the Jordan and Bet-She'an Valleys. Australian Journal of Soil Research, Vol. 37(5): 913-928
    [237] Ono ogasawara, Mariko, Kohyama, et al., 1999, Evaluation of surface roughness of fibrous minerals by comparison of BET surface area and calculated one. The Annals of Occupational Hygiene, Vol. 43(8): 505-511
    [238] Otsuka, R., Hisato, H., and Shimoda, S., 1968, Infrared absorption spectra of sepiolite and palygorskite. Mem. Sch. Sci. Eng., Waseda Univ. Vol. 32: 13-24
    [239] Papelis C. and Hayes K. F., (1996) Distinguishing between interlayer and external sorption sites of clay minerals using X-ray absorption spectroscopy. Colloids and surfaces. A, Physicochemical and engineering aspects, Vol. 107: 89-96
    [240] Paquet, H., Duplay, J., Valleron-Blanc, M. M., et al., 1987, Octahedral composition of individual particles in smectite-palygorskite and smectite-sepiotite assemblages. In Proceedings of the International Clay Conference, Denver, 1985. Schultz H, van Olphen H, and Mumpton FA, eds., The Clay Minerals Society, Bloomington, Indiana, 73-77
    [241] Pletsch, T., 1998, Origin of lower Eocene palygorskite clays on the Cote D'Ivoire-Ghana Transform Margin, eastern equatorial atlantic. Proceedings of the Ocean Drilling Program: Scientific Results. 159: 141-156
    [242] Pletsch, T., Daoudi, L., Chamley, H., et al., 1996, Palaeo- geographic controls on palygorskite occurrence in Mid-Cretaceous sediments of Morocco and adjacent basins. Clay Minerals, Vol. 31(3): 403-416
    [243] Preisinger, A., 1963, Sepiolite and related compounds: Its stability and application. Clays and Clay Minerals. Vol. 10: 365-371
    [244] Prost, R., 1975, Infrared study of the interactions between the different kinds of water molecules present in sepiolite. Spectrchimica Acta, Vol. 31A: 1497-1499
    [245] Richards, R. E., and Thompson, H. W., 1949, Infrared spectra of compounds of high molecular weight. Part. IV. Silicones and related compounds. Journal of the Chemical Society, Vol. 1: 124-132
    [246] Rodriguez Navarro C., Sebastian, E., Doehne, E., et al., 1998, The role of sepiolite- palygorskite in the decay of ancient Egyptian limestone sculptures. Clays and Clay Minerals, Vol. 46(4): 414-422
    [247] Rytwo, G., Tropp, D., and Serban, C., 2002, Adsorption of diquat, paraquat and methyl green on sepiolite: experimental results and model calculations. Applied Clay Science, Vol. 20(6): 273-282
    [248] Sabah, E., Turan, M., and ?elik, M. S., 2002, Adsorption mechanism of cationic surfactants onto acid- and heat-activated sepiolites. Water Research, Vol. 36: 3957-3964
    [249] Sanchez Bellon A., Mosser C., Moral Cardona J.P., et al. 1997, Contribution of multivariate geochemical analysis and mineralogical study in the characterization of sediments: the Miocene-Pliocene boundary in the Sorbas Basin (SE Spain). Clay Minerals, Vol. 32(4): 517-530
    [250] Sanchez, C., and Galan, E., 1995, An approach to the genesis of palygorskite in a Neogene- Quaternary continental basin using principal factor analysis. Clay-Minerals, Vol. 30(3):225-238
    [251] Schlegel, M. L., Manceau, A., Charlet, L., et al., 2001, Sorption of metal ions on clay minerals: III. Nucleation and epitaxial growth of Zn phyllosilicate on the edges of hectorite. Geochimica et Cosmochimica Acta, Vol. 65, No.2: 4155-4170
    [252] Schott J, et al. 1981, Mechanism of pyroxene and amphibole weathering —I. Experimental studies of iron-free minerals. Geochimica et Cosmochimica Acta, Vol. 45(11): 2123
    [253] Serna, C., and VanScoyoc, G. E., 1979, Infrared study of sepiolite and palygorskite. In: Proc. Int. Cay Conf., Oxford, 1978, M. M. Mortland and V. C. Farmer, eds., Elsevier, Amsterdam, 197-206
    [254] Serna, C., VanScoyoc, G. E., and Ahlrichs, J. L., 1976, Uncoupled water found in palygorskite. The Journal of chemical Physics, Vol. 65(8): 3389-3390
    [255] Serna, C., VanScoyoc, G. E., and Ahlrichs, J. L., 1977, Hydroxyl groups and waters in palygorskite. American Mineralogist, Vol. 62: 784-792
    [256] Serratosa, J. M., 1979, Surface properties of fibrous clay minerals (palygorskite and sepiolite), In: Proc. Int. Cay Conf., Oxford, 1978, M. M. Mortland and V. C. Farmer, eds., Elsevier, Amsterdam, 99-109
    [257] Shariatmadari, H., and Mermut, A. R., 1999, Magnesium- and silicon-induced phosphate desorption in smectite-, palygorskite-, and sepiolite-calcite systems. Soil Science Society of America Journal, Vol. 63(5): 1167-1173
    [258] Shariatmadari, H., Mermut, A. R., and Benke, M. B., 1999, Sorption of selected cationic and neutral organic molecules on palygorskite and sepiolite. Clays and Clay Minerals, Vol. 47(1): 44-53
    [259] Shuali, U., Steinberg, M., Yariv, S., et al., 1990, Thermal analysis of sepiolite and palygorskite treated with butylamine. Clay Minerals, Vol. 25: 107-119
    [260] Shuali, U., Yariv, S., Steinberg, M., et al., 1991, Thermal analysis of pyridine-treated sepiolite and palygorskite. Clay Minerals, Vol. 26: 497-506
    [261] Singer, A., 1977, Dissolution of two Australian palygorskites in dilute acid. Clays and Clay Minerals, Vol.25: 126-130
    [262] Singer, A., and Huang, P. M., 1989, Adsorption of humic acid by palygorskite and sepiolite. Clay Minerals, Vol. 24: 561-564
    [263] Sitarz, M., Handke, M., and Mozgawa, W., 2000, Identification of silicooxygen rings in SiO2 based on IR spectra. Spectrochimica Acta Part A, Vol. 56: 1819-1823
    [264] Smith, D. G. W., and Noren, D., 1986, The electron-microprobe analysis of palygorskite. The Canadian Mineralogist, Vol. 24: 499-511
    [265] Stahr, K., Kuhn, J., Trommler, J., et al., 2000, Palygorskite-cemented crusts (palycretes) in Southern Portugal. Australian Journal of Soil Research, Vol. 38(1): 169-188
    [266] Strens, R. G. J., 1974, The common chain, ribbon,and ring silicates. In: Farmer, V. C., ed., The infrared spetra of Minerals. Monograph 4, London: Mineralogical Society, 305
    [267] Suarez, M., Flores, L. V., and Pozas, J. M. M., 1995, Mineralogical data for palygorskite from Bercimuel (Segovia, Spain). Clay Minerals, Vol. 30(3): 261-266
    [268] Suarez, M., Flores, L. V., Vincente, M. A., et al., 1995, Acid activation of a palygorskite with HCl: Development of physico-chemical, textural and surface properties. Applied Clay Science, Vol.10: 247-258
    [269] Suarez, M., Robert, M., Elsass, F., et al., 1994, Evidence of a precursor in the neoformationof palygorskite: new data by analytical electron microscopy. Clay Minerals, Vol. 29(2): 255-264
    [270] Suarez-Barrios, M., Flores-Gonzalez, L. V., Vicente-Rodriguez, M. A., et al., 1995, Acid activation of a palygorskite with HCl: development of physico- chemical, textural and surface properties. Applied Clay Science, Vol. 10(3): 247-258
    [271] Sun, M. S., 1963, The nature of chrysocolla from inspiration mine, Arizona. American Mineralogist, Vol. 48, 649-658
    [272] Suquet H., 1989, Effects of dry grinding and leaching on the crystal structure of chrysotlie. Clays and Clay Minerals, Vol.37 (5): 439-445
    [273] Suquet, H., 1989, Differences between adsorption properties of two Rhodensian chrysotile samples. Relation with the TGA features introduced by leaching and grinding. Canadian Journal of Chenmistry, Vol. 67: 202-207
    [274] Suzuki, M., Ohashi, F., Inukai, K., et al., 2000, Hydration enthalpies of inorganic porous materials with different structures. Mineralogical Journal, Vol. 22 (1): 1-10
    [275] Sverjensky, D. A., 2003, Standard states for the activities of mineral surface sites and species. Geochimica and Cosmochimica Acta, Vol. 67, No. 1: 17-28
    [276] Tarte, P., Pottier, M. J., and Procès, A. M., 1973, Vibrational studies of silicates and germinates: VIR and Raman spectra of pyrosilicates and pyrogermanates with a linear bridge. Spectrochimica Acta, Vol. 29A: 1017-1027
    [277] Tateo F, Sabbadini R, and Morandi N, 2000, Palygorskite and sepiolite occurrence in Pliocene lake deposits along the River Nile: evidence of an arid climate. The Journal of African Earth Sciences, Vol. 31 (3-4): 633-645
    [278] Tien, Peilin, 1973, Palygorskite from warren quarry, Enderby, Leicestershire, England. Clay Minerals, Vol. 10: 27-34
    [279] Torres-Ruiz, J., Lopez-Galindo, A., Gonzalez-Lopez, J. M., et al., 1994, Geochemistry of Spanish sepiolite-palygorskite deposits: genetic considerations based on trace elements and isotopes. Chemical Geology, Vol. 112(3-4): 221-245
    [280] Van Scoyoc GE, Serna CJ and Ahlrichs JL. 1979, Structure changes during dehydration and dehydroxylation. American Mineralogist, Vol.64: 215-223
    [281] Vedder, W., 1964, Correlations between infrared spectrum and chemical composition of mica. American Mineralogist, Vol. 49: 736-768
    [282] Vicente-Rodríguez M. A., Lopez-Gonzalez, J. D., and Suarez Banares, M., 1994, Acid activation of a Spanish sepiolite: physicochemical characterization, free silica content and surface area of products obtained. Clay Minerals, Vol. 29: 361-367
    [283] Vicente-Rodríguez M. A., Suarez Barrios, M., Lopez-Gonzalez JD, and Banares Munoz. 1994, Acid activation of a ferrous saponite (griffithite): physicochemical characterization and surface area of products obtained. Clays and Clay Minerals, Vol. 42(6): 724-730
    [284] Vicente-Rodríguez, M. A., Suarez, M., Ba?ares-Mu?oz, M. A., et al., 1996, Comparative FT-IR study of the removal of octahedral cations and structural modifications during acid treatment of several silicates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy Section Vol. 52(13), 1685-1694
    [285] Viseras, C., and Lopez-Galindo A, 1999, Pharmaceutical applications of some Spanish clays (sepiolite, palygorskite, bentonite): some preformulation studies. Applied Clay Sciences, Vol. 14 (1-3): 69-82
    [286] Viseras, C., and Lopez-Galindo, A., 2000, Characteristics of pharmaceutical grade phyllo -silicate powders. PHARM DEV TECHNOL, Vol. 5 (1): 47-52
    [287] Viseras, C., Ferrari, F., Yebra, A., et al., 2001, Disintegrant efficiency of special phyllosilicates: smectite, palygorskite, sepiolite. STP PHARMA SCI, Vol. 11 (2): 137-143
    [288] Viseras, C., Meeten, G. H., Lopez-Galindo A, 1999, Pharmaceutical grade phyllosilicate dispersions: the influence of shear history on floc structure. INT J PHARM, Vol. 182 (1): 7-20
    [289] Viseras, C., Yebra, A., and Lopez-Galindo A, 2000, Characteristics of pharmaceutical grade phyllosilicate compacts. PHARM DEV TECHNOL, Vol. 5 (1): 53-58
    [290] Volzone, C., 1997, OH-Cr(III) in dioctahedral and tri-octahedral smectites: texture and structure changes. Materials Chemistry and Physics, Vol. 47: 13-16
    [291] Wagner, C. D., Riggs, W. M., Davis, L. E., et al. (Editor), 1979, Handbook of X-ray Photo -electron Spectroscopy, Perkin-Elmer Corporation Physical Electronics Division, Printed in USA
    [292] Weaver, C. E., and Pollard, L. D., 1975, The Chemistry of clay minerals. Elsevier, Amsterdam
    [293] Weir, M. R., Kuang, W. X., Facey, G. A., et al., 2002, Solid-state magnetic resonance study of sepiolite and partially dehydrated sepiolite. Clays and Clay Minerals, Vol. 50(2): 240-247
    [294] Yalcin, H., and Bozkaya, O., 1995, Sepiolite-palygorskite from the Hekimhan region (Turkey). Clays and Clay Minerals, Vol. 43(6): 705-717
    [295] Yariv, S., 1986, Infrared evidence for the occurrence of SiO groups with double-bond character in antigorite, sepiolite and palygorskite. Clay Minerals, Vol. 21: 925-936
    [296] Yariv, S., and Heller-Kallai, L., 1984, Thermal treatment of sepiolite- and palygorskite- stearic acid associations. Chemical Geology, Vol. 45: 313-327
    [297] Yariv, S., and Lapides I, 2000, The effect of mechanochemical treatments on clay minerals and the mechanochemical adsorption of organic materials onto clay minerals. J MATER SYNTH PROCES, Vol. 8 (3-4): 223-233
    [298] Yoshie K, Hiroyasu K, Tatsuya K, et al., 1997, Polymerization of pyrrole in intracrystalline tunnels of sepiolite. Applied Surface Science, Vol. 121-122: 331-334

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700