用户名: 密码: 验证码:
模拟月壤研制与月壤的微波辐射特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嫦娥一号绕月探测卫星上将搭载一台四通道的微波探测仪(3. 0 GHz、7. 8
    GHz、19. 35 GHz、37 GHz)。利用其测量到的月球微波辐射亮度温度,反演月壤
    厚度并评估月球的氦-3资源量是嫦娥一号卫星的四大科学目标之一。本文主要包
    括模拟月壤的研制和月壤微波辐射特性的研究,是对月球微波辐射探测的预先研
    究。
    (1) 详细概述了月壤的形成与演化、化学和矿物组成、物理力学性质等;
    (2) 模拟月壤的研制是嫦娥工程顺利开展所必需的基础设施建设项目,本
    文首次提出了系列化模拟月壤的研制设想和基本方案;
    (3) 成功研制了CAS-1模拟月壤,岩石学、矿物学和地球化学的对比表明,
    CAS-1模拟月壤与Apollo 14登月点月壤相似。并测量了其基本的化学和物理力
    学性质供样品使用单位参考;
    (4) 首次提出应用聚乙烯稀释法和Lichtenecker介电混合公式,在谐振腔
    微扰系统上测量干燥岩石或矿物复介电常数的方法,该方法具有操作简单、所需
    样品量少、测量精度高等优点;
    (5) 利用同轴终端法系统测量了1-20 GHz模拟月壤、模拟月岩的复介电
    常数,研究其随颗粒粒度和(%TiO2+%FeO+%Fe2O3) 含量的变化规律,并比较
    其与地球红土的差异;
    (6) 在对月球物质的复介电常数进行详细研究的基础上,探讨了月壤的微
    波辐射特性,并估算了Apollo和Luna登月点的微波辐射在月壤中的穿透深度。
The Chinese first lunar explore mission, Chang'E Lunar Orbiter, is proceeding smoothly. A four channels microwave radiometer (3.0 GHz, 7.8 GHz, 19.35 GHz, 37 GHz) will be carried in the orbiter. As one of the specific scientific objectives of the lunar orbiter project (three-dimension imaging of lunar surface; the contents and distribution of some elements on the lunar surface; the thickness of lunar regolith; space environments of the earth-moon system.), the thickness of lunar regolith was expected to be derived from the brightness temperature measurements of the Moon. The development of lunar simulant series and the characteristics of microwave radiation of lunar regolith were studied and discussed in the paper. This work is a part of advance research in the measurement of microwave radiation intensity of the lunar surface and the inversion of the thickness of lunar regolith.(1). The formation and evolution, the chemical and mineral composition, the physical mechanical properties of lunar regolith were outlined in detail.(2). The development of lunar simulant series is one of the basic infrastructure items of Chang'E Project of China. The progress of the development of lunar simulant series was reviewed. The tentative ideas for the development of lunar simulant series corresponding to the average composition at the Apollo and Luna landing sites was proposed in the paper.(3). CAS-1 Lunar Soil Simulant was developed successfully. The comparison in petrological, mineralogical, and geochemical composition of CAS-1 and lunar sample shows that CAS-1 is simular with the lunar materials sampled at Apollo 14 landing site. The basic chemical and mechanical parameters were also measured.(4). A new method was proposed to measure the complex permittivity of dry rocks and minerals with the resonant cavity perturbation method which incorporated in the application of polythene dilution method and Lichtenecker's mixture formulae. The
    
    results of the experiment show that this new method is of high accuracy, costs small mass of rocks and minerals, and can be put into application conveniently.(5). The complex permittivity of lunar simulants, soils and rocks, was measured at 1-20 GHz frequencies with the method of coaxial terminal short circuit. The dependence of particle size and the content of %TiO2+%FeO+%Fe2O3 in lunar simulant was discussed.(6). The characteristics of the microwave radiation of the lunar regolith was discussed on the base of the detail research into the complex permittivity of lunar materials. The penetration depths of microwave radiation of the four channels of the radiometer at Apollo and Luna landing sites were estimated.
引文
樊祺诚,刘若新,魏海泉,随建立,李霓.1999. 龙岗金龙顶子近代活动火山的岩 石学与地球化学.岩石学报,15(4) :584-589.
    樊祺诚,刘若新,张国辉等.1998. 长白山望天鹅火山双峰式火山岩的成因演化. 岩石学报,14(3) :305-317.
    刘若新,樊祺诚,郑祥身.1998. 长白山天池火山的岩浆演化.中国科学,28(3) : 226-231。
    刘祥,向天元.1998. 中国东北地区新生代火山和火山碎屑堆积物资源与灾害. 吉林大学出版社,长春.
    刘祥,张成梁.1997. 龙岗火山群四海火山渣层-来自金龙顶子火山亚普林尼式 火山爆发.吉林地质,16(3) :1-8.
    梅厚钧,徐义刚,许继峰,黄小龙,何端臣.2003. 攀西古裂谷内龙帚山玄武岩-碱玄响岩建造.地质学报,77(3) :341-358.
    欧阳自远,1988. 天体化学.科学出版社,北京,145 pp.
    肖龙,徐义刚,梅厚钧,沙绍礼.2003. 云南宾川地区峨眉山玄武岩地球化学特征 岩石类型及随时间演化规律,地质科学.38(4) :478-494.
    郑永春,王世杰,刘春茹,欧阳自远,2004. 月球水冰探测及其进展.地学前缘, 11(2) :573-578.
    中国科学院地球化学研究所,1977. 月质学研究进展.科学出版社,北京,312 pp.
    中华人民共和国国家标准,1987. GB7265,2-87:固体电介质微波复介电常数的测 试方法-“开式腔”法.中国标准出版社,北京,pp.13-20.
    Adams, R.J., Perger, W.F., Rose, W.I. and Kostinski, A., 1996. Measurements of the Complex Dielectric Constant of Volcanic Ash from 4 to 19 GHz. J. of Geological Research, 101(B4) : 8175-8185.
    Ahmad, M.S. and Zihlif, A.M., 1990. Some magnetic and electrical properties of basalt rocks. Materials Letters, 10(4-5) : 207-214.
    Allen, C.C., Hines, J.A., McKay, D.S. and Morris, R.V., 1992a. Sintering of lunar glass and basalt. In: W.Z. Sadeh, S. Sture and R.J. Miller (Editors), Engineering, Construction, and Operations in Space III. American Society of Civil Engineers, New York, pp. 1209-1218.
    Allen, C.C., McKay, D.S. and Morris, R.V., 1992b. Hydrogen reduction of lunar simulant glass, Lunar and Planetary Science XXIII. Lunar and Planetary Institute, Houston, pp. 21-22.
    Allen, C.C., McKay, D.S. and Morris, R.V., 1992c. Lunar oxygen-the reduction of glass by hydrogen, Engineering, Construction, and Operations in Space III. American Society of Civil Engineers, New York, pp. 629-640.
    Alvarez, R., 1973. Lunar fines 74124,2, low frequency dielectric variations with density and temperature. Eos Trans. AGU, 54: 1129.
    Alvarez, R., 1974. Dielectric comparison of lunar and terrestrial fines at lunar conditions. Journal of Geophysical Research, 79: 5453-5457.
    Alvarez, R., 1975. Lunar and terrestrial sample photoconconductivity. Proc. Lunar Sci. Conf. 6th: 3187-3197.
    
    Andres, U., 1996. Dielectric separation of minerals. Journal of Electrostatics, 37:227-248.
    Aregba, D., Gay, J. and Maze-Merceur, G, 1994. Modelling multiport using a three-dimensional coupled analytical/finite element method application to microwave characterization of material. IEEE Trans. Microwave Theory Tech., 42: 590-594.
    Arthar, V., 1954. Dielectric materials and applications. The M.I.T Press, Cambridge Massachusetts, 361 pp.
    ASTM, 2001. D2520-01 Standard Test Methods for Complex Permittivity (Dielectric Constant) of Solid Electrical Insulating Materials at Microwave Frequencies and Temperatures to 1650 °C, Annual Book of ASTM Standards. American Society for Testing and Materials, West Conshohocken, pp. 613-634.
    Baican, R. and Baican, B., 1981. An analysis of lunar soil samples using EPR and microwaves. Studii si Cercetari de Fizica, 33: 613-626.
    Baker-Jarvis, J., Vanzura, E. and Kissick, W., 1990. Improved technique for determining complex permittivity with the transmission/reflection method. IEEE Trans. Microwave Theory Tech., 38: 1096-1103.
    Barthel, J., Bachhuber, K., Buchner, R., Hetzenauer, H. and Kleebauer, M., 1991. A Computer-controlled System of Transmission Lines for the Determination of the Complex Permittivity of Lossy Liquids between 8.5 and 90 GHz. Ber. Bunsenges.Phys. Chem., 95(8): 853-859.
    Bassett, H.L. and Shackelford, R.G, 1972a. Dielectric properties of Apollo 14 lunar samples at micrometer and m. Proc. Lunar Sci. Conf. 3rd: 3157-3160.
    Bassett, H.L. and Shackelford, R.G., 1972b. Dielectric properties of Apollo 14 lunar samples at microwave and millimeter wavelengths, Lunar and Planetary Science Conference, pp. 3157.
    Basu, A., McKay, D.S. and Fruland, R.M., 1978. Clast-laden nature and the origin of Luna 24 olivine-vitrophyres, Lunar and Planetary Science Conference, pp.535-546.
    Basu, A. and Riegsecker, S.E., 1998. Reliability of Calculating Average Soil Composition of Apollo Landing Sites, Workshop on New Views of the Moon:Integrated Remotely Sensed, Geophysical, and Sample Datasets, p. 20, pp. 20.
    Bazilevskiy, A.T. et al., 1984. Physical and mechanical properties of lunar soil as function of specifics of relief and processes in vicinity of operation of Lunokhod-2.USSR Report Space, 2: 65-66.
    Best, M.G., 2003. Igneous and Metamorphic Petrology. Blackwell, Maiden, MA.
    Boyce, J.M. and Johnson, D.A., 1978. Ages of flow units in the far eastern maria and implications of basin-filling history, Proc. Lunar Planet. Sci. Conf. 9th, pp.3275-3284.
    Brunfelt, A.O. and Steinnes, E., 1971. A neutron-activation scheme developed for the determination of 42 elements in lunar material. Talanta, 18(12): 1197-1208.
    Bussey, H.E., 1978. Dielectric Measurements of Lunar Soil, Lunar and Planetary Institute Conference Abstracts, pp. 140-142.
    Bussey, H.E., 1979a. Microwave dielectric measurements of lunar soil with a coaxial line resonator method, Lunar and Planetary Science Conference, pp. 2175-2182.
    Bussey, H.E., 1979b. Open Circuited Coaxial Resonator for High Sensitivity Dielectric Measurements application to Lunar Soil 70051-20, Lunar and Planetary Institute Conference Abstracts, pp. 169-171.
    Cadenhead, D.A., Brown, M.G., Rice, D.K. and Stetter, J.R., 1977. Some surface area
     and porosity characterizations of lunar soils, Lunar and Planetary Science Conference, pp. 1291-1303.
    
    Campbell, M.J. and Ulrichs, J., 1969. Electrical properties of rocks and their significance for lunar radar observations. J. Geophys. Res, 74: 5867-5881.
    Carrier, W., III , Mitchell, J.K. and Mahmood, A., 1973. The nature of lunar soil.NASA STI/Recon Technical Report A, 75: 12424.
    Carrier, W.D., III, 1973. Lunar Soil Grain Size Distribution. Moon, 6: 250.
    Carrier, W.D., Olhoeft, G.R. and Mendell, W., 1991. Physical properties of the lunar surface. In: G.H. Heiken, D.T. Vaniman and B.M. French (Editors), Lunar Source book. Cambridge Univ. Press, New York, pp. 475-594.
    Chang, A.T.C., Foster, J.L. and Hall.D.K, 1987a. Nimbu-7 SMMR derived global snow cover parameters. Annals of Glaciology, 9: 39-44.
    Chang, T.C., Foster, J.L. and Hall, D.K., 1987b. Microwave snow signature(1.5 mm to 3 cm)over Alaska. Gold region science and Technology, 13: 153-160.
    Cherkasov, I.I., Gromov, V.V. and al., e., 1967. Soil Resistometerpenetrometer of the Automatic Lunar Station Luna-13. Doklady AN USSR, 179(4).
    Cherkasov, I.I., Shvarev, V.V. and Ishlinskii, A.Y., 1975. Lunar soil science.Physicomechanical properties of lunar soils. NASA STI/Recon Technical Report N,76: 20049.
    Chung, D.H. and Westphal, W.B., 1973. Dielectric spectra of Apollo 15 and 16 lunar solid samples, Lunar and Planetary Science Conference, pp. 3077.
    Chung, D.H., Westphal, W.B. and Olhoeft, G.R., 1972. Dielectric properties of Apollo 14 lunar samples, Lunar and Planetary Science Conference, pp. 3161.
    Chung, D.H., Westphal, W.B. and Simmons, G, 1970. Dielectric properties of Apollo 11 lunar samples and their comparision with earth materials. J. Geophys. Res, 75:6524-6531.
    Chung, D.H., Westphal, W.B. and Simmons, G, 1971a. Dielectric behavior of lunar samples: electromagnetic probing of the lunar interior. Proc. Lunar Sci. Conf. 2nd:2381-2390.
    Chung, D.H., Westphal, W.B. and Simmons, G, 1971b. Dielectric behavior of lunar samples: Electromagnetic probing of the lunar interior, Lunar and Planetary Science Conference, pp. 2381.
    Clarke, R.N. and Rosenberg, C.B., 1982. Fabry-perot and open resonators at microwave and millimeter wave frequencies 2-300GHz. J. Phys. E: Sci. Instrum,,15:9-24.
    Coccioli, R., Pelosi, G and Selleri, S., 1999. Characterization of dielectric materials with the finite-element method. IEEE Trans. Microwave Theory Tech., 47:1106-1111.
    Courtney, WE., 1970. Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators. IEEE Trans, on Microwave Theory and Techniques, 18(8): 476-485.
    Crown, D.A. and Pieters, C.M., 1987. Spectral properties of plagioclase and pyroxene mixtures and the interpretation of lunar soil spectra. Icarus, 72(3): 492-506.
    Desai, C.S. and Girdner, K., 1992. Structural materials from lunar simulants through thermal liquefaction, Proceedings of the 3rd International Conference on Engineering, Construction, and Operations in Space III, May 31-Jun 4 1992. Publ by ASCE, New York, NY, USA, Denver, CO, USA, pp. 528-536.
    Desai, C.S., Saadatmanesh, H. and Allen, T., 1992. Behavior of compacted lunar simulants using new vacuum triaxial device. Journal of Aerospace Engineering,5(4): 425-441.
    
    DesMarais, D.J., Hayes, J.M. and Meinschein, W.G., 1974. The distribution in lunar soil of hydrogen released by pyrolysis. Proc. Lunar Sci. Conf. 5th: 1811-1822.
    Duba, A., Dennison, M., Irving, A.J., Thornber, C.R. and Huebner, J.S., 1979.Electrical conductivity of aluminous orthopyroxene (abstract), Lunar and Planetary Science X. Lunar and Planetary Institute, Houston, pp. 318-319.
    Dube, D.C., 1970. Study of Landau-Lifshitz-Looyenga's formula for dielectric correlation between powder and bulk. J. Phys. D: Appl. Phys, 3: 1648-1652.
    Dube, D.C. and Parshad, R., 1970. Study of Bottcher's formula for dielectric correlation between powder and bulk. J. Phys. D: Appl. Phys, 3: 677-684.
    Dube, D.C, Yadava, R.S. and Parshad, R., 1971. A formula for correlation dielectric constant of powder and bulk. Indian J Pure and Appl.Phys, 9:719-721.
    Duke, M.B., Woo, C.C., Sellers, G.A., Bird, ML. and Finkelman, R.B., 1970. Genesis of lunar soil at Tranquillity Base, Proc. Apollo 11 Lunar Science Conf. Pergamon,New York, pp. 347-361.
    Frisillo, A.L., Olhoeft, G.R. and Strangway, D.W., 1975. Effects of vertical stress,temperature, and density on the dielectric properties of lunar samples 72441.12,15301.38, and a terrestrial basalt. Earth and Planetary Science Letters, 24: 345-356.
    Gammage, R.B. and Holmes, H.F., 1975. Specific surface area as a maturity index of lunar fines* 1. Earth and Planetary Science Letters, 27(3): 424-426.
    Garrouch, A.A. and Sharma, M.M., 1995. Dielectric properties of partially saturated rocks. Energy & Fuels, 9(3): 413-419.
    Gast, P.W. and Hubbard, N.J., 1970. Rare earth abundances in soil and rocks from the ocean of storms. Earth and Planetary Science Letters, 10(1): 94-100.
    Ge, A. and Chu, X., 1992. Anew method of measuring moisture of powder materials.Journal of Microwave(28): 43-47 (in Chinese with English abstract).
    Geoffrey, E.H., 1991. Measurement of Atmospheric Liquid water by a Ground-based Single-Frequency Microwave Radiometer. Journal of Atmospheric and Oceanic Technology, 2(10): 685-690.
    Gillum, D.E., Ehmann, W.D., Wakita, H. and Schmitt, R.A., 1972. Bulk and rare earth abundances in the Luna-16 soil levels A and D. Earth and Planetary Science Letters,13(2): 444-449.
    Gold, T., Bilson, E. and Baron, R.L., 1976. Electrical properties of Apollo 17 rock and soil samples and a summary of the electrical properties of lunar material at 450 MHz frequency, Lunar and Planetary Science Conference, pp. 2593-2603.
    Gold, T, Bilson, E. and Baron, R.L., 1977. Electrical properties at 450 MHz of Apollo 15 and 16 deep drill core samples and surface soil samples at the same site, Lunar and Planetary Science Conference, pp. 1271-1275.
    Goswami, J.N., 2001. Interaction of energetic particles and dust grains with asteroidal surfaces. Earth, Planets, and Space, 53: 1029-1037.
    Griffin R. E., 1974. Dielectric constants and dissipation factors of simulated lunar rocks : 16F. US BUR. MINES, RI 7915, 1974, 19P. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 11(11): A222.
    Gromov, V., 1999. Physical and Mechanical Properties of Lunar and Planetary Soils. Earth Moon and Planets, 80: 51-72.
    Gromov, V.V. and Carrier, W.D.I., 1992. Mechanical properties of lunar soil and simulants, Proceedings of the 3rd International Conference on Engineering,Construction, and Operations in Space III, May 31-Jun 4 1992. Publ by ASCE,New York, NY, USA, Denver, CO, USA, pp. 518-527.
    Gromov, V.V., Leonovich, A.K., Lozhkin, V.A. and al., e., 1971. Mechanical properties of the lunar soil sample brought by the autonatic station Luna-16. Kosm.
     Issled, Moscow, 9(5).
    
    Gromov, V.V. et al., 1979. Results of investigations of the physicomechanical properties of a lunar soil sample in a nitrogen atmosphere, Lunar Highland Soil, pp.686-690.
    Hakki, B.W. and Coleman, P.D., 1960. A dielectric resonator method of measuring inductive capacities in the millimeter ranger. IRE Trans. Microwave Theory Tech,:402-410.
    Hartmann, W.K., Phillips, R.J. and Tayor, G.J. (Editors), 1986. Origin of the Moon.Lunar and Planetary Institute, Houston, 781 pp.
    Haskin, L.A., 1998. The Imbrium impact event and the thorium distribution at the lunar highlands surface. J. Geophys. Res., 103(El): 1679-1689.
    Haskin, L.A. et al., 1971. Rare Earths and Other Trace Elements in Apollo 12 Lunar Samples, Lunar and Planetary Institute Conference Abstracts, pp. 168-168.
    Haskin, L.A., Helmke, P.A. and Allen, R.O., 1970. Rare Earth Elements in Returned Lunar Samples:. Science, 167: 487.
    Haskin, L.A. and Warren, P.H., 1991. Lunar Chemistry. In: G.H. Heiken, D.T. Vaniman and B.M. French (Editors), Lunar Sourcebook. Cambridge Univ. Press,New York, pp. 367-474.
    Hayes, S., Hamlett, H. and Bustin, R., 1996. Carbon reduction of iron oxides in lunar simulants, Proceedings of the 1996 5th International Conference on Engineering,Construction, and Operations in Space. Part 2 (of 2), Jun 1 -6 1996. Proceedings of the International Conference on Engineering, Construction, and Operations in Space. ASCE, New York, NY, USA, Albuquerque, NM, USA, pp. 734-740.
    Heiken, G, 1975. Petrology of Lunar Soils. Reviews of Geophysics and Space Physics, 13(4): 567-587.
    Heiken, G.H., McKay, D.S. and Frularld, R.M., 1973. Apollo 16 Soils: Grain Size Analyses and Petrography. Geochimica et Cosmochimica Acta. in:, Proc. of 4th Lunar Science Conf., l(Suppl. 4): 251-265.
    Heiken, G.H., Vaniman, D.T. and Frend, B.M., 1991. Lunar Sourcebook - A User's Guide to the Moon. Cambridge University Press, 735 pp.
    Heywood, H., 1971. Particle size and shape distribution for lunar fines sample 12057,72, Proc, 2nd Lunar Science Conf. MIT Press, pp. 1989-2001.
    Hood, L. and Zuber, M. (Editors), 1986. Geophysical constraints on the lunar interior.Origin of the Moon. Lunar and Planetary Institute, Houston, 361-410 pp.
    Hook, W.R. and Livingston, N.J., 1995. Errors in converting time domain refiectometry of propagation velocity to estimates of soil water content. Soil Sci.Soc.Am.J., 59:35-41.
    Horanyi, M., Robertson, S. and Walch, B., 1995. Electrostatic charging properties of simulated lunar dust simulants JSC-1 and MLS-1. Geophys. Res. Lett, 22:2079-2082.
    Horanyi, M., Walch, B. and Robertson, S., 1998. Electrostatic charging properties of Apollo-17 lunar dust. Journal of Geophysical Research-Planets, 103(E4):8575-8580.
    Housley, R.M. and al., e., 1973. Origin and characteristics of excess Fe metal in lunar glass welded aggregates, Proc. Lunar Sci.Conf. 4th, pp. 2737-2749.
    Howell, B.F. and Cicastro, P.H., 1961. Dielectric behavior of rocks and mineral. The American Mineralogist, 46(3): 269-288.
    Janezic, M.D. and Jargon, J.A., 1999. Complex Permittivity Determination from Propagation Constant Measurements. IEEE MICROWAVE AND GUIDED WAVE LETTERS, 9(2): 76-78.
    
    Jolliff, B.L. and Haskin, L.A., 1995. Cogenetic rock fragments from a lunar soil:Evidence of a ferroan noritic-anorthosite pluton on the Moon. Geoch. Cosmoch.Acta, 59: 2345-2374.
    Jolliff," B.L., Rockow, K.M., Korotev, R.L. and Haskin, L.A., 1996. Lithologic distribution and geologic history of the Apollo 17 site: The record in soils and small rock particles from the highland massifs. Met. & Planet. Sci, 31: 116-145.
    Kanamori, H., Udagawa, S., Yoshida, T., Matsumoto, S. and Takagi, K., 1998.Properties of lunar soil simulant manufactured in Japan, Proceedings of the 6th International Conference and Exposition on Engineering Construction, and Operations in Space. Proceedings of the International Conference and Exposition on Engineering, Construction, and Operations in Space. ASCE, Albuquerque, NM,USA, pp. 462-468.
    Kaydash, V., Shkuratov, Y., Pieters, C, Omelchenko, V. and Stankevich, D., 2003.Maps of maturity-correlated parameters of the lunar regolith, Microsymposium 38.
    Keihm, S.J., 1982. Thermal emission and microwave reflectivity of vertically structured planetary surface models: Applications to the lunar regolith. NASA STI/Recon Technical Report N, 82: 23094.
    Keihm, S.J., 1983. Analysis of regolith electromagnetic scattering as constrained by high resolution Earth-based measurements of the lunar microwave emission,Planetary Science Inst. Report.
    Keihm, S.J. and Cutts, J.A., 1981. Vertical-structure effects on planetary microwave brightness temperature measurements - Applications to the lunar regolith. Icarus, 48:201-229.
    Keller, G.V., 1996. Electrical properties of rocks and minerals. In: S.P.J. Clack (Editor), Handbook of physical constant - revised edition. Published by the society,New York, pp. 553-577.
    Kirkici, H., Rose, M.F. and Chaloupka, T., 1996. Experimental Study on Simulated Lunar Soil: High Voltage Breakdown and Electrical Insulation Characteristics.IEEE Transactions on Dielectrics and Electrical Insulation, 3: 119-125.
    Klein, O., Donovan, S., Dressel, M. and Gruer, G, 1993. Microwave Cavity Perturbation Technique. International Journal of Infrared and Millimeter Waves,14(12): 2423-2517.
    Kobayashi, Y, Tamura, H. and Round, R., 1994. Test on a dielectric resonator method for measuring complex permittivity at microwave frequency. IEICE Trans, E77(6):882-887.
    Korotev, R.L. and Morris, R.V., 1993. Composition and maturity of Apollo 16 regolith core 60013/14. Geochim. Cosmochim. Acta, 57: 4813-4826.
    Krotikov, V.D. and Troitsky, V.S., 1963. Radio emission and the nature of the Moon.Usp. Fiz. Nauk, 81: 589-639.
    Labotka, T.C., Kempa, M:J., White, C, Papike, J.J. and Laul, J.C., 1980. The lunar regolith - Comparative petrology of the Apollo sites, Lunar and Planetary Science Conference, pp. 1285-1305.
    Laul, J.C. and Papike, J.J., 1980. The lunar regolith - Comparative chemistry of the Apollo sites, Lunar and Planetary Science Conference, pp. 1307-1340.
    Laul, J.C, Papike, J.J. and Simon, S.B., 1982. The lunar regolith - Comparative studies of the Apollo and Luna sites. Chemistry of soils from Apollo 17, Luna 16,20, and 24, Lunar and Planetary Science Conference, pp. 389-407.
    Lichtenecker, K., 1926. Die dielektrizitatskonstante naturlicher und kunstlicher mischkorper. Physikalische Zeitschrift, 27: 115-158.
    Lichtenecker, K. and Rother, K., 1931. Die Herleitung des logarithmischen
    
    Mischungsgesetzes aus allgemeinen Prinzipien der stationaeren Stroemung. Physikalische Zeitschrift, 32: 255-260.
    Lucey, P.G., Blewett, D.T., Taylor, G.J. and Hawke, B.R., 2000. Imaging of lunar surface maturity. Journal of Geophysical Research-Planets, 105(E8): 20377-20386.
    Mahmood, A., Mitchell, J.K. and Carrier, W.D., III, 1974. Grain orientation in lunar soil, Lunar and Planetary Science Conference, pp. 2347-2354.
    Manka, R.H. and Michel, F.C., 1971. Lunar atmosphere as a source of lunar surface elements. Geochimica Cosmochim Acta. in: 2nd Proc. Lunar Sci. Conf., 2(Suppl.10): 1717-1728.
    Margot, J.L., Campbell, D., B, Campbell, B.A. and Butler, B.J., 1997. Lunar Dielectric Constants from Aperture Synthesis Polarimetry at 6 cm, Lunar and Planetary Science XXVIII, pp. 1525.PDF.
    Margot, J.L., Campbell, D.B., Campbell, B.A. and Butler, B.J., 1996. Lunar Dielectric Constants from Radio Thermal Emission Measurements, LPSC, XXVII, pp.805-806.
    Matzler, C, 1998. Microwave permittivity of dry sand. IEEE Transactions on Geoscience and Remote Sensing, 36(1): 317-319.
    McKay, D. et al., 1991. The lunar regolith. In: G.H. Heiken, D.T. Vaniman and B.M. French (Editors), Lunar Sourcebook: A User's Guide to the Moon. Cambridge Univ. Press, New York, pp. 285-356.
    McKay, D.S., Carter, J.L., Boles, W.W., Allen, C.C. and Allton, J.H., 1993. JSC-1: A new lunar regolith simulant, Lunar and Planetary Science XXIV. Lunar and Planetary Institute, Houston, pp. 963-964.
    McKay, D.S., Carter, J.L., Boles, W.W., Allen, C.C. and Allton, J.H., 1994. JSC-1: A new lunar soil simulant, Engineering, Construction, and Operations in Space IV.American Society of Civil Engineers, pp. 857-866.
    McKay, D.S., Finland, R.M. and Heiken, G.H., 1974. Grain size and the evolution of lunar soils, Lunar Science Conference, 5th. Pergamon Press, Houston, pp. 887-906.
    Mckay, D.S. et al., 1972. Apollo 14 soils: size distribution and particle types, 3rd Proc.Lunar Sci. Conf., pp. 983-995.
    McKay, D.S., Morris, R.V., Dungan, M.A., Fruland, R.M. and Fuhrman, R., 1976.Comparative studies of grain size separates of 60009, Lunar and Planetary Science Conference, pp. 295-313.
    Mendell, W.W., 1985. Lunar Bases and Space Activities of the 21st Century, Lunar and Planetary Institute, Houston.
    Metaxas, A.C. and Meredith, R.J., 1983. Industrial Microwave Heating. Peter Peregrinus, London.
    Metzger, A.E., Trombka, J.I., Peterson, L.E., Reedy, R.C. and Arnold, J.R., 1973.Lunar Surface Radioactivity: Preliminary Results of the Apollo 15 and 16 Gamma-Ray Spectrometer Experiments. Science, 179(4975): 800-803.
    Misra, D.K. and Fenske, K., 2000. Dielectric materials at microwave frequencies.Applied Microwaves and Wireless, 12(12): 92-100.
    Moore, R.B. and Wolfe, E.W., 1987. Geologic Map of the East Part of the San Francisco Volcanic Field, North-Central Arizona. U.S. Geological Survey,Washington, D.C.
    Morris, R.V., 1978. The surface exposure (maturity) of lunar soils: Some concepts and Is/FeO compilation. 9th Proc. Lunar Planet. Sci.: 2287-2297.
    Morris, R.V., 1985. Determination of optical penetration depth from reflectance and transmittance measurements on albite powders, Lunar and Planetary Science XVI.Lunar and Planetary Institute, Houston, pp. 581-582.
    
    Morris, R.V. and Gose, W.A., 1976. Ferromagnetic resonance and magnetic studies of cores 60009/10 and 60003: compositional and surface-exposure stratigraphy, 7th Proc. Lunar Sci Conf., Houston, pp. 1-11.
    Morris, R.V., Score, R., Dardano, C. and Heiken, G., 1983. Handbook of Lunar Soils, Publication 67. Johnson Space Centerr, Houston, TX, 914 pp.
    Nakamura, Y., Dorman, J., Deuennebier, F., Lammlein, D. and Lathan, G, 1975.Shallow lunar structure determined from the passive seismic experiment. Moon, 13:3-15.
    NASA, 2003. Sampling the Moon.http://www-curator.jsc.nasa.gov/curator/lunar/letss/sampling.pdf.
    Nelson, S.O., Lindroth, D.P. and Blake, R.L., 1989. Dielectric properties of selected minerals at 1-22 GHz. Geophysics, 54: 1344-1349.
    Nelson, S.O. and You, T.S., 1989. Microwave dielectric properties of corn and wheat kernels and soybeans. Trans of the ASAE, 32(1): 242-249.
    Nguyen, B.-L., Bruining, J. and Slob, E.C., 1998. Measurement of dielectric parameters of rock cores at 300 kHz to 3 GHz frequencies, Proceedings of the 1998 6th International Oil & Gas Conference and Exhibition in China, IOGCEC.Part 1 (of 2), Nov 2-6 1998. Proceedings of the International Oil & Gas Conference and Exhibition in China, IOGCEC. Soc Pet Eng (SPE), Richardson, TX, USA,Beijing, China, pp. 639-647.
    Ni, E.H. and Ni, U.Q., 1997. Extra-cavity perturbation method for the measurement of dielectric resonator materials. Rev. Sci. Instrum,, 68: 2524-2528.
    Nordin, C, F, 1989. Application of Engelund Hansen Sediment Transport Equation in Mathematical Models, Fourth International Symposium on River Sedimentation,Beijing, China, pp. 611-616.
    Oberbeck, V.R. and Quaide, W.L., 1968. Genetic implications of lunar regolith thickness variations. Icarus, 9: 446-465.
    Olhoeft, G.R., 1976. Electrical properties of rocks. In: R.J.G. Strens (Editor), the Physics and Chemistry of Rocks and Minerals. Wiley, London, pp. 261-278.
    Olhoeft, G.R., Frisillo, A.L., Strangway, D.W. and Sharpe, H., 1974. Temperature dependence of electrical conductivity and lunar temperatures. The Moon, 9: 79-88.
    Olhoeft, G.R., Frisillo, A.L. and Strangway, E.W., 1973. Lunar sample electrical properties. Geochemica Cosmochimica Acta. in: Proceedings of 4th Lunar Science Conference, Suppl. 4: 3133-3149.
    Olhoeft, G.R. and Strangway, D.W., 1975. Dielectric properties of the first 100 meters of the Moon. Earth and Planetary Science Letters, 24(3): 394-404.
    Papike, J.J., Hodges, F.N., Bence, A.E., Cameron, M. and Rhodes, J.M., 1976. Mare Basalts: Crystal Chemistry, Mineralogy, and Petrology. Review of Geophysics and Space Physics, 14(4): 475-540.
    Papike, J.J., Simon, S.B. and Laul, J.C., 1982. The lunar regolith: chemistry,mineralogy and petrology. Rev. Geophys. Space Phys, 20: 761-826.
    Papike, J.J., Taylor, L.A. and Simon, S., 1991. Lunar minerals. In: G. Heiken, D. Vaniman and B.M. French (Editors), Lunar Sourcebook. Cambridge Univ. Press,Cambridge, pp. 121-181.
    Peeples, W.J. et al., 1978. Orbital radar evidence for lunar subsurface layering in Maria Serenitatis and Crisium. J. Geophys. Res., 83: 3459-3468.
    Pieters, C.M., 1983. Strength of mineral absorption features in the transmitted component of near-infrared light: first results from RELAB. J.Geophys.Res, 88:9534-9544.
    Robinson, D.A. and Friedman, S.P., 2003. A method for measuring the solid particle
     permittivity or electrical conductivity of rocks, sediments, and granular materials. J.Geophys. Res., 108(B2): 2076.
    
    Rust, A.C., Russell, J.K. and Knight, R.J., 1999. Dielectric constant as a predictor of porosity in dry volcanic rocks. Journal of Volcanology and Geothermal Research. 91:79-96.
    Schmitt, R.A. and Laul, J.C., 1973. A survey of the selenochemistry of major, minor and trace elements. Earth, Moon, and Planets, 8(1-2): 182 - 209.
    Schock, R.N., Duba, A. and Stacker, R.L., 1980. Defect production and electrical conductivity in olivine (abstract), Lunar and Planetary Science XI. Lunar and Planetary Institute, Houston, pp. 987-989.
    Schwerer, F.C., Huffman, G.P., Fisher, R.M. and Nagata, T., 1974. Electrical conductivity of lunar surface rocks: laboratory measurements and implications for lunar interior temperature, Proc. Lunar Sci. Conf. 5th, pp. 2673-2687.
    Sears, F.W., Zemansky, M.W. and Young, H.D. (Editors), 1982. University Physics.Addison-Wesley, New York.
    Sen, P.N., Scala, C. and Cohen, M.H., 1981. A self-similar model for sedmentary rocks with application to the dielectric constans for fused glass beads. Geophysics,46: 781-795.
    Seyfried, M.S. and Murdock, M.D., 1996. Calibration of time domain reflectometry for measurement of liquid water in frozen soils. Soil Sci, 161: 87-98.
    Shkuratov, Y.G. and Bondarenko, N.V., 2001. Regolith Layer Thickness Mapping of the Moon by Radar and Optical Data. Icarus, 149(2): 329-338.
    Shkuratov, Y.G., Kaydash, V.G. and Opanasenko, N.V., 1999. Iron and Titanium Abundance and Maturity Degree Distribution on the Lunar Nearside. Icarus, 137:222-234.
    Shoemaker, E.M. et al., 1969. Observations of the lunar regolith and the Earth from the television observations from Surveyor 7. J. Geophys. Res., 74: 6081-6119.
    Shoemaker, E.M.e.a., 1968. Television observations from Surveyor. NASA SP-146.JPL Technical Report 32-1265, In: Surveyor Project Final Report, Part II.
    Simon, S.B., Papike, J.J. and Laul, J.C., 1982. The lunar regolith - Comparative studies of the Apollo and Luna sites. Petrology of soils from Apollo 17, Luna 16,20, and 24, Lunar and Planetary Science Conference, pp. 371-388.
    Singh, R.P. and Kumar, V., 1990. Use of microwave remote sensing salinity estimation. International Journal of Remote Sensing, 11: 321-330.
    Sonett, C.P., 1982. Electromagnetic induction in the Moon. Rev. Geophys. Space.Phys, 20: 411-456.
    Stacy, N.J.S., 1993. High-Resolution Synthetic Aperture Radar Observations of the Moon. Ph.D. Thesis: 71.
    Strangway, D.W. and Olhoeft, G.R., 1977a. Electrical properties of planetary surfaces,Royal Society of London Philosophical Transactions Series A, 285: 441-450.
    Strangway, D.W. and Olhoeft, G.R., 1977b. Electrical properties of planetary surfaces.in The Moon: A New Appraisal from Space Missions and Laboratory Analyses.A285. Phil. Transactions Royal Society of London, London, 441-450 pp.
    Strangway, D.W., Pearce, G.W. and Olhoeft, G.R., 1975. Magnetic and dielectric properties of lunar samples, the Soviet-American Conference on Cosmochemistry of the Moon and Planets. Reprinted by NASA SP-370, Nauka,Moscow, pp.712-728.
    Strangway, D.W., Pearce, G.W. and Olhoeft, G.R., 1977. Magnetic and dielectric properties of lunar samples, The Soviet-American Conference on Cosmochemistry of the Moon and Planets, pp. 417-431.
    
    Takubo, J., Ukai, Y. and Kakitani, S., 1953. On the dielectric constants of minerals.Minerol. J, 1: 3-24.
    Taylor, L.A. et al., 2003. Mineralogical Characterization of Lunar Highland Soils,Lunar and Planetary Institute Conference Abstracts, pp. 1774.
    Taylor, S.R. and Mclennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312 pp.
    Thompson, T.W., 1987. High-resolution lunar radar map at 70-cm wavelength. Earth,Moon,Planets, 37: 59--70.
    Tian, B., Liu, Q., Yang, D. and Tang, J., 2002. Three equationss or determining material complex permittivity using transmission / reflection method. Journal of Astronautics, 23(5): 21-27 (in Chinese with English abstract).
    Troitskii, V.S., 1962. Radio Measurements of the Dielectric Constant and the Density of the Outer Covering of the Lunar Surface. Soviet Astronomy, 5: 764.
    Ulaby, F.T. et al., 1990. Microwave dielectric properties of dry rocks. IEEE Transactions on Geoscience and Remote Sensing, 28(3): 325-336.
    Vaid, J.K., Prakash, A. and Mansingh, A., 1979. Measurement of dielectric parameters at microwave frequencies by cavity perturbation technique. IEEE Trans. Microwave Theory Tech., 27: 791-795.
    Vinogradov, A.P., 1971. Preliminary Data on Lunar Ground Brought to Earth by Automatic Probe Luna-16. Geochimica et Cosmochimica Acta (Proc. of 2nd Lunar Science Conf.), l(Suppl. 2): 1-16.
    Vinogradov, A.P., 1973. Preliminary data on lunar soil collected by the Luna 20 unmanned spacecraft* 1. Geochimica et Cosmochimica Acta, 37(4): 721-722.
    Von Hippel, A., 1954. Dielectrics and Waves. Wiley, New York.
    Wallin, S.R., 1985. Dielectric Properties of Heterogeneous Media. Ph.D. Thesis:46-106.
    Wang, X.Y., Guo, H.D., Wang, C. and al, e., 1999. Relative dielectric constant of dry rocks. Chinese Science Bulletin, 44(24): 2286-2292.
    Weiblen, P.W. and Gordon, K., 1988. Characteristics of a Simulant for Lunar Surface Materials, the Second Conference on Lunar Bases and Space Activities of the 21st Century. Lunar and Planetary Institute, Houston, TX, pp. 254.
    Weiblen, P.W., Murawa, M.J. and Reid, K.J., 1990. Preparation of simulants for lunar surface materials, Engineering, Construction, and Operations in Space II. American Society of Civil Engineers, New York, pp. 428-435.
    Willman, B.M. and Boles, W.W., 1995. Soil-tool interaction theories as they apply to lunar soil simulant. Journal of Aerospace Engineering, 8(2): 88-99.
    Willman, B.M., Boles, W.W., McKay, D.S. and Allen, C.C., 1995. Properties of lunar soil simulant JSC-1. Journal of Aerospace Engineering, 8(2): 77-87.
    Willman, B.M., Boles, W.W., McKay, D.S. and Allen, C.C., 1996. Properties of lunar soil simulant JSC-1. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 33(1): 13A.
    Winter, J.D., 2001. An Introduction to Igneous and Metamorphic Petrology. Prentice Hall, Upper Saddle River, New Jersey.
    Xuyan, T. et al., 1984. Passive microwave radiometry in the Gobi-desert region.Remote Sensing of Environment, 15(1): 37-46.
    Yadav, A.S. and Parshad, R., 1971. On the utilization of Bottcher's formula for correct correlation of dielectric constant of powder and bulk. J. Phys. D: Appl. Phys, 4:822-824.
    Yoshida, H. et al., 2000. Experimental Study on Water Production by Hydrogen Reduction of Lunar Soil Simulant in a Fixed Bed Reactor, Abstract of Space
     Resources Roundtable II, Golden, USA, pp. 75.
    
    Zakri, T. and Laurent, J.P., 1998. Time domain reflectometry techniques for water content measurement. High Temp - High Pressures, 30: 19-23.
    Zakri, T., Laurent, J.P. and Vauclin, M., 1998. Theoretical evidence for Lichtenecker's mixture formulae' based on the effective medium theory. Journal of Physics D Applied Physics, 31: 1589-1594.
    Zheng, Y.C., Wang, S.J., Feng, J.M., Ouyang, Z.Y. and Li, X.B., 2005a. Mechanism of Regulation of EM Parameters in Natural Impure Ferrite and its Applications in Microwave Absprbing Materials. Science in China (E): Publishing.
    Zheng, Y.C., Wang, S.J., Ouyang, Z.Y. and Li, X.Y., 2005b. Measurement of the Dielectric Properties of Volcanic Scoria and Basalt at 9370 MHz. Acta Geologica Sinica, 79(2): Publishing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700