用户名: 密码: 验证码:
MEMS及纳米接触研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统的研究了MEMS的主要工作原理、工艺方法、主要存在的问题,重点讨论了严重影响MEMS性能、阻碍MEMS进入市场的纳米接触问题,并从物理力学领域出发,根据物质结构和固体物理学理论,详细分析了纳米接触的实质,提出一种工程实用的纳米接触力计算方法,为MEMS的结构设计提供理论依据,分析了AFM针尖同试样面的纳米接触力,为AFM实现原子操纵研究提供理论基础。主要工作如下:
     1)分析了影响MEMS性能的粘附现象,提出了粘附现象的实质为物质间的纳米接触问题,并阐述了纳米接触问题的研究方法为量子力学法、分子动力学法和连续介质法,介绍了分子动力学和连续介质法的研究现状。
     2)系统分析了MEMS的压容原理、压阻原理、静电原理、压电原理、隧道原理和形状记忆合金原理等工作原理:介绍了MEMS的平面加工工艺、体硅加工工艺、LIGA技术、准分子激光加工技术、分子操纵技术等MEMS工艺,提出了MEMS有待进一步研究的领域。
     3)介绍了双原子势函数,重点分析了Lennard-Jones势,推导出Lennard-Jones势中的A、B常数的表达式,计算出双原子间引力最大位置和力平衡位置,阐述了微观连续介质的理论基础——Hamaker假设。
     4)通过分析双原子间引力,发现Hamaker假设在距离近时不成立的现象;通过分析相对误差,得到Hamaker假设的定义域为接触距离大于7倍的原子半径的结论;计算了双原子的斥力,得到Hamaker假设的合力定义域为接触距离大于10倍的原子半径的结论。分析了Hamaker常数和数字密度,得到Hamaker常数和数字密度均随距离变化的结论。
     5)提出了Hamaker假设的距离修正理论,首次对Hamaker假设进行了修正。分析了距离修正系数,并计算了修正系数对多原子修正时的误差变化规律,得到计算微观物质间作用力的连续介质法的计算式。
     6)介绍了晶体结构和空间点阵,发现Hamaker假设模型中存在原子空隙,导致Hamaker假设1和Hamaker假设2存在矛盾,并由此介绍了W-S模型。
     7)通过分析双原子模型,推导出体心立方体和面心立方体的引力、斥力空隙修正系数;进一步分析空隙修正系数发现,当距离趋向无穷远时,空隙修正系数等于W-S单元体积和原子体积比值的平方,由此得到Hamaker假设仅在距离无穷远处才成立的结论。
     8)分析了W-S模型连续介质法对不同距离的原子修正时的误差变化规律,提出Hamaker假设的空隙修正理论,对Hamaker假设进行了第二次修正。提出纳米接触的W-S模型连续介质法的计算式。
     9)建立了面心立方体结构的刚性平面同单原子之间作用力的离散模型,用离散法推导出单原子同刚性平面间的作用力表达式,通过大量仿真,从量上证实了对合力起作用的原子主要是接触区域附近的少数原子的结论。
     10)用W-S模型连续介质法推导出单原子同刚性平面的作用力表达式,并同离散法得到的单原子——刚性平面作用力比较,通过仿真,比较两者的相对误差,
    
    MEMS及纳米接触研究
    得到两种方法结果误差很小的结论,从而完善了W一S模型微观连续介质法的理
    论基础。
     11)用w一S连续介质法推导出AFM球型针尖同试样面的作用力,经过仿真
    计算,并同实验结果比较,发现修正结果很明显,进一步验证了W一S模型连续
    介质法的正确性。
     12)推导出AFM圆锥针尖、四棱锥针尖、抛物面体针尖同试样面作用力的
    表达式。通过比较引力、斥力的相对误差,得到圆锥、四棱锥和抛物面体针尖同
    试样面的纳米接触力分别在接触距离大于2、2.5、3.5倍的原子距离时,可以不
    考虑斥力对合力的影响的结论。仿真了三种常见的AFM针尖同试样面的粘着力。
     13)基于分析力学的虚功原理,讨论了微悬臂梁的弹性力同粘着力间的粘
    着稳定性;分析了非稳定平衡位置对微梁状态的影响;通过增加微梁刚度的方法,
    分析了微梁为避免粘着现象发生,其结构尺寸所具有的关系,并给出了触点分别
    为抛物面型、圆锥型和四棱锥型时的仿真结果,为工程实际微梁的结构设计提供
    理论基础。
     14)讨论了悬臂梁的动力响应,通过对微梁连续体的离散化,用有限元理
    论仿真出悬臂梁末端同基座的粘附现象。
    关键词:MEMS,纳米接触,粘着力,AFM,Hamaker假设,微观连续介质理
     论
The principles, fabrication methods and problems of micro-electromechanical system (MEMS) are studied in this paper, with emphasis on the nano-contact that affects the MEMS performance and prevents the MEMS from going into market. Firstly, according to the physical mechanics principle, on the basis of the principle of substance structure and solid physics, the nano-contact is analyzed carefully. Secondly, an engineering practical calculation way of the nano-contact is put forwarded. Finally, the adhesion between the tip and the sample of the atomic force microscopy (AFM) is discussed. The main works and conclusions include:1) The analysis of the "stick" phenomenon. The conclusion, which "stick" problem belongs to the nano-contact problems, is drawn. The research ways of the nano-contact problem are introduced, and emphasized on the molecule dynamic and continuum medium mechanics.2) The introduction of the principles of capacitive principle, piezoresistive principle, electrostatics principle, piezoelectric principle, stunning principle and shape memory alloy principle. The fabrication processes of the MEMS are discussed, and emphasized on the silicon surface sacrificial, bulk silicon fabrication, LIGA technology and molecule manipulating technology. The fields of the MEMS, which demand further study, are put forwarded.3) The introduction of the double electron potential, with emphasis on the classical Lennard-Jones potential. The A and B constants of the Lennard-Jones potential are obtained, and followed by the key positions of the balance spot and the attract force biggest spot. The Hamaker hypothesis is discussed.4) The discover of the atomic attract force, which is got on the continuance medium method of the Hamaker theory, is not in agreement with the classical Lennard-Jones potential. The conclusions, which the Hamaker homogeneous hypothesis only holds true for the long distance between the two micro-substances, is obtained. The attract force domain of definition of the Hamaker theory: h∈(7r,∞) is obtained. The same phenomenon in the repulsive force is found by the same method. Synthesizing the attraction and repulsive force, The domain of definition of the Hamaker theory: h∈(10r,∞), which includes the repulsive force, is put forward after analyzing the rule of relative error. In addition, the Hamaker constant and digit density are analyzed. The conclusion, which the Hamaker constant and digit density are varied with the contact distance, is obtained.5) The Hamaker hypothesis distance revision theory is put forward, which is the first revision of the Harnake. hypothesis. The distance revision factors, k_1 and k_2, are obtained. Both of their relative errors and absolute errors are discussed. The micro continuum medium contact force equation is gotten.6) The crystal structure and space point lattice are discussed. The atom gap, which exits in the Hamaker model, Is discovered. The contradiction between the Hamaker 1
    
    and the Hamaker 2 is obtained. So the Wigner-Seitz model is put forward.7) By analyzing the double electron model, the gap revision factors of attract force and repulsive force with body center cube and face center cube are obtained. A surprised phenomenon, the air-gap revision factors are equal to the square of Wigner-Seitz size divided by the atom size when the distance tends to infinity, is discovered, and followed by the conclusion that the Hamaker theory does not hold until the distance between the substances becomes infinite and the number density is equal to the Wigner-Seitz unit.8) The error rules of the Wigner-Seitz model continuum medium method are analyzed which vary with the distance. The principle of the Hamaker hypothesis gap revision is set up. The Hamaker hypothesis is revised secondly. The nano-contact Wigner-Seitz model calculation equation is gotten.9) The discrete model of the single atom and rigid plane with the face center cube is found. The force equation between the single atom and rigid plane is obtained on discretion way. The several simulation
引文
[1] D. M. Kraff, Micromachined inertial sensors: the state of the art and a look into the future, Measurement Control, 2000, 33, 164-168.
    [2] 丁衡高,微机电系统的科学研究和技术开发,清华大学学报,1997,37(9),1-5。
    [3] 丁衡高,面向21世纪的军民两用技术——微米/纳米技术,微米/纳米技术文献,国防工业出版社,北京,1994,
    [4] W. Ye, et al., Optimal shape design of an electrostatic comb drive in microelectromechanical systems, IEEE J. of microelectromechanical systems, 1998, 7(1), 16-26
    [5] S. Shoji et al., Microflow devices and system, J. of micromech. Microengi., 1994, 4, 157-171
    [6] K. Suziki, et al., Insert-model based microrebot with elastic hings, IEEE J of microelectromechanical systems, 1994, 3 (1), 4-9
    [7] A. Teshigahara, Performance of a 7-mm microfabricated car, IEEE J of microelectromechanical systems, 1995, 4(2), 76-80
    [8] 王立鼎等,抓住机遇,推动我国微型机械的快速发展,中国机械工程,1999,10(2),121-122
    [9] 周兆英等,微型机电系统,中国机械工程,2000,11(1),163-168
    [10] K. Y. Yasumura, et al., Quality factors in micro and submicron thick cantilevers, IEEE J of microelectrornechanicaI systems, 2000, 9(1)
    [11] J. H. Shao et al., Nonlinear vibration of cantilever beam of tapping model atomic force microscopy, J. of China univ. of sci. and technology, 2001, 32(2), 247-253
    [12] V. A. Aksyuk et al., Lecent microstarcromirrorarray technology for large optical crossconnects, Proceeding of SPIE, 2002, 178
    [13] D. J. Blwnenthal, All optical labels swapping with wavelength conversion for WDM-IP networks with subcarrier multiplexed addressing. Photonics technology letters, 1999, 11, 1497-1499
    [14] D. J. Bishop et al., The rise of optical switching, Scientific American, 2001, 88-94
    [15] D. A. Wlodkowski et al., The development of high-sensitivity, low-noise accelerometer utilizing single crystal piezoelectric materials, sensors and actuators, 2001, A90, 125-131
    [16] R. D. Astumian, Thermodynamics and kinetics of a Brownian motor, Science, 1997, 276, 917-922
    [17] M. F. Crommie et al., Imaging standing waves in a two-dimensional electron gas, Nature, 1993, 363, 524-527
    [18] O. B. Degani et al., Comparative of novel micromachined accelerometer employing MIDOS, Sensors and actuators, 2000, A80, 91-99
    [19] H. Fujita, Future of actuators and Microsystems, Sensors and actuators, 1996, A56, 105-111
    [20] M. Bao et al., Future of microelectromechanical system (MEMS), Sensors and actuators, 1996, A56, 135-141
    [21] K. Taepark et al., Amultilink active catheter with polyimide-based integrated CMOS interface circuits, IEEE J of microelectromechanical systems, 1999, 80(4)
    [22] T. Hertel et al., Deformation of carbon nanotabes by surface vander waals force, Play. Rev. B, 1998, 58(20), 13870-13873
    [23] E. Socher et al., Optical performance of CMOS compatible IR thermoelectric sensors, IEEE J of microelectromechanical systems, 2000, 9(1), 38-46
    [2
    
    [24] F. Ayazi et al., Design and fabrication of a high-performance polysilicon vibrating ring gyroscope, Pro. IEEE microelectromechanical systems workshop, 1998, Heideberg, 621-628
    [25] B. P. Amavasai et al., Vision control for a MEMS robotic systems. Measurement control, 2000, 33, 269-273
    [26] 齐臣杰等,台面结构硅光电集成微电动机设计,清华大学学报,1999,39(1),66-68
    [27] 罗晓章,扭摆式硅微加速度计的研究,仪器仪表学报,2000,21(1),32-34
    [28] 李振波等,直径1mm电磁型实用超微马达的设计,仪器仪表学报,2000,21(2),163-166
    [29] 裘安萍等,扭摆式硅微加速度计的优化设计,仪器技术与传感器,1999,11,8-10
    [30] 金磊等,微加速度传感器硅微结构设计,传感器技术,2000,19(2),23-25
    [31] 吴建辉,微硅型扭摆式静电力平衡加速度计的设计分析,仪表技术与传感器,1999,4,10-13
    [32] 郑英彬等,叉指示微加速度计的静电——机械耦合场分析,传感器技术,2002,21-25
    [33] 尹执中等,热驱动薄膜式微型泵性能初步分析,仪器仪表学报,2000,21(2),132-134
    [34] 李军俊等,新型硅微加速度传感器的设计与此无关制作,清华大学学报,1999,39(1), 84-87
    [35] 朱惠中等,差动式石英谐振式力传感器,传感器技术,1999,5,7-9
    [36] 梁春广等,MEMS光开关,半导体学报,2001,22(12),1551-1556
    [37] 邵培革,微机械元件和器件新进展,光学,精密工程,1999,7(1),10-15
    [38] 温诗铸等,纳米压痕技术及其应用,中国机械工程,2002,13(16),1437-1439
    [39] 黄德欢等,扫描隧道显微镜单原子操纵技术及其物理机理,上海交通大学学报,2001,35(2), 157-166
    [40] 魏华征等,射频微机械开关的计算机辅助设计,半导体学报,2002,23(9),947-950
    [41] 丁衡高等,叉指式硅微加速度计的结构设计,清华大学学报,1998,38(11),38-41
    [42] 卞建涛等,ANSYS在接触式电容压力传感器非线性分析中的应用,传感器技术,2002,3,3-6
    [43] 张中平等,微硅高g加速度传感器工艺研究,传感器技术,2002,4,1-4
    [44] 陈兢等,纹膜结构微麦克风动态特性,半导体学报,2001,22(7),951-956
    [45] A new concept for a self-testable pressure sensors based on the bimetal effect, Sensors and actuators, 2000, A82, 69-73
    [46] D. Haronian, A low-cast micromechanical accelerometer with integrated with solid-state sensor. Sensors and actuators. 2000. A84. 149-155
    [47] 任天令等,铁电——硅集成微麦克风和扬声器研究,清华大学学报.1999,74-76
    [48] K. H. Kim, A skew-symmetric cantilever accelerometer for automotive airbag application, Sensors and actuators, 1996, A54, 523-529
    [49] L. C. Spangler et al., Integrated silicon automotive accelerometer, Sensors and actuators, 1996, A54, 523-529
    [50] 张泰华等,MEMS材料力学性能的测试技术,力学进展,2002,32(4),543-562
    [51] S. Prakash, Heirarchical method for approximating MEMS analysis, Pro. of Beenett conf., 1999
    [52] J. Redmond et al., Microscale modeling and simulating, Sandia report, 2001
    [53] 吴微等,表面微机械静电梳状驱动结构的研究,清华大学学报,1999,39(1),1-8
    [54] H. Kim et al., A laser-based 2 dimesional angular deflection measurement system for tilting microplates, Sensors and actuators, 2000, A86, 141-147
    
    [55] D. M. Tanner et al., MEMS reliability in a vibration environment, Pro. at IEEE international reliability physics symposium, San Jose,. 2000, 139-145
    [56] E. L. Florin et al., Adhesion force between individual ligand-receptor pairs, Science, 1994, 264, 415-417
    [57] 朱如曾,钱学森开创的物理力学,力学进展,2001.31(4),489-499
    [58] 钱学森,论技术科学,科学通报,1957,4,97-104
    [59] 钱学森,物理学讲义,科学出版社,北京,1962
    [60] 周富信,物理力学,科学出版社,北京,2002
    [61] R. S. Bradley, The cohesive force between solid surface and the surface energy of solids, Phil. Mag., 1932, 13, 853-862
    [62] K. L. Joheson et al., Surface energy and the contant of elastic solids, Proc. R. Lond, 1971, A324, 301-313
    [63] B. Y. Derjaguin et al., Effect of contact deformation on the adhesion of particles, J. of colloid interface sci., 1975, 53(2), 314-326
    [64] D. Tabor, Surface force and surface interactions, J. of colloid interface sci., 1977, 58(1), 2-13
    [65] 赵亚溥等,Tabor数、粘着数与微尺度粘着弹性接触理论,力学进展,2000,30(4), 529-535
    [66] J. A. Greenwood, Adhesion of elastic spheres, Pro. R Soc. Land., 1997, A453, 1277-1297
    [67] J. A. Emerson, The effect of surface contamination on adhesion force as measured by contact mechanics, Mat. Res. Soc. symp., 2000, FF8. 71-FF8. 76
    [68] 铁摩辛柯,弹性理论,高教出版社,北京,1990
    [69] 丁建宁等,微型机械薄膜结构在量子力学作用下的稳定性和粘附问题,机械工程学报,2002,38(9),52-55
    [70] B. J. Alder et al., Phase transition for a hardsphere system, J. of cheniacl physics, 1957, 27, 1208-1209
    [71] J. Zhu, A b intio pseud opotential calculations of dopant diffusion in si, Computational materials science, 1998, 12 309-318
    [72] L. A. Magne et al., A lattice kinetic monte carlo code for description of vacancy diffusion and self-organization in si, Nuclear instruments and methods in physics research, 1999, B148, 262-267
    [73] Z. W. Pan et al., Very long carbon nanotubes, Nature, 1998, 349, 631-633
    [74] L. Lu et al., Superplastic extensibility of nanocrystalline copper at room temperature, Science, 2000, 287(5457), 1463-1466
    [75] 文玉华等,分子动力学模拟的主要技术,力学进展,2003,33(1),65-72
    [76] 白以龙,迅速发展的非线性连续介质力学研究,力学进展,1996,26(4),433-436
    [77] 杨卫等,纳米力学进展,力学进展,2002,32(2),161-188
    [78] H. C. Hamaker, Physica, Amsterdam, 1937, 1058
    [79] I. Y. Sokolov, On the limits of the spectroscopic ability of A FM and the intectaction between an AFM tip and sample, Surface sci., 1994, 311, 287-294
    [80] I. Y. Sokolov et al., The high dependence of image contact when imaging by non-contact AFM, surface sci., 2000, 464, L745-L751
    [81] C. Argento et al., Parametric tip model and force-distance relation for Hamaker constant deformation from atomic microscopy, J. appl. Plays., 1996, 80(11), 6081-6090
    [82] M. Bordog et al., Corrections to the van der waals force in application to atomic force microscopy, Surface sci., 1995, 328, 129-134
    [8
    
    [83] E Arai et al., Micromanipulation based on microphysics, IEEE conf. on intel. Robot and systems, Pittsburgh, 1995, 236
    [84] 田文超,贾建援,Hamaker假设的连续介质修正,物理学报,2003,52(5),1061-1065
    [85] S. Chatzandroulis et al,, Aminiature pressure system with a capacitive sensor and a passive telemetry link for use in implantabte applications, IEEE J of microelectromechanical systems, 2000, 9(1), 18-23
    [86] T. Harness, Characteristic model of electrostatic comb-drive X-Y micro actuators, IEEE J of microelectromechanical systems, 1999, 9, 1-8
    [87] K. Tanaka et al., Amicromachined vibrating gryoscope, Sensors and actuators, 1995, A50, 111-115
    [88] J. A. Harley, 1/F noise considerations for the design and process optimization of piezoresistive cantilevers, IEEE J of microelectromechanical systems, 2000, 9(2), 226-235
    [89] A. Partride et al., Ahigh-performance planar piezoresistive accelerometer, IEEE J of microelectromechanical systems, 2000, 9(1), 58-65
    [90] Y. Suzuki et al., Development of a new type piezoelectric micromotor, Sensors and actuators, 2000, 83, 244-248
    [91] M. T. Sail et al., Analytical modeling of electrostatic membrane actuator for micro pumps, IEEE J of microelectromechanical systems, 1999, 8(3), 335-344
    [92] L. S. Fan et al., Pin joints, gears, springs, cranks and other novel micromechanical structures, 4th int. con. of sold state sensors and actuators, Tokyo, 1988, 848-852
    [93] T. Kanda et al., A flat type touch probe sensor using PZT thin film vibrator, Sensors and actuators, 2000, A83, 67-75
    [94] H. J. Ding et al., A general solution for piezo thermoelsaticty of transversely isotropic piezoelectric materials and applications, Int. j. engineering science, 2000, 38, 1415-1440
    [95] C. J. Morris et al., Optimization of a circular piezoelectric bimorph for a micropump drive, J. micromech, microeng, 2000, 10 281-287.
    [96] D. Dilella et al., A micro machined magnetic-field sensor based on an electron tunneling displacement transducer, Sensors and actuators, 2000, A86, 8-20
    [97] 陈德英,隧道式加速度传感器的制备,传感器技术,2000,19(6),4-6
    [98] G. Binning et al., Scanning tunneling microscopy, HEL. VETICA phy. ACTC, 1982, 55, 726-735
    [99] I. Amato, Atomic imaging candid cameras for the nanoword, Science, 1997, 276,1982-1985
    [100] J. B. Pethica et al., Atomic force microscopy: hnaging al surface, nature, 2001, 414, 27-29
    [101] S. Benreaazk et al., Observation of nanometric metallic particles with an apertureless scanning near-field optical microscope, surface science, 2001, 491, 195-207
    [102] 白春礼,纳米科技及其发展前景,科学通报,2001,46(2),89-92
    [103] E. Makin et al., Dynamic actuation properties of TiNi shape memory diaphragm, Sensors and actuators, 2000, 79, 128-135
    [104] E. Makino et al., Micro-machining of TiNi shape memory thin film for fabrication of micro-pump, Sensors and actuators, 2000, 79, 251-259
    [105] M. Kohl et al., Thin fihn shape memory microvalves with adjustable operation temperature, Sensors and actuators, 2000, 83,214-249
    [106] W. L. Benard et al., Thin-film shape memory alloy actuated micro-pumps, IEEE J of microelectromechanical systems, 1998, 7(2), 245-250
    [1
    
    [107] M. Chiao et al., Self-bucking of micromachined beams under resistive heating, IEEE J of microelectromechanical systems, 2000, 9(1), 146-151
    [108] 李立杰,微机械热对流加速度计,半导体学报,2001,22(4),465-468
    [109] E. Thielicke et al., Microactuators and their technologies, Mechatronics, 2000, 10, 431-455
    [110] V. R. Jaecklin et al., Micromechanical comb actuator with low driving voltage, IEEE J of microelectromechanical systems, 1996, 2, 250-255
    [111] J. L. Andrew et al., Electrostatic model for an asymmetric combdrive, IEEE J of microelectromechanical systems, 2000, 9(1), 126-135
    [112] E. W. Becker, Fabrication of microstructure with high aspect ratios and great structure heights by LIGA, Microelectronic engineering, 1986, 4, 35-40
    [113] T. Numazawa et al., Anew control method for the relative dielectric constant of 1-3 piezoelectric composites realized with the LIGA process, Microsystem tech., 2000, 6, 130-134
    [114] O. Ludtke et al., Laterally driven accelerometer fabricated in single crystalline si, Sensors and actuators, 2000, 82, 149-154
    [115] E. T. Einspruch et al., Athermodynamic field theory for anodic bonding of microelectromechanical system (MEMS), Int. j. of engineering science, 2000, 38, 135-158
    [116] R. Feynman, There's plenty of room at the bottom, invited talk at the American phy. Society, 1959
    [117] A. Kobayashi et al., Formation of nanometer scale grooves in si with a scanning tunneling microscope, Science. 1993, 259, 1724-1726
    [118] D. H. Huang, Manipulating atoms one by one by scanning tunneling microscope, surface rev. lett., 1996, 3. 1463-1472
    [119] D. M. Eigle, Positioning single atoms with a scanning tunneling microscope, Nature, 1990, 344, 524-526
    [120] D. M. Eigle et al., Waves on a metal surface and Ge controls, Surface rev. lett, 1993, 2, 127-137
    [121] J. Uppenbrink et al., Single molecules, Science, 1999, 283, 16
    [122] F. J. Giessibl, Atomic resolution of the si(111)-(7x7) surface by atomic force microscopy, Science, 1995, 267, 68-71
    [123] F. Ohnesorg et al., True atomic resolution by atomic force microscopy through repulsive and attractive force, Science, 1993, 260, 1451-1456
    [124] T. Namozu et al., Plastic deformation of nanometric single crystal silicon wire in AFM bending test at intermediate temperature, IEEE J of microelectromechanical systems, 2002, 11(2), 125-134
    [125] R. V. Gastel et al., A giant atomic slide-puzzle, Nature, 2000, 408, 665
    [126] J. Thaysen, AFM probe with piezoresistive read-out and a high symmetrical wheatstone bridge arrangment, Sensors and actuators, 2000, A83, 47-53
    [127] M. Radmacher et al., From molecules to cell, Science, 1992, 257, 1900-1905
    [128] U. Riebesell, Carbon fix for adiatom, Nature, 2000, 407, 959-960
    [129] S. J. Tans et al., Potential modulations along carbon nanotubes, Nature, 2000, 404, 834-835
    [130] H. Park et al., Nanomechanical oscillations in a sing-C60 transistor, Nature, 2000, 407, 57-60
    [131] D. I. Gittins, A nanometer-scale electronic switch consisting of a metal cluster and redox-addressable groups, Nature, 2000, 408, 67-69
    [1
    
    [132] B. L. Feringa, In control of molecular motion, Nature, 2000, 408, 151-154
    [133] D. Feldheim, Flipping a molecular switch, Nature, 2000, 408,45
    [134] J. R. Chisholm et al., Networks of nanotubes and containers, Nature, 2001,409, 150-152
    [135] L, C. Qin, The smallest carbon nanotube, Nature, 2000, 408, 50
    [136] L. Konwenhoven, Bouncing a C60 ball, Nature, 2000, 407, 35-36
    [137] 文玉华,纳米晶铜单向拉伸变形的分子动力学模型,力学学报,2002,34(1),29-35
    [138] 周兆英等,微机电系统,中国机械工程,2000,11(1),163-168
    [139] K. Chen et al., Thermal analysis and simulation of the microchannel flow in miniature thermal conductivity detectors, Sensors and actuators, 2000, 79, 211-218
    [140] 刘莹,温诗铸,微机电系统中微摩擦特性及控制研究,机械工程学报,2002,38(3),1-5
    [141] T. Namazu et al., Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM, IEEE J of microelectromechanical systems, 2000, 9(4), 450-459
    [142] M. Schliwa et al., Switching on kinesin, Nature, 2001, 411, 424-425
    [143] 李俊清等,物质结构导论,中国科学技术大学出版社,合肥,1990
    [144] X. Y. Guo et al., Earty stage of silicon nitride film growth studied by molecular dynamics simulations, surface science, 2001, 488, 133-140
    [145] B. D. Darwent, National standard reference data series, National bureau of standards, Washington, D. C. 1970
    [146] S. Salapaka et al., Amodel for friction in atomic force microscopy. Pro. of the American control conference, Chicago, 2000, 2102-2107
    [147] 陈米文等,基于Lifshitz理论的相同电介质分子间的等效吸引势,中国科学,2000,30(2),631-638
    [148] R. Martonak et al,, Orthorhombic phase of crystalline polyethylene, Phy. Rev., 1998, E57, 2,425-437
    [149] 田文超,贾建援,原子力显微镜针尖同接触面的纳米压痕粘着力,半导体学报,2003,24,70-74
    [150] A. I. Liushits et al., Model of nanocontact scanning force microscopy on ionic surface, Phys. Rev., B, 1999, 59(3), 2436-2448
    [151] D. Erts et al., Force interactions and adhesion of gold contact using a conbined atomic force microscope and transmission electrn microscope, Appl. Surface sci., 2002, 1887, 460-466
    [152] M. Gauthier et al., A theoretical study on mass sensitive surface analysis and subsurface imaging with dynamic force microscopy, surface sci., 2001, 495, 204-210
    [153] S. R Alvaro et al., Amplitade, deformation and phyase shirt in amplitude modulation atomic force microscopy, Surface sci., 2001, 471, 71-79
    [154] I.Y. Sokolov, The contrast meclaanism for true atomic resolution by AFMin non-contact mode, Surface sci., 1997, 381, L558-562
    [155] A. A. Bukharaev et al,, AFM investigation of selective etching mechanism of nano-structured silicon, Surface sci., 2001, 482-485, 1319-1324
    [156] K. Tagami et al., Tight-binding study of nano-contact acomic force microscopy images of si(001) surface, surface sci., 2001, 493, 56-62
    [157] 徐毓龙等,固体物理,西安电子科技大学出版社,西安,1990
    
    [158] 黄昆,固体物理学,高教出版社,北京,1988
    [159] 方俊鑫等,固体物理学,上海科技出版社,上海,1980
    [160] U. Landman et al., Atomistic mechanisms and dynamics of adhesion nanOindenatation, and fracture, Science, 1990. 248, 454-461
    [161] 张泰华等,纳米硬度技术的发展和应用,力学进展,2002,32(3),349-364
    [162] N. Sasaki et al., Theoretical evaluation of the frequency shift and dissipated power in nanocontact atomic force microscopy, Appl. Phy., 2001, A72, 39-42
    [163] J. A. Harley, A high-stiffness axial resonant probe for atomic force microscopy, IEEE J of microelectromechanical systems, 2001, 10(3), 434-441
    [164] N. Sakaki, Simulation of interaction force between si tip and Si(111)-Ag surface of IET structure in nanocontact AFM, Surface sci., 2001, 493, 188-193
    [165] 刘鸿文,材料力学,高等教育出版社,北京,1993
    [166] 汪家禾,分析力学,高等教育出版社,北京,1982
    [167] 梅凤翔,刘端,高等分析力学,北京理工大学出版社,北京.1991
    [168] S.S.苏尔,工程中的有限元法,科学出版社,北京,1991
    [169] 贾建援,工程有限单元法,西安电子科技大学出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700