用户名: 密码: 验证码:
西北太平洋五种海洋鱼类的分子系统地理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以西北太平洋小黄鱼(Larimichthys polyactis)、高眼鲽(Cleisthenes herzensteini)、斯氏美首鲽(Glyptocephalus stelleri)、长鲽(Tanakius kitaharai)、白氏文昌鱼(branchiostoma belcheri)和带鱼(Trichiurus japonicus)为研究对象,采用线粒体DNA分子标记技术对这六种海洋物种的分子系统地理学进行了研究,系统研究了这五种鱼类和文昌鱼的分子系统地理分布模式,阐述了五种海洋鱼类和文昌鱼的遗传多样性水平和遗传结构现状,探讨了其群体动态历史的演化过程,揭示历史因素(更新世冰期等)和当前环境因素(洋流等)对塑造海洋鱼类群体遗传结构和分子系统地理分布模式的重要作用。主要研究结果如下:
     1、研究了小黄鱼群体遗传多样性水平、遗传结构现状及其群体动态历史,对小黄鱼分布区内16个群体共298个个体的线粒体DNA控制区第一高变区序列进行了测定和分析。在小黄鱼控制区序列上检测到了高水平的基因多样度,揭示小黄鱼存在较高水平的遗传多样性。分子方差分析(AMOVA)和两两群体相比较的FST结果显示小黄鱼在所研究范围内存在显著的遗传结构。在小黄鱼群体内,我们检测到两个单倍型类群,这两个单倍型类群间的分化发生于更新世晚期,更新世冰期海平面的下降使西北太平洋边缘海之间产生隔离,这可能是两个单倍型类群之间发生分化的原因。两个单倍型类群在地域上的分布频率具有明显差异。最小跨度树(MST)结果和无限突变位点模型中性检验及核苷酸不配对分布表明小黄鱼经历了更新世的群体扩张(61kya-245kya)事件。
     2、种内系统进化关系为探讨历史因素和当前因素如何塑造群体当前分布格局提供了可能。为检测高眼鲽的群体遗传结构、群体动态历史及其殖化进程,我们对其分布范围内6个群体共121个个体的线粒体控制区序列进行了测定和分析。在高眼鲽控制区序列上检测到了较高水平的基因多样度,揭示高眼鲽可能存在较高水平的遗传多样度。群体遗传结构研究结果显示:高眼鲽在其分布范围内不存在IBD模式;分子方差分析(AMOVA)和FST结果显示高眼鲽在其分布范围内不存在显著的遗传分化;群体分化的确切检验结果显示不同地理群体个体间是随机交配的。中性检验及核苷酸不配对分布表明高眼鲽经历了更新世的群体扩张(94kya~376kya)事件;嵌套分支系统地理学分析(NCPA)结果显示,高眼鲽栖息地连续扩散是造成其当前的地理分布模式的主要原因。更新世冰期高眼鲽扩散后新建立的群体尚未在迁移与遗传漂变之间取得平衡,这是造成其在所研究范围内缺少与地理相对应的系统地理结构的原因。
     3、采用线粒体DNA控制区部分序列对日本沿海的斯氏美首鲽群体遗传结构和群体动态历史进行了研究。采集了日本沿海斯氏美首鲽5个群体共143个个体。研究结果显示线粒体DNA控制区序列检测到高的单倍型多样度(h=0.99±0.004),揭示斯氏美首鲽具有较高的种内多态。单倍型最小跨度树(MST)、中性检验和核苷酸不配对分布(Mismatch)分析结果显示斯氏美首鲽群体经历了近期的群体扩张事件(124.1kya-413.4kya)。分子方差分析和两两群体相比较的Fst分析结果显示在日本沿海分布的斯氏美首鲽群体间未检测到显著的遗传分化。
     4、更新世冰期海平面的下降对物种当前的分布格局具有重要的影响,为检测更新世冰期对分布于日本海和外太平洋物种群落遗传格局的影响,我们采用线粒体DNA控制区部分序列对日本海和外太平洋的长鲽群体展开研究。在3个地理群体66个个体中共检测到35个单倍型。三个群体的单倍型多样性指数和核苷酸多态性指数分别在0.93和0.95,0.009和0.011之间。群体内和群体间的序列差异不显著,揭示长鲽群体的同质性。分子方差分析和两两群体相比较的Fst分析结果显示日本海群体和外太平洋群体之间无显著的遗传分化。最小跨度树(MST)和NJ关系树的结果显示,长鲽群体中存在微弱的谱系分化,35个单倍型明显的分成四个小支(与地理不相对应),这可能是由于更新世冰期海平面反复波动导致长鲽群体发生了近期隔离,同时研究结果还揭示长鲽群体间存在较强的基因交流。
     5、以往的研究显示分布于中国南北的文昌鱼为白氏文昌鱼亚种和白氏文昌鱼青岛亚种,为了确定中国北方和日本白氏文昌鱼的分类地位,本研究采集了中国南方、北方的白氏文昌鱼样本,并结合日本文昌鱼的线粒体基因组信息展开了研究。基于线粒体DNA的COI,Cytb和16S rRNA片段研究结果显示,中国南北的白氏文昌鱼遗传差异分别达到了0.19,0.21和0.17,远远高于其他种的种内差异水平;中国北方白氏文昌鱼和日本白氏文昌鱼的遗传差异皆小于0.01。三个片段的系统发育研究结果显示,白氏文昌鱼明显的分为两支:中国南方支系和中国北方及日本支系。本研究的结果显示中国南北白氏文昌鱼达到了种间分化水平,基于动物命名法优先原则和本研究的结果,认为中国北方和日本的白氏文昌鱼应命名为青岛文昌鱼;白氏文昌鱼和青岛文昌鱼的分化事件发生于39.90Mya-43.24 Mya.
     6、为检测带鱼的群体遗传多样性水平、遗传结构现状及其群体动态历史,我们采集了带鱼分布区内3个群体共54个个体的线粒体DNA控制区序列进行了测定和分析。在带鱼控制区序列上检测到了较高水平的基因多样度,揭示带鱼存在较高水平的遗传多样性。最小跨度树(MST)结果和中性检验及核苷酸不配对分布表明带鱼经历了更新世的群体扩张(49.3 kya-197 kya)事件。分子方差分析和FST结果显示带鱼在所研究范围内不存在显著的遗传结构。确切检验结果显示带鱼在所研究的范围内为一个未分化的群体。带鱼群体在所研究范围内没有检测到显著的系统地理分化,一方面可能是因为间冰期带鱼群体在中国大陆架区发生大范围栖息地扩张所引起的;另一方面带鱼产浮性卵从而在洋流的作用下使群体间存在较高频率的基因交流。
In this study, the molecular phylogeography of Larimichthys polyactis, Cleisthenes herzensteini, Glyptocephalus stelleri, Tanakius kitaharai, Branchiostoma, Trichiurus japonicus in the Northwestern Pacific were studied by mitochondrial DNA marker. The phylogeographic patterns, genetic diversities and population structures of the six marine fishes were carried out and the population dynamics of historical evolution were also reconstructed in the present studies. We discussed the role of historical and contemporary factors in shaping the phylogeographic pattern and genetic structures of marine species.
     1、The genetic diversity and population genetic structure of the small yellow croaker (Larimichthys polyactis) were investigated.298 individuals were sampled from 16 localities ranged its distribution. Genetic variation in DNA sequences were examined from the first hypervariable region (HVR-1) of the mitochondrial DNA control region. High levels of haplotype diversity (h=0.992±0.002) in the HVR-1 region were detected, indicating a high level of genetic diversity. Hierarchical molecular variance analysis (AMOVA) and conventional population Fst comparisons revealed significant genetic structure throughout its range, which is inconsistent with previous findings based on the morphological and ecological studies. Two distinct lineages were found, which might be isolated and diverged in different marginal seas of the Northwestern Pacific during Pleitocene low sea level stands. There were strong geographical differences in haplotype frequencies of the 2 lineages. The star burst structure of the minimum spanning tree also suggested a very recent origin for most haplotypes. The demographic history of L. polyactis was examined by using neutrality tests and mismatch distribution analysis, which indicated a Pleistocene population expansion at about 61,000~245,000 years ago.
     2、Intraspecific phylogenies can provide useful insights into how populations have been shaped by historical and contemporary processes. To determine the population genetic structure and the demographic and colonization history of Cleisthenes herzensteini in the Northwestern Pacific, one hundred and twenty-one individuals were sampled from six localities along the coastal regions of Japan and the Yellow Sea of China. Mitochondrial DNA variation was analyzed using DNA sequence data from the 5'end of control region. High levels of haplotype diversity (>0.96) were found for all populations, indicating a high level of genetic diversity. No pattern of isolation by distance was detected among the population differentiation throughout the examined range. Analyses of molecular variance (AMOVA) and the conventional population statistic Fst revealed no significant population genetic structure among populations. And according to the exact test of differentiation among populations, the null hypothesis that C. herzensteini within the examined range constituted a panmictic mtDNA gene pool was accepted. The demographic history of C. herzensteini was examined using neutrality test and mismatch distribution analyses and results indicated Pleistocene population expansion (about 94kya~376kya) in the species, which was consistent with the inference result of nested clade phylogeographical analysis (NCPA) showing contiguous range expansion for C. herzensteini. The lack of phylogeographical structure for the species may reflect a recent range expansion after the glacial maximum and insufficient time to attain migration-drift equilibrium.
     3、The demographic history and population genetic structure of blackfin flounder (Glyptocephalus stelleri) along coastal regions of Japan were investigated. Genetic variation in DNA sequences were examined from the first hypervariable region (HVR-1) of the mitochondrial DNA control region. High level of haplotypic diversity (h=0.99±0.004) was detected, indicating a high level of intrapopulation genetic diversity. The starburst structure of the minimum spanning tree (MST) suggested a very recent origin for most haplotypes. The demographic history of G stelleri was examined by using neutrality tests and mismatch distribution analysis, which also indicated a Pleistocene population expansion at about 124,100-413,400 years ago. Hierarchical molecular variance analysis (AMOVA) and conventional population Fst comparisons revealed no significant genetic differentiation existed throughout the examined range.
     4、The first hypervariable region (HVR-1) of the mitochondrial DNA control region was utilized for determination of genetic variation and population structure in willowy flounder (Tanakius kitaharai) collected from Aomori, Ibaraki and Niigata. A total of 35 haplotypes were detected among 66 individuals with a total of 30 variable sites out of 387 bp sequenced. Average sequence differences between populations (1.0 1.1%) were comparable to those within populations (0.9-1.2%), suggesting no genetic heterogeneity among samples. The pattern of distribution of genetic variability with high level of haplotype diversity (h=0.94) and moderate nucleotide diversity (n=1.0%) was also detected in the HVR-1 region of the mitochondrial DNA control region. AMOVA tests and the conventional populationΦst comparisons revealed no significant genetic structure among the populations. Partitioning populations into coherent geographic groups divided willowy flounder samples (Φct=-0.007, P>0.05) into two major groups:a Sea of Japan group composed of Aomori and Niigata populations; a Pacific Ocean group composed of Ibaraki populations. The minimum spanning tree constructed with 35 haplotypes showed four low-divergent clades, corresponding to those defined in the NJ tree. However, these clades did not appear to have geographic structure. Altogether, the results indicate that willowy flounder is panmictic throughout the examined range in Aomori, Ibaraki and Niigata.
     5、It is commonly accepted that the Branchiostoma lancelets in South and North China belong to Branchiostoma belcheri belcheri (Gray,1847) and Branchiostoma belcheri tsingtauense (Tchang and Koo,1934), respectively. Three partial mitochondrial DNA (mtDNA) fragments of cytochrome oxidase c subunit I (COI), cytochrome b (Cytb), and 16S ribosomal RNA (16S rRNA) genes were sequenced to analyze phylogenetic relationships of the Branchiostoma lancelets from South (Xiamen) and North (Qingdao and Rizhao) China, and phylogenetic trees constructed also included the existing data from Japanese waters. The genetic distances of the lancelets between South and North China averaged 0.19,0.21, and 0.17 based on partial sequences analysis of COI, Cytb, and 16S rRNA genes, respectively, which were much higher than those were observed in other intraspecific variations. However, the value between North China and Japanese waters was only 0.01 based on partial sequences analysis of three mtDNA genes, which indicated low intraspecific genetic divergence existed in the two areas. The results also clearly indicated two monophyletic clades (clade A (North China and Japanese waters), clade B (South China)) existed in the specimens, corresponding to the South and North China, respectively. Above all, our results indicate that the Branchiostoma lancelets in South and North China should belong to different species, and the subspecies B. belcheri tsingtauense together with the lancelets in most Japanese waters is an independent species. According to the rule of priority and present studies, the Branchiostoma lancelets in North China and most Japanese waters should be revised to B. tsingtauense. The divergence time between B. belcheri and B. tsingtauense was estimated at about 39.90-43.24 million years ago.
     6、The genetic diversity and population genetic structure of Trichiurus japonicus were investigated. Fifty-four individuals were sampled from 3 localities of East China Sea and South China Sea. Genetic variation in DNA sequences were examined from the mitochondrial DNA control region. High levels of haplotype diversity (h=0.98±0.01) in the control region were detected, indicating a high level of genetic diverstiy. A total of 42 polymorphic sites were found, and 40 haplotypes were defined. The pairwise nucleotide differences between samples ranged from 4.65±2.38 to 4.87±2.48. The demographic history of T. japonicus was examined by using neutrality tests and mismatch distribution analysis, which indicated a Pleistocene population expansion at about 49,300-197,000 yeas ago. The star burst structure of the minimum spanning tree also suggestted a very recent origin for most haplotypes. Hierarchical molecular variance analysis (AMOVA) and conventional population Fst comparisons revealed no significant genetic structure throughout the examined range. And according to the exact test of differentiation among populations, the null hypothesis that T. japonicus within the examined range constituted a panmictic mtDNA gene pool was accepted. Recent population expansion and larval dispersal likely have contributed to the genetically homogeneous population structure of the species. The knowledge on genetic diversity and genetic structure will be crucial to establish appropriate fishery management stocks for the species.
引文
Avise J. Phylogeography:the history and formation of species. Harvard University Press, Cambridge, MA, USA,2000
    Avise J., Arnold J., Ball R., et al. Intraspecific phylogeography:the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics,1987, 18:489-522
    Avise J. The history and preview of phylogeography:a personal reflection. Molecular Ecology, 1998,7:371-379
    Avise J., Helfman G., Saunders N., et al. Mitochondrial DNA differentiation in North Atlantic eels: Population genetic consequences of an unusual life history pattern. Proceedings of the National Academy of Science, USA,1986,83:4350-4354
    Avise J. Molecular population structure and the biogeographic history of a regional fauna:a case history with lessons for conservation biology. Oikos,1992,63:62-76
    Avise J., Neigel J., Arnold J. Demographic influences on mitochondrial DNA lineage survivorship in animal populations. Journal of Molecular Evolution,1984,20:99-105
    Andrew P., Naylor G., Palumbi S. Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature,1992,357:153-155
    Aquadro C., Greenberg B. Human mitochondrial DNA variation and evolution:analysis of nucleotide sequences from seven individuals. Genetics,1983,103:287-312
    Baker A., Marshall H. Mitochondrial control region sequences as tools for understanding evolution. In Avian Molecular Evolution and Systematics, D. P. Mindell (ed.). New York: Academic Press,1997, pp 51-82
    Barber P., Palumbi S., Erdmann M., et al. Sharp genetic breaks among populations of Haptosquilla pulchella (Stomatopoda) indicate limits to larval transport:patterns, causes, and consequences. Molecular Ecology,2002,11:659-674
    Bermingham E., Avise J. Molecular zoogeography of freshwater fishes in the southeastern United States. Genetics,1986,113:939-965
    Bermingham E., Martin A. Comparative mtDNA Phylogeography of neotropical freshwater fishes: testing shared history to infer the evolutionary landscape of lower Central America. Molecular Ecology,1998,7:499-518
    Benzie J. Genetic structure of coral reef organisms ghosts of dispersal past. American Zoology, 1999,39:131-145
    Beerli P. omparison of Bayesian and Maximum-likelihood inference of population genetic parameters. Bioinformatics,2006,22:341-345.
    Botstein D., White R., Skolnick M., Davis R. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics,1980,32:314-331
    Brown W., Wright J. Mitochondrial DNA and the origin of parthenogenesis in whiptail lizards (Cnemidophorus). Herpetological Review,1975,6:70-71
    Brown W., George J., Wilson A. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Science, USA,1979,76:1967-1971
    Bohonak A. IBD (Isolation By Distance):a program for analyses of isolation by distance. Journal of Heredity,2002,93:153-154
    Burrows P., Cocherham C. Distributions of time to fixation of neutral genes. Theoretical Population Biology,1974,5:192-207
    Bremer J., Mejuto J., Greig T., et al. Global population structure of the swordfish (Xiphias gladius L.) as revealed by analysis of the mitochondrial DNA control region. Journal of experimental Marine Biology and Ecology,1996,197:295-310
    Brown W., Prager E., Wang A., et al. Mitochondrial DNA sequences of primates:Tempo and mode of evolution. Journal of Molecular Evolution,1982,18:225-239
    Boring A., Li H. Is the Chinese amphioxus a separate species? Peking National History Bulletin, 1932,6:9-17
    Buonnacorsi V., McDowell J., Graves J. Reconciling pattern of inter-ocean molecular variance from four classes of molecular markers in blue marlin (Makaira nigricans). Molecular Ecology, 2001,10:1179-1196
    Cann R., Brown W., Wilson A. Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics,1984,106:479-499
    Caley M., Carr M., Hixon M., et al. Recruitment and the local dynamics of open marine population. Annual Review of Ecology and Systematics,1996,69:177-194
    Cao Y., Yan L., Xie S., et al. Preliminary investigation of amphioxus in Changli. Chinese Journal of Zoology,2001,36:10-13
    Chang Y., Huang F., Lo T. The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial DNA gene. Journal of Molecular Evolution,1994,38:138-155
    Chakraborty A., Aranishi F., Iwatsuki Y. Genetic differences among three species of the genus Trichiurus (Perciformes:Trichiuridae) based on mitochondrial DNA analysis. Ichthyological Research,2006,53:93-96
    Chang Y., Huang F., Lo T. The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial DNA gene. Journal of Molecular Evolution,1994,38:138-155
    Clement M., Posada D., Crandall K. TCS:a computer program to estimate gene genealogies. Molecular Ecology,2000,9:1657-1659
    Crosetti D., Nelso W., Avise J. Pronounced genetic structure of mitochondrial DNA among populations of the circumglobally distributed grey mullet (Muril cephalus). Journal of Fish Biology,1993,44:47-58
    Duque-Caro H. Neogene stratigraphy, paleoceanography and paleobiology in northwest South America and the evolution of the Panama Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology,1990,77:203-234
    Dupanloup I., Schneider S., Excoffier L. A simulated annealing approach to define the genetic structure of populations. Molecular Ecology,2002,11:2571-2581
    Emerson B., Paradis E., Thebaud C. Revealing the demographic histories of species using DNA sequences. Trends in Ecology and Evolution,2001,16:707-716
    Excoffier L. MINSPNET:A Programme for Producing Minimum Spanning Network. Department of Anthropology and Ecology, University of Geneva, Switzerland,1993
    Excoffier L. Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Molecular Ecology,2004,13:853-864
    Excoffier L., Smouse P., Quattro J. Analysis of molecular variance inferred from metric distances among DNA haplotypes:Application to human mitochondrial DNA restriction data. Genetics, 1992,131:479-491
    Fauvelot C., Planes S. Understanding origins of present-day genetic structure in marine fish: biologically or historically driven patterns? Marine Biology,2002,141:773-788
    FishBase. http://www.fishbase.org/home.htm. Accessed in May 2000
    Froese R., Pauly D. Global capture production for Larimichthys polyactis. In:FAO Fishery statistic. FAO, Rome, Italy,2003
    Fu Y. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics,1997,147:915-925
    Fujita S. Early development and rearing of two common flatfishes, Eopsetta grigorjewi (Herzenstein) and Tanakius kitaharai (Jordan et starks). Bulletin of Japan Society of Science Fisheries,1965,31:258-262.
    Fujii T., Nishida M. High sequence variability in the mitochondrial DNA control region of the Japanese flounder Paralichthys olivaceus. Fisheries Science,1997,63:906-910
    Gay J. Description of a new species of amphioxus from Borneo. Proceedings of the Zoological Society of London,1847,15:35-36
    Gee H. Before the Backbone:View on the origin of the vertebrate. Chapman & Hall, London, 1996
    Glenn T., Stephan W., Braun M. Effects of a population bottleneck on whooping crane mitochondrial DNA variation. Conservation Biology,1999,13:1097-1107
    Glenn C., Avise J. A comparative summary of genetic distances in the vertebrates from mitochondrial cytochrome b gene. Molecular Biology Evolution,1998,15:1481-1490
    Grant W. A second look at mitochondrial DNA variability in European anchovy (Engraulis encrasicolus):assessing models of population structure and the Black Sea isolation hypothesis. Genetica,2005,125:293-309
    Grant W., Bowen B. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Journal of Heredity,1998, 89:415-426
    Guo X., Liu S., Liu Q., et al. New progresses on mitochondrial DNA in fish. Acta Genetica Sinica, 2004,31:983-1000
    Grunwald C., Stabile J., Waldman J. Population genetics of short nose sturgeon Acipenser brevirostrum based on mitochondrial DNA control region sequences. Molecular Ecology,2002, 11:1885-1898
    Guarniero I., Franzellitti S., Ungaro N., et al. Control region haplotype variation in the central
    Mediterranean common sole indicates geographical isolation and population structuring in Italian stocks. Journal of Fish Biology,2002,60:1459-1474
    Hall B. Evolutionary developmental biology.2 nd ed, Chapman & Hall, London,1998
    Hamai I., Ishito Y. Distribution of the flatfish, Glyptocephalus stelleri (Schmidt) along the Pacific coast of Tohoku and Hokkaido regions. Bulletin of Tohoku Regional Fisheries Research Laboratory,1958,11:1-37
    Han Z., Gao T., Yanagimoto T., et al. Deep phylogeographic break among Pennahia argentata (Sciaenidae, Perciformes) populations in the Northwestern Pacific. Fisheries Science,2008a, 74:770-780
    Han Z., Li Y., Chen G., et al. Population genetic structure of coral reef species Plectorhinchus flavomaculatus in South China Sea. Afircan Journal of Biotechnology,2008b,7:1774-1781
    Han Z., Gao T., Yanagimoto T., et al. Genetic population structure of Nibea albiflora in Yellow Sea and East China Sea. Fisheries Science,2008c,74:544-552
    Hansen H., Nielsen E., Grφnkjaer P. Evolutionary mechanisms shaping the genetic population structure of marine fishes; lessons from the European flounder (Platichthys flesus L.). Molecular Ecology,2007,16:3104-3118
    Harpending R. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology,1994,66:591-600
    Harpending R. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Humn Biology,1994,66:591-600
    Harpending H., Rogers A. Genetic perspectives on human origins and differentiation. Annual Review of Genomics Human Genetics,2000,1:361-385
    Harris H. Enzyme polymorphism in man. Proceedings of the Royal Society B:Biological Sciences, 1966,164:298-310
    Hashimoto R. Studies on the age of Glyptocephalus stelleri (Schmidt). Bulletin of Tohoku Regional Fisheries Research Laboratory,1953,2:49-55
    Hashimoto R. Studies on the age of Tanakius kitaharai (Jordan & Starks). Bulletin of Tohoku Regional Fisheries Research Laboratory,1995,4:156-164
    Hewitt G. The genetic legacy of the Quaternary ice ages. Nature,2000,405:907-913
    Hewitt G. Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of Linnean Society,1996,58:247-276
    Hu C., Zhang J. Probe into the relationship between the migrating routes of endemic branch tribles of Larimichthys polyactis in the Southern Yellow Sea and the environment. Marine Fisheries,2005, 27:109-112
    Hudson R. Gene genealogies and the coalescent process, In:Oxford Surveys in Evolutionary Biology,1991,7:1-44
    Hundertmark K., Shields G., Udina I., et al. Mitochondrial phylogeography of moose (Alces alces): later Pleistocene divergence and population expansion. Molecular Phylogenetics and Evolution, 2002,22:375-387
    Iguchi K., Tanimura Y., Takeshima H., et al. Genetic variation and geographic population structure of amphidromous ayu Plecoglossus altivelis as examined by mitochondrial DNA sequencing. Fisheries Science,1999,65:63-67
    Ikeda I. Studies on the Fisheries Biology of the Yellow Croaker in the East China and the Yellow Seas. Seikai Regional Fisheries Research Laboratory,1964,31:1-81
    Imbrie J., Boyle E., Clemens S., et al. On the structure and origin of major glaciation cycles,1. Linear responses to Milankovitch forcing. Paleoceanography,1992,7:701-738
    Imron, Jeffrey B., Hale P., Degnan M., et al. Pleistocene isolation and recent gene flow in Haliotis asinina, an Indo-Pacific vetigastropod with limited dispersal capacity. Molecular Ecology,2007, 16:289-304
    Inoue J., Miya M., Tsukamoto K., et al. Complete mitochondrial DNA sequence of the Japanese anchovy Engraulis japonicus. Fisheries Science,2001,67:828-835
    Ishikawa S., Aoyama J., Tsukamoto K., et al. Population structure of the Japanese eel Anguilla japonica as examined by mitochondrial DNA sequencing. Fisheries Science,2001,67:246-253
    Ishida R., Kitakata M. Studies on the age determination of flatfish in Hokkaido Glyptocephalus stelleri (Schmidt). Bulletin of Hokkaido Regional Fisheries Research Laboratory,1953,8:63-84
    Jensen J., Bohonak A., Kelley S. Isolation by distance, web service. BMC Genetics,2005,6:13.
    Jiang X., Yang G., Liao M., et al. Microsatellite DNA polymorphism of Japanese sea bass (Laterolabrax japonicus) inhabiting Chinese and Japanese coasts. Journal of Applied Ichthyology, 2007,22:1-7
    Jiang Y., The early life history of plaice, Cleisthenes herzensteini (Schmidt). Marine Fisheries Research,1980,1:105-113.
    Kawahara R., Miya M., Mabuchi K., et al. Interrelationships of the 11 gasterosteiform families (sticklebacks, pipefishes, and their relatives):a new perspective based on whole mitogenome sequences from 75 higher teleosts. Molecular phylogenetics and evolution,2008,46:224-236
    Kimura M., Ohta T. The average number of generations until fixation of a mutation gene in a finite population. Genetics,1969,61:763-771
    Kimura M. Quaternary paleogeography of the Ryukyu Arc. Journal of Geography,1996, 105:259-285
    Kimura M., Crow J. The number of alleles that can be maintained in a finite population. Genetics, 1964,49:725-738
    Kitamura A., Takano O., Takata H., et al. Late Pliocene-early Pleistocene paleoceanographic evolution of the Japan Sea. Palaeogeography, Palaeoclimatology, Palaeoecology,2001,172:81-98
    Kitamura A., Matsui H., Oda M. Change in the thickness of the warm Tsushima Current at the initiation of its flow into the Sea of Japan. Palaeogeogr Palaeoclimatol Palaeoecol,1999, 152:305-318
    Kizaki K. Oshiro I. Paleogeography of the Ryukyu Islands. Marine Science Monthly,1977, 9:542-549
    Klinman R., Hey J. Reduced natural selection associated with low recombination in Drosophila melanogaster. Molecular Biology and Evolution,1993,10:1239-1258
    Kocher T., Thomas W., Meyer A., et al. Dynamic of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proceedings of the National Academy of Science, USA,1989,86:6196-6200
    Kuhner M. LAMARC 2.0:maximum likelihood and Bayesian estimation of population parameters. Bioinformatics,2006,22:768-770
    Kuhner M., Yamato J., Felsenstein J. Maximum likelihood estimation of population growth rates based on the coalescent. Genetics,1998,149:429-434
    Lambeck K., Esat T., Potter E. Links between climate and sea levels for the past three million years. Nature,2002,419:199-206
    Lavery S., Moritz C, Fielder D. Genetic patterns suggest exponential population growth in a declining species. Molecular Biology and Evolution,1996b,13:1106-1113
    Lecomte F., Grant W., Dodson J., et al. Living with uncertainty:genetic imprints of climate shrifts in East Pacific anchovy (Engraulis mordax) and sardine (Sardinops sagax). Molecular Ecology, 2004,13:2169-2182
    Lee W., Conroy J., Howell W., et al. Structure and evolution of teleost mitochondrial control regions. Journal of Molecular Evolution,1995,41:54-66
    Lewontin R., Hubby J. A molecular approach to the study of genic heterozygosity in natural populations. Ⅱ. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics,1966,54:595-609
    Liu J., Gao T., Wu S., et al. Pleistocene isolation in the marginal ocean basins and limited dispersal in a marine fish, Chelon haematocheilus (Temminck & Schlegel,1845). Molecular Ecology,2007,16:275-288
    Liu J., Gao T., Yokogawa K., et al. Differential population structuring and demographic history of two closely related fish species, Japanese sea bass (Latolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Molecular Phylogenetics and Evolution, 2006a,.39:799-811
    Li S. Fauna sinica:pisces, order Pleuronectiformes. Science Press, Beijing,1995
    Light S. Amphioxus fisheries near the University of Amoy, China. Science,1923,58:57-60
    Lin X. Systematic and ecological studies of amphioxus from the coastal areas of Taiwan, Kinmen and Matsu. Thesis for Master Degree, National Taiwan University,2001
    Liu J., Gao T., Zhuang Z., et al. Late Pleistocene divergence and subsequent population expansion of two closely related fish species, Japanese anchovy (Engraulis japonicus) and Australian anchovy (Engraulis australis). Molecular Phylogenetics and Evolution,2006b,40:712-723
    Liu X. The Research of Small Yellow Croaker (Larimichthys polyactis) Geographic Race and Gonad. Science Press, Beijing,1962, pp 35-70
    Lunt D., Whipple L., Hyman B. Mitochondrial DNA variable number of tandem repeats (VNTRs): Utility and problems in molecular ecology. Molecular Ecology,1998,7:1441-1455
    Magoulas A., Castilho R., Caetano S., et al. Mitochondrial DNA reveals a mosaic pattern of phylogeographical structure in Atlantic and Mediterranean populations of anchovy (Engraulis encrasicolus). Molecular Phylogenetics and Evolution,2006,39:734-746
    Malecot G. Les mathematiques de l'heredite. Paris:Masson et Cie,1948
    Martin A., Palumbi S. Body size, metabolic rate, generation time and the molecular clock. Proceedings of the National Academy of Sciences USA,1993,90:4087-4091
    McMillan W., Palumbi S. Rapid rate of control-region evolution in Pacific butterflyfishes (Chaetodontidae). Journal of Molecular Evolution,1997,45:473-484
    McMillen-Jackson A., Bert T. Genetic diversity in the mtDNA control region and population structure in the pink shrimp Farfantepenaeus duorarum. Journal of Crust. Biology,2004, 24:101-109.
    Minami T. The early life history of a flounder Tanakius kitaharai. Nippon Suisan Gakkaishi,1983, 49:527-532
    Miya M., Nishida M. Speciation in the open ocean. Nature,1997,389:803-804
    Miya M., Takeshima H., Endo H., et al. Major patterns of higher teleostean phylogenies:A new perspective based on 100 complete mitochondrial DNA sequences. Molecular Phylogenetics and Evolution,2003,26:121-138
    Nakayama K. Intra-structure of the Ariake Population. In Tanaka, M., Kinoshita, I. (Eds.), Temperate Bass and Biodiversity-New perspective for fisheries biology. Kouseisha-Kouseikaku, Tokyo,2002, pp 127-139
    Narimatsu Y., Ito M., Hattori T., Fujiwara K. Stock assessment of willowy flounder in the North Pacific Ocean off Japan in 2005. In:Stock Assessment of Fisheries Resource Around Japan. Fisheries Agency of Japan,2006, pp 1292-1302
    Narimatsu Y., Yamanobe A., Takahashi M. Reproductive cycle, age, and body at maturity and fecundity of female willowy flounder Tanakius kitaharai. Fisheries Science,2007,73:55-62
    Nei M. Molecular Evolutionary Genetics. Columbia University Press, New York,1987
    Neigel J., Avise J. Application of a random walk model to geographic distributions of animal mitochondrial DNA variation. Genetics,1993,135:1209-1220
    Nielsen E., Hansen M., Ruzzante D., et al. Evidence of a hybrid-zone in Atlantic cod (Gadus morhua) in the Baltic and the Danish Belt Sea revealed by individual admixture analysis. Molecular Ecology,2003,12:1497-1508
    Nishikawa T. Consideration on the taxonomic status the lancelets of the genus Branchiostoma from the Japanese waters. Publications of the Seto Marine Biological Laboratory,1981,26: 135-156
    Nohara M., Nishida M., Manthacitra V., et al. Ancient phylogenetic separation between Pacific and Atlantic Cephalochordates as revealed by mitochondrial genome analysis. Zoological Science, 2004,21:203-210
    Okiyama M. Larvae and young of the witch flounder, Glyptocephalus stelleri (Schmidt) at metamorphosis stages. Bulletin of Japanese Sea Regional Fisheries Research Laboratory,1963, 11:101-108
    Ouchi A. Breeding of some species of flatfish in Japan Sea. Bulletin of Japanese Sea Regional Fisheries Research Laboratory,1954,1:17-26
    Ovenden J., Salini J., O'Connor S. Pronounced genetic population structure in a potentially vagile fish species (Pristipomodies multidens, Teleostei:Perciformes; Lutjanidae) from the East Indies triangle. Molecular Ecology,2004,13:1991-1999
    Palumbi S. Genetic divergence, reproductive isolation, and marine speciation. Annual Review of Ecology and Systematics,1994,25:547-572
    Palumbi S. Population genetics, demographic connectivity, and the design of marine reserves. Ecological Application,2003,13:146-158
    Planes S., Doherty P., Bernardi G. Strong genetic divergence among populations of a marine fish with limited dispersal, Acanthochromis poly acanthus, within the great barrier reef and the coral sea. Evolution,2001,55:2263-2273
    Posada D., Crandall K. Modeltest:testing the model of DNA substitution. Bioinformatics,1998,9: 817-818
    Posada D., Crandall K., Templeton A. GeoDis:a program for the caldistic nested analysis of the geographical distribution of genetic haplotypes. Molecular Ecology,2000,9:487-488
    Posada D., Crandall K. Intraspecific gene genealogies:trees grafting into network. Trends in Ecology and Evolution,2001,16:37-45
    Poss S., Boschung H. Lancelets (Cephalochordata:Branchiostomatidae):How many species are valid? Israel J. Zool.,1996,42:13-66
    Prager E., Sage R., Gyllensten U., et al. Mitochondrial DNA sequence diversity and the colonization of Scandinavia by house mice from East Holstein. Biological Journal of the Linnean Society,1993,50:85-122
    Quinn T. The genetic legacy of mother goose-phylogeographic patterns of lesser snow goose Chen caerulescens maternal lineages. Molecular Ecology,1992,1:105-117
    Randall J., Greenfield D. A preliminary review of the Indo-pacific gobiid fishes of the genus Gnatholepis. Ichthyological Bulletin,2001, pp 1-97
    Ray N., Currat M., Excoffier L. Intra-deme molecular diveraity in spatially expanding populations. Molecular Biology and Evolution,2003,20:76-86
    Rice W. Analyzing tables of statistical tests. Evolution,1989,43:223-225
    Riginos C., Nachman M. Population subdivision in marine environments:the contributions of biogeography, geographical distance and discontinuous habitat to genetic differentiation in a blennioid fish, Axoclinus nigricaudus. Molecular Ecology,2001,10:1439-1453
    Robards M., Willson M., Armstrong R., et al. Sand lance:A review of biology and predator relations and annotated bibliography. Exxon Valdez oil spill restoration project 99346,1999
    Rocha L., Bass A., Robertson D., et al. Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei:Acanthuridae). Molecular Ecology,2002,11:243-252
    Rocha L., Roberson D., Rocha C., et al. Recent invasion of the tropical Atlantic by an Indo-Pacific coral reef fish. Molecular Ecology,2005,14:3921-3928
    Rogers A., Harpending H. Population growth makes waves in the distribution of pairwise genetic difference. Molecular Biology and Evolution,1992,9:552-569
    Rohfritsch A., Borsa P. Genetic structure of Indian scad mackerel Decapterus russelli:Pleistocene vicariance and secondary contact in the Central Indo-West Pacific Seas. Heredity,2005, 95:315-326
    Rousset F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics,1997,145:1219-1228
    Raymond M., Rousset F. An exact test for population differentiation. Evolution,1995, 49:1280-1283
    Ruzzante D., Taggart C., Cook D. A nuclear DNA basis for shelf-and bank-scale population structure in northwest Atlantic cod (Gadus morhua):Labrador to Georges Bank. Molecular Ecology,1998,7:1663-1680
    Saccone C., Attimonelli M., Sbiza E. Structure elements highly preserved during the evolution of the D-loop-containing region in vertebrate mitochondrial DNA. Jurnal of Molecular Evolution, 1987,26:205-211
    Saitoh K., Sado T., Mayden R., et al. Mitogenomic evolution and interrelationships of the Cypriniformes (Actinopterygii:Ostariophysi):the first evidence toward resolution of higher-level relationships of the world's largest freshwater fish clade based on 59 whole mitogenome sequences. Journal of Molecular Evolution,2006,63:826-841
    Saitou N., Nei M. The neighbor-joining methods:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution,1987,4:406-425
    Sakamoto K. Tanakius kitaharai (Jordan et Starks). In:Masuda H, Amaoka K, Araga C, Uyeno T, Yoshino T (eds). The Fishes of the Japanese Archipelago. Tokai University Press, Tokyo,1984, 339
    Sambrook J., Russell D. Preparation and analysis of eukaryotic genomic DNA. In "Molecular Cloning Vol 1.3rd ed" Cold Harbor Laboratory Pres, New York,2001
    Santos S., Scheider H., Sampaio I. Genetic differentiation of Macrodon ancylodon (Sciaenidae, Perciformes) populations in Atlantic coastal waters of South America as revealed by mtDNA analysis. Genetics and Molecular Biology,2003,26:151-161
    Santos S., Hrbek T., Farias I., et al. Population genetic structuring of the king weakfish, Macrodon ancylodon (Sciaenidae), in Atlantic coastal waters of South America:deep genetic divergence without morphological change. Molecular Ecology,2006,15:4361-4373
    Savolainen P., Zhang Y, Luo J., et al. Genetic evidence for an East Asian origin of domestic dogs. Science,2002,298:1610-1613
    Schneider S., Roessli D., Excoffier L. ARLEQUIN, version 2,000:A Software of Population Genetic Data Analysis. University of Geneva, Geneva,2000
    Schneider S., Excoffier L. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites:application to human mithochondrial DNA. Genetics,1999,152:1079-1089
    Schulte P. Environmental adaptations as windows on molecular evolution. Comparative Biochemistry and Physiology part B:Biochemistry and Molecular Biology 2001.128:597-611.
    Schneider S., Roessli D., Excoffier L. ARLEQUIN, version 2,000:A Software of Population Genetic Data Analysis. University of Geneva, Geneva,2000
    Slatkin M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution,1993, 47:264-279
    Schulte P. Environmental adaptations as windows on molecular evolution. Journal of Comparative Physiology part B:Biochemistry and Molecular Biology,2001,128:597-611
    Seeb L., Seeb J., Polovina J. Genetic variation in highly exploited spiny lobster Panulirus marginatus populations from the Hawaiian Archipelago. Fishery Bulletin,1990,88:713-718
    Sekino M., Hara M., Taniguchi N. Loss of microsatellite and mitochondrial DNA variation in hatchery strains of Japanese flounder Paralichthys olivaceus. Aquaculture,2002,213:101-122
    Shannon L. The Benguela ecosystem Part Ⅰ. Evolution of the Benguela, physical features and processes. Oceanography and marine biology,1985
    Shaw P., Tura C., Wright J., et al. Microsatellite DNA analysis of population structure in Atlantic herring (Clupea harengus), with direct comparison to allozyme and mtDNA data. Heredity,1999, 83:490-499
    Shimamura S., Igarashi S. Flatfish, Tanakius kitaharai (Jordan et Starks) caught in the coast of Fukushima region. Bulletin of the Fukushima Prefectural Fisheries Experimental Station,2000, 9:29-52
    Shu D., Morris S., Zhang X. A pikaia-like chordate from the Lower Cambrian of China. Nature, 1996,384:157-158
    Slatkin M., Hudson R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics,1991,129:555-562
    Slatkin M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution,1993, 47:264-279
    Smith A., Simth D., Funnell B. Atlas of Mesozoic and Cenozoic Coastlines. Cambridge University Press, New York,1995
    Sotka E., Wares J., Barth J. Strong genetic clines and geographical variation in gene flow in the rocky intertidal barnacle Balanus glandula. Molecular Ecology,2004,13:2143-2156
    Stewart D., Baker A. Patterns of sequence variation in the mitochondrial D-loop region of shrews. Molecular Biology and Evolution,1994,11:9-21
    Stepien C. Phylogeographical structure of the Dover sole Microstomus pacificus:the larval retention hypothesis and genetic divergence along the deep continental slope of the northeastern Pacific Ocean.Molecular Ecology,1999,8:923-939
    Strathmann M. Reproduction and Development of Marine Invertebrates of the Northern Pacific Coast. University of Washington Press, Seattle, WA,1987
    Swofford D. PAUP*. Phylogenetic Analysis Using Parsimony (and other methods), version 4. Sinauer Associates, Sunderland, MA,2002
    Tabata K., Taniguchi N. Differences between Pargus major and Pagrus auratus through mainly mtDNA control region analysis. Fisheries Science,2000,66:9-18
    Tajima F. Evolutionary relationship of DNA sequence in finite populations. Genetics,1983, 105:437-467
    Tajima F. Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics,1989a,123:585-595
    Tamaki K. Honza E. Global tectonics and formation of marginal basins:role of the western Pacific. Episode,1991,14:224-230
    Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution,1993, 10:512-526
    Tang W., Hu X., Yang J. Species validities of Coilia brachygnathus and C. nasus taihuensis based on sequence variation of complete mtDNA control region. Biodiversity Science,2007,15:224-231
    Taylor M., Hellberg M. Comparative phylogeography in a genus of coral reef fishes: biogeographic and genetic concordance in the Caribbean. Molecular Ecology,2006,15:695-707
    Tchang S., Koo K. Description of a new variety of Branchiostoma belcheri (Gay) from Kiaochow Bay, Shantung, China. National Academy of Peiping,1936,3:77-114
    Templeton A., Boerwinkle E., Sing C. A cladistic analysis of phenotypic association with haplotypes inferred from restriction endonuclease mapping. Ⅰ. Basic theory and an analysis of alcohol dehydrogenase activity in Drosophila. Genetics,1987,117:343-351
    Templeton A., Crandall K., Sing C. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. Ⅲ. Cladogram estimation. Genetics,1992,132:619-633
    Templeton A., Sing C. A cladistic analysis of phenotypic association with haplotypes inferred from restriction endonuclease mapping. Ⅳ. Nested analyses with cladogram uncertainty and recombination. Genetics,1993,134:659-669
    Templeton A., Routman E., Phillips C. Separating population structure from population history:a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the Tiger Salamander, Ambystoma tigrinum. Genetics,1995,140:767-782
    Templeton A. Statistical phylogeography:methods of evaluating and minimizing inference errors. Molecular Ecology,2004,13:789-809
    Thacker C. Phylogeny and species boundaries in the gobiid genus Gantholepis (Teleostei: Perciformes). Zoological Journal of the Linnean Society,2004,142:573-582
    Tudela S., Garca-Marn J., Pla C. Genetic structure of the European anchovy, Engraulis encrasicolus, in the northwest Mediterranean. Journal of Experimental Marine Biology and Ecology,1999,234:95-109
    Upholt W. Estimation of DNA Sequence divergence from comparison of restriction endonuclease digest. Nucleic Acids Research,1977,4:1257-1265
    Utter F. Biochemical genetics and fishery management:an historical perspective. Journal of Fish Biology,1991,39:1-20
    Vermeij G., Rosenberg G. Giving and receiving:The Tropical Atlantic as donor and recipient region for invading species. American Malacological Bulletin,1993,10:181-194
    Vigilant L., Penningto R., Harpending H., et al. Mitochondrial DNA sequences in single hairs from a southern African population.1989,86:9350-9354
    Wang P. Response of Western Pacific marginal seas to glacial cycles:paleoceanographic and sedimentological features. Marine Geography,1999,156:5-39
    Wang Y, Xu Q., Peng X., et al. Taxonomic status of amphioxus Branchiostoma belcheri in Xiamen beach estimated by homologous sequence of Cytb gene. Acta Zoologia Sinica,2004,. 50:202-208
    Wang M., Zhang X., Yang T., et al. Genetic diversity in the mtDNA control region and population structure in the Sardinella zunasi Bleeker. African Journal of Biotechnology,2008,7:4384-4392
    Waples R. Separating wheat from the chaff:patterns of genetic differentiation in high gene flow species. Journal of Heredity,1998,89:438-450
    Wright S. Isolation by distance. Genetics,1943,28:114-138
    Ward R., Woodmark M, Skibinski D. A comparison of genetic diversity levels in marine, freshwater and anadromous fishes. Journal of Fish Biology,1994,44:213-232
    Wilson A., Cann R., Carr S., et al. Mitochondrial DNA and two perspectives on evolutionary genetics. Biological Journal of the Linnean Society,1985,26:375-400
    Wirth T., Bernatchez L. Genetic evidence against panmixia in the European eel. Nature,2001, 409:1037-1040
    Willey A. Zoological observations in the South Pacific-On a new amphioxus from the Louisiade Archipelago (Asymmetron caudatum n. sp.). Quarterly Journal of Microscopical Science,1897, 39:219-222
    Xia Y., Sheng Y, Chen Y. DNA sequence variation in the mitochondrial control region of lenok (Branchymystax lenok) populations in China. Biodiversity Science,2006,14:48-54
    XiaoY, Takahashi M., Yanagimoto T., et al. Genetic variation and population structure of willowy flounder Tanakius kitaharai collected from Aomori, Ibaraki and Niigata in Northern Japan. African Journal of Biotechnology,2008a,7:3836-3844
    Xiao Y., Zhang Y., Gao T., et al. Genetic diversity in the mtDNA control region and population structure in the small yellow croaker Larimichthys polyactis. Environmental Biology of Fishes, 2009,85:303-314
    Xiao Y., Gao T., Zhang Y., et al. Demographic history and population structure of blackfin flounder (Glyptocephalus stelleri) in Japan revealed by mitochondrial control region Sequences. Biochemical Genetics,2010, Doi:10.1007/s 10528-009-9321-8
    Xu G., Zhong X., Ding Y, et al. The research on genetic diversity of Pseudosciaena polyactis population from the southern part of the Yellow Sea. Marine Science,2005,29:34-38
    Yabuki K. Age determination of yanagimushigarei Tanakius kitaharai (Pleuronectidae) from otoliths in the Sea of Japan off Kyoto Prefecture. Nippon Suisan Gakkaishi,1989,55:1331-1338
    Yagishita N., Ohki S., Yamazaki A. Age, growth and age composition of Tanakius kitaharai in western Wakasa Bay, Japan. Nippon Suisan Gakkaishi,2005,71:138-145
    Yan L., Zuo H., Cao Y. Divergence in Qinhuangdao, Qingdao and Xiamen geographic population of amphioxus (Branchiostoma belcheri Gay) based on morphological characters analysis. Zoological Research,2005,26:311-316
    Yu Z., Kong X., Guo T., et al. Mitochondrial DNA sequence variation of Japanese anchovy Engraulis japonicus from the Yellow Sea and East China Sea. Fisheries Science,2005,71:299-307
    Yokogawa K. Morphological and genetic differences between Japanese and Chinese red ark shell Scapharca broughtonii. Fishery Science,1997,63:332-337
    Zhang Z. Morphological study of amphioxus in South Sea of China. Fujian Fisheries,1988,3:1-6
    Zhang H., Cheng J. Geostatistical analysis on spatial patterns of small yellow croaker (Larimichthys polyactis) in the East China Sea. Journal of Fisheries Science of China,2005,12: 419-423
    Zhang Y., Xiao Y., Gao T., et al. Comparative analysis of mtDNA gene sequences between two species of Pleuronectes. Journal of Fisheries of China,2009,33:201-207
    Zheng Y., Meng T. Biological and Ecologyical Characteristics of Valuable Fisheries Resources from the East China Sea and the Yellow Sea. Seikai National Fisheries Research Institute,2001, pp 416-437
    Zhou C. Compare study of amphioxus in China. Journal of Shandong University,1958,1:162-204

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700