用户名: 密码: 验证码:
中国野生华东葡萄cDNA文库测序及转录因子基因ERF和NAC功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄白粉病(Erysiphe necator (Schw.) Burr.)遍布世界葡萄主要栽培区,给葡萄生产造成很大损失。在生产上广泛栽培的品种主要来自欧洲葡萄,但大多数欧洲葡萄不抗白粉病。现代果树育种的理论和实践证明,利用抗病的葡萄近缘野生种进行抗病育种是可行的。中国野生葡萄是抗病育种的宝贵资源,其中华东葡萄(Vitis pseudoreticulata)株系白河-35-1表现出对白粉病的高抗性,但对其抗病的机制还不清楚。植物对病原菌的响应是通过一系列信号转导途径来完成的,转录因子在其中发挥了重要作用。葡萄基因组含有2000多个转录因子,但是对其功能研究甚少。本研究通过测序研究白粉菌诱导下中国野生华东葡萄抗病相关基因的种类,对分离获得的转录因子(ERF基因和NAC基因)进行表达及功能方面的研究,取得的主要结果如下:
     1、对前期构建的白粉病诱导的华东葡萄株系白河-35-1的cDNA文库进行大规模测序。3500个克隆被随机测序,去除低质量的序列并经过聚类分析获得1727条高质量的EST (Expressed sequence tag)序列并登录GenBank,登录号为GR882788~GR884514。利用InterProScan和GO数据库进行功能注释,983个EST序列被功能注释,占全部序列的56.9%。基于GO分类法,进行细胞组分,生物进程和分子功能等3个层次的分类。分子功能分类法中,结合功能占48.2%;生物进程分类中,参与代谢和细胞进程的占60.1%和56.2%;细胞组分分类中,细胞和细胞部分均占42.7%。
     2、筛选了四类与抗病相关的EST序列:转录因子、防御基因、R基因和活性氧代谢基因。半定量PCR分析表明这些基因可能参与中国野生华东葡萄抵御白粉病的过程。利用RACE(Rapid-amplification of cDNA ends)技术获得22条抗白粉病相关的cDNA全长序列,分别为VpERF1、VpERF2、VpERF3、VpNAC1、VpWRKY3、VpHsf1、VpMYB1、VpMYB2、VpDRE1、VpDRE2,、VpB-Zip1、VpPR1、VpPR1.2、VpPR4、VpPR10.2、VpPR14、VpDRP1、VpMLO1、VpUSP1、VpSGT1、VpTBE1,VpGST1。登录号为:GU393310,GU393312,GU393311,GU393316,JF500755,GU393313,GU393314,GU393315,GU393308,GU393309,GU393307,GU269633,GU269634,JN977472,HQ634186,JQ814381, JF500756,JQ814382,GU946975,JQ814383,JQ814369,JQ814380。
     3、中国野生华东葡萄三个乙烯响应因子基因(Ethylene responsive factor)VpERF1,VpERF2和VpERF3分属于ERF家族的B3、B2和B3亚族,相互之间蛋白序列相似度较低,仅有21.9%,在AP2/ERF区域的相似度却高达82.49%;与欧洲葡萄ERF基因具有较高同源性,但存在氨基酸片段的缺失和突变,表明所获的三个ERF基因为葡萄ERF家族新成员。
     4、葡萄白粉菌接种情况下,三个ERF基因均受诱导表达,但在抗病株系和感病株系中的表达模式有所不同,VpERF1在抗、感株系中的表达无规律;VpERF2和VpERF3在抗病株系中的最大诱导量要高于感病株系。在非生物胁迫处理下,VpERF1受干旱和高温的诱导;VpERF2受干旱、低温和高温的诱导;VpERF3受低温和高温,但诱导程度较小。此外VpERF1和VpERF3可能参与水杨酸(Salicylic acid,SA)、茉莉酸甲酯(Methyl jasmonate,MeJA)和乙烯(Ethylene,ET)等3种信号转导途径,VpERF2可能参与MeJA和ET等两种信号转导途径。
     5、中国野生华东葡萄三个ERF基因含有AP2/ERF保守结构域、核定位信号区域和酸性激活区域。亚细胞定位试验表明,三个ERF基因均定位在细胞核内。酵母杂交和葡萄叶片瞬时转化试验表明,VpERF1和VpERF2在酵母中具有转录激活活性,VpERF3未表现,但三个ERF基因在葡萄中能够结合GCC盒来激活下游GUS基因的表达,说明三个ERF基因均具转录激活活性。
     6、葡萄叶片瞬时转染试验表明,VpERF2和VpERF3能够阻碍葡萄白粉菌菌丝的生长,但VpERF1对其没有影响。在烟草中过量表达VpERF2和VpERF3能够提高对烟草青枯菌(Ralstonia solanacearum)和疫霉菌(Phytophtora parasitica var.nicotianae Tucker)的抗性,但VpERF1却增加对这两种病原菌的敏感性。半定量PCR分析表明, VpERF2和VpERF3能够上调病程相关蛋白(pathogenesis related protein,PR)基因PR1,PR2,PR4和PR5的表达,但VpERF1仅能上调部分PR基因的表达。
     7、利用同源序列克隆的办法获得了1616bp的VpERF3基因的启动子,序列分析其含有根特异性元件和保卫细胞特异性元件。VpERF3基因启动子转基因拟南芥的组织化学染色分析表明,VpERF3基因的启动子具有根和保卫细胞特异性。
     8、中国野生华东葡萄VpNAC1属于TERN亚家族,定位于细胞核且具有转录激活功能。葡萄白粉菌诱导下,VpNAC1基因的表达先上升后减弱,但最大诱导量在抗病株系要高于感病株系。VpNAC1受MeJA处理的强烈诱导,SA和ET处理虽也能诱导VpNAC1基因的表达但较弱,表明VpNAC1可能主要参与MeJA信号转导途径。VpNAC1受干旱、低温和高温的诱导,特别是干旱,最高诱导量比对照高40多倍。在烟草中过量表达VpNAC1增强对烟草白粉病(Erysiphe cichoracearum)和疫霉病的抗性,同时能够上调PR基因的表达。
Powdery mildew (Erysiphe necator.(schw.) Burr.) causes great losse to the grapeproduction in the world. The most worldwide cultivated varieties are from Vitis vinifera whichwas generally susceptible to E. necator. The modern fruit breeding theory and practice provedthat it is feasible to breed resistant cultivars using wild grape. Chinese wild grape is preciousresource for resistance breeding, among which Vitis pseudoreticulata accession Baihe-35-1showed high resistance to E. necator, but the disease resistant mechanism is not understood.Transcription factor plays an important role in response to pathogen. The grapevine genomecontains more than2000transcription factors, but little is known to the function. Thisresearch aims to understand the types of the defense related gene of Chinese wild Vitispseudoreticulata through large-scale sequencing, and study the expression and function of thetranscription factors (ERF and NAC gene). Mainly results obtained are as follows:
     1. Large-scale sequencing of the cDNA library from V. pseudoreticulata accessionBaihe-35-1inoculated with E. necator.3500clones were randomly sequenced,1727ESTswere obtained by removal of low quality sequences and cluster analysis. All the ESTs weredeposited at the NCBI GenBank database under the accession numbers GR882788-GR884514. The ESTs were submitted to the public databases (InterProScan and GO) forsimilarity analysis and assigned GO categories,56.9%(983) ESTs could be annotated. For thecategory of molecular function, there contain ‘binding’48.2%; for the category of biologicalprocess, there contain ‘metabolic process’60.1%and ‘cellular process’56.2%; for thecategory of cellular component, there contain ‘cell’42.7%and ‘cell part’42.7%.
     2. Four disease resistance related genes (Transcription factor, defense genes, R gene andactive oxygen metabolism) were identified from the annotated ESTs. The semi-RT-PCRanalysis indicated that these disease resistance related genes may be involved in the prosess ofChinese wild Vitis pseudoreticulata Baihe-35-1against powdery mildew. Twenty twofull-length cDNAs related to disease resistance were cloned by rapid-amplification of cDNAends technique. They are VpERF1, VpERF2, VpERF3, VpNAC1, VpWRKY3, VpHsf1,VpMYB1, VpMYB2, VpDRE1, VpDRE2, VpB-Zip1, VpPR1, VpPR1.2, VpPR4, VpPR10.2,VpPR14, VpDRP1, VpMLO1, VpUSP1, VpSGT1, VpTBE1, VpGST1. The GenBank numbers are: GU393310, GU393312, GU393311, GU393316, JF500755, GU393313, GU393314,GU393315, GU393308, GU393309, GU393307, GU269633, GU269634, JN977472,HQ634186, JQ814381, JF500756, JQ814382, GU946975, JQ814383, JQ814369, JQ814380.
     3. Chinese wild Vitis pseudoreticulata VpERF1, VpERF2and VpERF3belong to the B3,B2and B3subfamily of ERF family, respectively. There is a low similarity (21.9%) betweenthe three ERF proteins, but they possess a conserved AP2/ERF domain with the similarity82.49%. Although three VpERFs proteins have high similarity with V. vinifera ERF proteins,but they exist difference in protein sequence because of the protein fragment deletion andsingle amino acid mutation, indicating the three VpERFs are novel ERF genes.
     4. VpERF1, VpERF2and VpERF3were induced by E. necator, but the expressionpatterns are different. The maximum induction of VpERF2and VpERF3in E.necator-resistant grapevine was higher than that in E. necator-susceptible grapevine butVpERF1. Under the abiotic stress, VpERF1was induced by drought and heat stresses;VpERF2was induced by drought, cold and heat stresses; VpERF3was induced by cold andheat stresses, but the induction was very low. Moreover, VpERF1and VpERF3were involvedin SA, MeJA and ET signal pathways, VpERF2was involved in MeJA and ET signalpathways.
     5. VpERF1, VpERF2and VpERF3contain AP2/ERF domain, nuclear localization signaland trans-activation domain. The sub-cellular localization indicated that three ERF geneslocalized to nucleus. Yeast hybrids indicated that VpERF1and VpERF2functioned as atranscriptional activator but VpERF3. Transient transformation in grapevine indicated thatthree ERF genes function as transcriptional activators by binding to the GCC box cis-element.
     6. Transient transfection in grapevine indicated that VpERF2and VpERF3could hinderthe development of hypha but VpERF1. Overexpression of VpERF2and VpERF3in tobaccoincreased the resistance to bacterial pathogen Ralstonia solanacearum and fungal pathogenPhytophtora parasitica var.nicotianae Tucker, while VpERF1increased the susceptible tothese two pathogens. In addition, VpERF2and VpERF3resulted in the accumulation of fourPR genes expression in transgenic tobacco plants. But, only part of PR gene transcripts wereup-regulated by VpERF1
     7. The1616bp VpERF3promoter was obtained by homologous cloning. Sequenceanalysis indicated that VpERF3promoter contains root specific cis-acting element and guardcell specific cis-acting element. Chemical histological staining in transgenic Arabidopsisindicated that VpERF3specially expressed in root and guard cell, indicating VpERF3is atissue-specific promoter.
     8. VpNAC1belongs to the TERN subgroup. The sub-cellular localization and trans-activation activity assays indicated that VpNAC1is a nuclear targeting protein andfunctions as a transcriptional activator. After inoculation with E. necator, expression ofVpNAC1showed the pattern with increased first and then declined, but the maximuminduction in E. necator-resistant grapevine was higher than that in E. necator-susceptiblegrapevine. VpNAC1was strongly induced by methyl jasmonate, while induction level ofsalicylic acid and ethylene was low. VpNAC1was induced by drought, cold and heat stresses,especially the induction level of drought treatment was more40fold than control.Over-expression of VpNAC1in tobacco plants enhanced their resistance to Erysiphecichoracearum and Phytophtora parasitica var. nicotianae Tucker, and regualted theexpression of PR genes as a positive regulator.
引文
崔涛,肖杰,程菡.1990. DNA结合蛋白质的结构与功能.生命的化学:2
    李志邈,杨悦俭,杨飞,叶青静,王荣青,阮美颖,周国志,姚祝平.2010.番茄根特异表达基因LeGRP2启动子的克隆及其在拟南芥的表达分析.中国农业科学:9
    唐蜻.2010.植物RNA结合蛋白的研究进展.安徽农业科学,38(1):38-41
    万怡震.2003.中国葡萄属野生种抗病性及抗病基因RAPD标记作图研究.[博士学位论文].陕西:西北农林科技大学
    王西平.2004.中国葡萄属野生种抗白粉病基因克隆与序列分析.[博士学位论文].陕西:西北农林科技大学
    王沛雅,王跃进,张建文,朱自果,张朝红.2009.华东葡萄白河-35-1株系抗霜霉病基因cDNA文库构建及EST分析.农业生物技术学报,17(2).
    王跃进.1993.中国葡萄属野生种对白粉病抗性及遗传的研究.[博士学位论文].陕西:西北农业大学
    王跃进, Lamikanra O, Schell L,卢江.1997.用RAPD分析鉴定葡萄属远缘杂种.西北农业大学学报,25:711-714
    王跃进,张剑侠,周鹏.2001.中国葡萄属野生种抗白粉病基因的RAPD标记.西北农林科技大学学报,29:1-5
    王跃进,贺普超.1997.中国葡萄属野生种叶片抗白粉病遗传研究.中国农业科学,30:19-25
    文颖强.2011.中国野生华东葡萄基因VpALDH2a功能分析与植物侵入后非寄主抗性研究.[博士学位论文].陕西:西北农林科技大学
    徐伟荣.2010.中国华东葡萄抗白粉病芪合酶基因及启动子克隆与功能分析.[博士学位论文].陕西:西北农林科技大学
    徐炎.2006.中国原产华东葡萄抗白粉病基因cDNA文库构建及其EST序列分析.[博士学位论文].陕西:西北农林科技大学
    余迪求, Xie Z, Fan B, Chen Z.1998.烟草II型过氧化氢酶基因的表达对转基因马铃薯抗病性的增强作用.生命科学与生物技术:中国科协第三届青年学术年会论文集
    张志刚,杨晓萍,卢翰,梅正鼎,贺云新.2010.细极链格孢菌蛋白激发子对棉花生长相关酶活性的影响.棉花学报,22:120-124
    张建文,王跃进,朱自果,王沛雅,张朝红.2009.中国野生华东葡萄抗霜霉病抑制消减文库构建及初步分析.中国农业科学,42(3)
    张剑侠.2006.中国野生葡萄抗病基因标记及辅助育种应用研究.[博士学位论文].陕西:西北农林科技大学
    朱自果.2008.中国原产华东葡萄及其子代抗白粉病基因cDNA文库构建及EST序列分析.[硕士学位论文].陕西:西北农林科技大学
    Abad LR, DUrzo MP, Liu D, Narasimhan ML, Reuveni M, Zhu JK, Niu XM, Singh NK, Hasegawa PM,Bressan RA.1996. Antifungal activity of tobacco osmotin has specificity and involves plasmamembrane permeabilization. Plant Science,118:11-23
    Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M.1997. Genes involved in organ separation inArabidopsis: An analysis of the cup-shaped cotyledon mutant. Plant Cell,9:841-857
    Alexander D, Goodman RM, Gut-Rella M, Glascock C, Weymann K, Friedrich L, Maddox D, Ahl-Goy P,Luntz T, Ward E, et al.1993. Increased tolerance to two oomycete pathogens in transgenic tobaccoexpressing pathogenesis-related protein1a. Proc Natl Acad Sci U S A,90:7327-7331
    Allen MD, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M.1998. A novel mode of DNA recognitionby a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex withDNA. EMBO J,17:5484-5496
    Aubert D, Chevillard M, Dorne AM, Arlaud G, Herzog M.1998. Expression patterns of GASA genes inArabidopsis thaliana: the GASA4gene is up-regulated by gibberellins in meristematic regions. PlantMol Biol,36:871-883
    Ballvora A, Ercolano MR, Weiss J, Meksem K, Bormann CA, Oberhagemann P, Salamini F, Gebhardt C.2002. The R1gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucinezipper/NBS/LRR class of plant resistance genes. Plant J30:361-371
    Barker CL, Donald T, Pauquet J, Ratnaparkhe MB, Bouquet A, Adam-Blondon AF, Thomas MR, Dry I.2005. Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using abacterial artificial chromosome library. Theoretical and Applied Genetics,111:370-377
    Berrocal-Lobo M, Molina A, Solano R.2002. Constitutive expression ofETHYLENE-RESPONSE-FACTOR1in Arabidopsis confers resistance to several necrotrophic fungi.Plant Journal,29:23-32
    Borisjuk NV, Borisjuk LG, Logendra S, Petersen F, Gleba Y, Raskin I.1999. Production of recombinantproteins in plant root exudates. Nat Biotechnol,17:466-469
    Boubal D.1961. Study of the faetors responsible for the resistance of Vitaceae to grapevine powderymildew (U. necaror Schw. Burr.) and their mode of inheritance. Plant breeding abstracts:946
    Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R,Valent B.2000. A single amino acid difference distinguishes resistant and susceptible alleles of therice blast resistance gene Pi-ta. Plant Cell12:2033-2046
    Bu Q, Jiang H, Li CB, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Li C.2008a. Role of the Arabidopsis thalianaNAC transcription factors ANAC019and ANAC055in regulating jasmonic acid-signaled defenseresponses. Cell Research,18:756-767
    Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T,Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze-Lefert P.1997. The barley Mlogene: a novel control element of plant pathogen resistance. Cell88:695-705
    Chakravarthy S, Tuori RP, D'Ascenzo MD, Fobert PR, Despres C, Martin GB.2003. The tomatotranscription factor Pti4regulates defense-related gene expression via GCC box and non-GCC box ciselements. Plant Cell,15:3033-3050
    Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT.2007. A heat-inducibletranscription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. PlantPhysiol,143:251-262
    Chen L, Zhang Z, Liang H, Liu H, Du L, Xu H, Xin Z.2008. Overexpression of TiERF1enhancesresistance to sharp eyespot in transgenic wheat. Journal of Experimental Botany,59:4195-4204
    Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, WhithamSA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B,Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T.2002. Expression profile matrix ofArabidopsis transcription factor genes suggests their putative functions in response to environmentalstresses. Plant Cell,14:559-574
    Choi JJ, Klosterman SJ, Hadwiger LA.2004. A promoter from pea gene DRR206is suitable to regulate anelicitor-coding gene and develop disease resistance. Phytopathology,94:651-660
    Christianson JA, Wilson IW, Llewellyn DJ, Dennis ES.2009. The low-oxygen-induced NAC domaintranscription factor ANAC102affects viability of Arabidopsis seeds following low-oxygen treatment.Plant Physiol,149:1724-1738
    Chujo T, Kawamoto K, Yamada K, Shimizu T, Haga K, Iino M, Minami E, Shibuya N, Okada K, Nojiri H,Yamane H.2007. Characterization of the elicitor-responsive transcription factor OsWRKY53in riceand identification of an elicitor/jasmonate-responsive region of the OsWRKY53promoter. Plant andCell Physiology,48:26
    Chujo T, Takai R, Minami E, Nagamura Y, Kaku H, Shibuya N, Yasuda M, Nakashita H, Okada K, Nojiri H,Yamane H.2006. Characterization of elicitor-responsive WRKY transcription factor, OsWRKY71,from rice. Plant and Cell Physiology,47:82
    Coleman C, Copetti D, Cipriani G, Hoffman S, Kozman P, Kovacs L, Morgante M, Testolin R, Di GasperoG.2009. The powdery mildew resistance gene REN1co-segregates with an NBS-LRR gene cluster intwo Central Asian grapevines. Bmc Genetics,10
    Collins N, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S, Pryor T.1999. Molecular characterization of themaize Rp1-D rust resistance haplotype and its mutants. Plant Cell11:1365-1376
    Cramer GR, Ergul A, Grimplet J, Tillett RL, Tattersall EA, Bohlman MC, Vincent D, Sonderegger J, EvansJ, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC.2007. Water and salinity stress ingrapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics,7:111-134
    Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris NN, Walker AR, Robinson SP, Bogs J.2009. Thegrapevine R2R3-MYB transcription factor VvMYBF1regulates flavonol synthesis in developing grapeberries. Plant Physiol,151:1513-1530
    da Silva FG, Iandolino A, Al-Kayal F, Bohlmann MC, Cushman MA, Lim H, Ergul A, Figueroa R,Kabuloglu EK, Osborne C, Rowe J, Tattersall E, Leslie A, Xu J, Baek J, Cramer GR, Cushman JC,Cook DR.2005. Characterizing the grape transcriptome. Analysis of expressed sequence tags frommultiple Vitis species and development of a compendium of gene expression during berrydevelopment. Plant Physiol,139:574-597
    Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners J, Dennis ES, Dolferus R.2005. Thetranscription factor ATAF2represses the expression of pathogenesis-related genes in Arabidopsis.Plant Journal,43:745-757
    Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, Richard T, Carde JP, Merillon JM, Hamdi S.2006. Characterization of a grapevine R2R3-MYB transcription factor that regulates thephenylpropanoid pathway. Plant Physiol,140:499-511
    Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA,Cushman JC, Cramer GR.2007. Transcriptomic and metabolite analyses of Cabernet Sauvignon grapeberry development. BMC Genomics,8:429
    Dempsey DA, Shah J, Klessig DF.1999. Salicylic acid and disease resistance in plants. Critical Reviews inPlant Sciences,18:547-575
    Dong J, Chen C, Chen Z.2003. Expression profiles of the Arabidopsis WRKY gene superfamily duringplant defense response. Plant Mol Biol,51:21-37
    Dong N, Liu X, Lu Y, Du L, Xu H, Liu H, Xin Z, Zhang Z.2010. Overexpression of TaPIEP1, apathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolarissorokiniana. Funct Integr Genomics,10:215-226
    Dry IB.2010. Grapevine genes for improved resistance to fungal pathogens to reduce chemical inputs inAustralian vineyards. Australia&New Zealand Grapegrower&Winemaker:553: GWRDC R&D atWork: Viticulture value-add p552
    Ellis C, Karafyllidis I, Wasternack C, Turner JG.2002. The Arabidopsis mutant cev1links cell wallsignaling to jasmonate and ethylene responses. Plant Cell,14:1557-1566
    Elmayan T, Tepfer M.1995. Evaluation in tobacco of the organ specificity and strength of the rolDpromoter, domain A of the35S promoter and the35S2promoter. Transgenic Res,4:388-396
    Eulgem T, Rushton PJ, Robatzek S, Somssich IE.2000. The WRKY superfamily of plant transcriptionfactors. Trends Plant Sci,5:199-206
    Faria JA, Reis PA, Reis MT, Rosado GL, Pinheiro GL, Mendes GC, Fontes EP.2011. The NACdomain-containing protein, GmNAC6, is a downstream component of the ER stress-and osmoticstress-induced NRP-mediated cell-death signaling pathway. BMC Plant Biol,11:129
    Ficke A, Gadoury DM, Seem RC.2002. Ontogenic resistance and plant disease management: a case studyof grape powdery mildew. Phytopathology,92:671-675
    Fiocchetti F, D’Amore R, Palma MD, Bertini L, Caruso C, Caporale C, Testa A, Cristinzio G, Saccardo F,Tucci M.2008. Constitutive over-expression of two wheat pathogenesisrelated genes enhancesresistance of tobacco plants to Phytophthora nicotianae. Plant Cell Tiss Organ Cult,73–84
    Flor H.1971. Current status of gene-for-gene concept. Annu Rev Phytopathol,9:275-276
    Frohman MA, Dush MK, Martin GR.1988. Rapid production of full-length cDNAs from rare transcripts:amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A,85:8998-9002
    Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M.2000. Arabidopsis ethylene-responsive elementbinding factors act as transcriptional activators or repressors of GCC box-mediated gene expression.Plant Cell,12:393-404
    Fukao T, Yeung E, Bailey-Serres J.2011. The submergence tolerance regulator SUB1A mediates crosstalkbetween submergence and drought tolerance in rice. Plant Cell,23:412-427
    Fung RW, Gonzalo M, Fekete C, Kovacs LG, He Y, Marsh E, McIntyre LM, Schachtman DP, Qiu W.2008.Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible butnot in a resistant grapevine. Plant Physiol,146:236-249
    Gao F, Xiong A, Peng R, Jin X, Xu J, Zhu B, Chen J, Yao Q.2010. OsNAC52, a rice NAC transcriptionfactor, potentially responds to ABA and confers drought tolerance in transgenic plants. Plant Cell TissOrgan Cult,255–262
    Garcia-Olmedo F, Molina A, Segura A, Moreno M.1995. The defensive role of nonspecific lipid-transferproteins in plants. Trends Microbiol,3:72-74
    Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y, Martin GB.2002. Tomatotranscription factors pti4, pti5, and pti6activate defense responses when expressed in Arabidopsis.Plant Cell14:817-831
    Guan X, Zhao H, Xu Y, Wang Y.2011. Transient expression of glyoxal oxidase from the Chinese wildgrape Vitis pseudoreticulata can suppress powdery mildew in a susceptible genotype. Protoplasma,248:415-423
    Guo ZJ, Chen XJ, Wu XL, Ling JQ, Xu P.2004. Overexpression of the AP2/EREBP transcription factorOPBP1enhances disease resistance and salt tolerance in tobacco. Plant Molecular Biology,55:607-618
    Gutterson N, Reuber TL.2004. Regulation of disease resistance pathways by AP2/ERF transcriptionfactors. Curr Opin Plant Biol,7:465-471
    Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ, Wang F, Zou HF, Lei G, Tian AG, Zhang WK, Ma B,Zhang JS, Chen SY.2011. Soybean NAC transcription factors promote abiotic stress tolerance andlateral root formation in transgenic plants. Plant J,68:302-313
    Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Wu JZ, Matsumoto T, Yoshimura A,Kitano H, Matsuoka M, Mori H, Ashikari M.2009. The ethylene response factors SNORKEL1andSNORKEL2allow rice to adapt to deep water. Nature,460:1026-U1116
    He M, Xu Y, Cao J, Zhu Z, Jiao Y, Wang Y, Guan X, Yang Y, Xu W, Fu Z.2012. Subcellular localizationand functional analyses of a PR10protein gene from Vitis pseudoreticulata in response to Plasmoparaviticola infection. Protoplasma.
    Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, Parkin I, Whitwill S, Lydiate D.2003. Molecularcharacterization of Brassica napus; NAC domain transcriptional activators induced in response tobiotic and abiotic stress. Plant Molecular Biology,53:383-397
    Hejgaard J, Jacobsen S, Bjorn SE, Kragh KM.1992. Antifungal activity of chitin-binding PR-4typeproteins from barley grain and stressed leaf. FEBS Lett,307:389-392
    Hillier LD, Lennon G, Becker M, Bonaldo MF, Chiapelli B, Chissoe S, Dietrich N, DuBuque T, Favello A,Gish W, Hawkins M, Hultman M, Kucaba T, Lacy M, Le M, Le N, Mardis E, Moore B, Morris M,Parsons J, Prange C, Rifkin L, Rohlfing T, Schellenberg K, Bento Soares M, Tan F, Thierry-Meg J,Trevaskis E, Underwood K, Wohldman P, Waterston R, Wilson R, Marra M.1996. Generation andanalysis of280,000human expressed sequence tags. Genome Res,6:807-828
    Hoffmann S, Di Gaspero G, Kovács L, Howard S, Kiss E, Galbács Z, Testolin R, Kozma P.2008.Resistance to Erysiphe necator in the grapevine ‘Kishmish vatkana’ is controlled by a single locusthrough restriction of hyphal growth. TAG Theoretical and Applied Genetics,116:427-438
    Hoffmann T, Kalinowski G, Schwab W.2006. RNAi-induced silencing of gene expression in strawberryfruit (Fragaria x ananassa) by agroinfiltration: a rapid assay for gene function analysis. Plant J,48:818-826
    Horsch RB, Fry JE, Eichlotz D, Rogers SG, Frakey RT.1985. A simple and general method for transferringgenes into plants. Science:1229-1231
    Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L.2006. Overexpressing a NAM, ATAF, and CUC(NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad SciU S A,103:12987-12992
    Hu Y, Zhao L, Chong K, Wang T.2008. Overexpression of OsERF1, a novel rice ERF gene, up-regulatesethylene-responsive genes expression besides affects growth and development in Arabidopsis. J PlantPhysiol,165:1717-1725
    Hussey SG, Mizrachi E, Spokevicius AV, Bossinger G, Berger DK, Myburg AA.2011. SND2, a NACtranscription factor gene, regulates genes involved in secondary cell wall development in Arabidopsisfibres and increases fibre cell area in Eucalyptus. BMC Plant Biol,11:173
    Iwata Y, Koizumi N.2005. An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmicreticulum stress response in a manner unique to plants. Proc Natl Acad Sci U S A,102:5280-5285
    Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F.2002. bZIPtranscription factors in Arabidopsis. Trends Plant Sci,7:106-111
    Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF.2008.Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABAsignalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J,56:867-880
    Jensen MK, Rung JH, Gregersen PL, Gjetting T, Fuglsang AT, Hansen M, Joehnk N, Lyngkjaer MF,Collinge DB.2007. The HvNAC6transcription factor: a positive regulator of penetration resistance inbarley and Arabidopsis. Plant Molecular Biology,65:137-150
    Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim M, Reuzeau C, Kim JK.2010. Root-specificexpression of OsNAC10improves drought tolerance and grain yield in rice under field droughtconditions. Plant Physiol,153:185-197
    Johnson CS, Kolevski B, Smyth DR.2002. TRANSPARENT TESTA GLABRA2, a trichome and seed coatdevelopment gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell,14:1359-1375
    Jung J, Won SY, Suh SC, Kim H, Wing R, Jeong Y, Hwang I, Kim M.2007. The barley ERF-typetranscription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis.Planta,225:575-588
    Jung KH, Seo YS, Walia H, Cao P, Fukao T, Canlas PE, Amonpant F, Bailey-Serres J, Ronald PC.2010.The submergence tolerance regulator Sub1A mediates stress-responsive expression of AP2/ERFtranscription factors. Plant Physiol,152:1674-1692
    Kaneda T, Taga Y, Takai R, Iwano M, Matsui H, Takayama S, Isogai A, Che FS.2009. The transcriptionfactor OsNAC4is a key positive regulator of plant hypersensitive cell death. EMBO J,28:926-936
    Kim HS, Delaney TP.2002. Over-expression of TGA5, which encodes a bZIP transcription factor thatinteracts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsis thaliana toPeronospora parasitica. Plant J,32:151-163
    Kim KC, Fan B, Chen Z.2006. Pathogen-induced Arabidopsis WRKY7is a transcriptional repressor andenhances plant susceptibility to Pseudomonas syringae. Plant Physiol,142:1180-1192
    Kizis D, Lumbreras V, Pages M.2001. Role of AP2/EREBP transcription factors in gene regulation duringabiotic stress. FEBS Lett,498:187-189
    Koyama T, Ono T, Shimizu M, Jinbo T, Mizuno R, Tomita K, Mitsukawa N, Kawazu T, Kimura T, OhmiyaK, Sakka K.2005. Promoter of Arabidopsis thaliana phosphate transporter gene drives root-specificexpression of transgene in rice. J Biosci Bioeng,99:38-42
    Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M,Martin C, Smeekens S, Tonelli C, Paz-Ares J, Weisshaar B.1998. Towards functional characterisationof the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J,16:263-276
    Kuc J, Rush JS.1985. Phytoalexins. Arch Biochem Biophys,236:455-472
    Kunkel BN, Brooks DM.2002. Cross talk between signaling pathways in pathogen defense. Curr OpinPlant Biol,5:325-331
    Lai Z, Vinod K, Zheng Z, Fan B, Chen Z.2008. Roles of Arabidopsis WRKY3and WRKY4transcriptionfactors in plant responses to pathogens. BMC Plant Biol,8:68
    Lee SC, Choi HW, Hwang IS, Choi du S, Hwang BK.2006. Functional roles of the pepperpathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infectionand environmental stresses. Planta,224:1209-1225
    Licausi F, Giorgi FM, Zenoni S, Osti F, Pezzotti M, Perata P.2010. Genomic and transcriptomic analysis ofthe AP2/ERF superfamily in Vitis vinifera. Bmc Genomics:11
    Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie TK, Espley RV, Hellens RP,Allan AC.2010. An R2R3MYB transcription factor associated with regulation of the anthocyaninbiosynthetic pathway in Rosaceae. BMC Plant Biol,10:50
    Lippok B, Birkenbihl RP, Rivory G, Brummer J, Schmelzer E, Logemann E, Somissich IE.2007.Expression of AtWRKY33encoding a pathogen-or PAMP-responsive WRKY transcription factor isregulated by a composite DNA motif containing W box elements. Molecular Plant-MicrobeInteractions,20:420-429
    Liu J, Li J, Wang H, Fu Z, Yu Y.2011a. Identification and expression analysis of ERF transcription factorgenes in petunia during flower senescence and in response to hormone treatments. J Exp Bot,62:825-840
    Liu J, Srivastava R, Che P, Howell S.2007a. An endoplasmic reticulum stress response in Arabidopsis ismediated by proteolytic processing and nuclear relocation of a membrane-associated transcriptionfactor, bZIP28. Plant Cell,19:4111-4119
    Liu JX, Srivastava R, Che P, Howell SH.2007b. Salt stress responses in Arabidopsis utilize a signaltransduction pathway related to endoplasmic reticulum stress signaling. Plant J,51:897-909
    Liu WY, Chiou SJ, Ko CY, Lin TY.2011b. Functional characterization of three ethylene response factorgenes from Bupleurum kaoi indicates that BkERFs mediate resistance to Botrytis cinerea. Journal ofPlant Physiology,168:375-381
    Livak KJ, Schmittgen TD.2001. Analysis of relative gene expression data using real-time quantitative PCRand the2(T)(-Delta Delta C)method. Methods,25:402-408
    Lu J, Ju H, Zhou G, Zhu C, Erb M, Wang X, Wang P, Lou Y.2011. An EAR-motif-containing ERFtranscription factor affects herbivore-induced signaling, defense and resistance in rice. Plant J,68:583-596
    Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC.2007. A novel drought-inducible gene,ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsivegenes in Arabidopsis. Plant Mol Biol,63:289-305
    Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA.2000. Thetranscriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet,26:403-410
    Mallory AC, Dugas DV, Bartel DP, Bartel B.2004. MicroRNA regulation of NAC-domain targets isrequired for proper formation and separation of adjacent embryonic, vegetative, and floral organs.Curr Biol,14:1035-1046
    Marchive C, Mzid R, Deluc L, Barrieu F, Pirrello J, Gauthier A, Corio-Costet MF, Regad F, Cailleteau B,Hamdi S, Lauvergeat V.2007. Isolation and characterization of a Vitis vinifera transcription factor,VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. Journal ofExperimental Botany,58:1999-2010
    Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED,Tanksley SD.1993. Map-based cloning of a protein kinase gene conferring disease resistance intomato. Science262:1432-1436
    McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK,Kazan K.2005. Repressor-and activator-type ethylene response factors functioning in jasmonatesignaling and disease resistance identified via a genome-wide screen of Arabidopsis transcriptionfactor gene expression. Plant Physiology,139:949-959
    Melchers LS, Apothekerdegroot M, Vanderknaap J, Ponstein AS, Selabuurlage MB, Bol JF, CornelissenBJC, Vandenelzen PJM, Linthorst HJM.1994. A new class of tobacco chitinases homologous tobacterial exo-chitinases displays antifungal activity. Plant Journal,5:469-480
    Metraux JP, Burkhart W, Moyer M, Dincher S, Middlesteadt W, Williams S, Payne G, Carnes M, Ryals J.1989. Isolation of a complementary DNA encoding a chitinase with structural homology to abifunctional lysozyme/chitinase. Proc Natl Acad Sci USA,86:896-900
    Middleton PH, Jakab J, Penmetsa RV, Starker CG, Doll J, Kalo P, Prabhu R, Marsh JF, Mitra RM, KeresztA, Dudas B, VandenBosch K, Long SR, Cook DR, Kiss GB, Oldroyd GE.2007. An ERF transcriptionfactor in Medicago truncatula that is essential for Nod factor signal transduction. Plant Cell,19:1221-1234
    Mzid R, Marchive C, Blancard D, Deluc L, Barrieu F, Corio-Costet MF, Drira N, Hamdi S, Lauvergeat V.2007. Overexpression of VvWRKY2in tobacco enhances broad resistance to necrotrophic fungalpathogens. Physiol Plant,131:434-447
    Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K,Yamaguchi-Shinozaki K.2007. Functional analysis of a NAC-type transcription factor OsNAC6involved in abiotic and biotic stress-responsive gene expression in rice. Plant J,51:617-630
    Niderman T, Genetet I, Bruyere T, Gees R, Stintzi A, Legrand M, Fritig B, Mosinger E.1995.Pathogenesis-related PR-1proteins are antifungal. Isolation and characterization of three14-kilodaltonproteins of tomato and of a basic PR-1of tobacco with inhibitory activity against Phytophthorainfestans. Plant Physiol,108:17-27
    Nishizawa Y, Saruta M, Nakazono K, Nishio Z, Soma M, Yoshida T, Nakajima E, Hibi T.2003.Characterization of transgenic rice plants over-expressing the stress-inducible beta-glucanase geneGns1. Plant Mol Biol,51:143-152
    Ogata T, Kida Y, Arai T, Kishi Y, Manago Y, Murai M, Matsushita Y.2012. Overexpression of tobaccoethylene response factor NtERF3gene and its homologues from tobacco and rice induceshypersensitive response-like cell death in tobacco. J Gen Plant Pathol:8-17
    Oh SK, Lee S, Yu SH, Choi D.2005. Expression of a novel NAC domain-containing transcription factor(CaNAC1) is preferentially associated with incompatible interactions between chili pepper andpathogens. Planta,222:876-887
    Ohme-Takagi M, Shinshi H.1995. Ethylene-inducible DNA binding proteins that interact with anethylene-responsive element. Plant Cell,7:173-182
    Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano HY, Tsutsumi N.2005. OsNAC6, amember of the NAC gene family, is induced by various stresses in rice. Genes Genet Syst,80:135-139
    Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD.1997. The AP2domain of APETALA2defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA,94:7076-7081
    Okanami M, Meshi T, Tamai H, Iwabuchi M.1996. HALF-1, a bZIP-type protein, interacting with thewheat transcription factor HBP-1a contains a novel transcriptional activation domain. Genes to Cells,1:87-99
    Onate-Sanchez L, Anderson JP, Young J, Singh KB.2007. AtERF14, a member of the ERF family oftranscription factors, plays a nonredundant role in plant defense. Plant Physiol,143:400-409
    Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH.2001. Overexpression of the tobacco Tsi1geneencoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack andosmotic stress in tobacco. Plant Cell,13:1035-1046
    Pauquet J, Bouquet A, This P, Adam-Blondon AF.2001. Establishment of a local map of AFLP markersaround the powdery mildew resistance gene Run1in grapevine and assessment of their usefulness formarker assisted selection. Theoretical and Applied Genetics,103:1201-1210
    Peng S, Zhu Z, Zhao K, Shi J, Yang Y, He M, Wang Y.2012. A novel heat shock transcription factor,VpHsf1, from Chinese wild Vitis pseudoreticulata is involved in biotic and abiotic stresses. PlantMolecular Biology Reporter.
    Pilati S, Perazzolli M, Malossini A, Cestaro A, Dematte L, Fontana P, Dal Ri A, Viola R, Velasco R, MoserC.2007. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genessimilarly modulated during three seasons and the occurrence of an oxidative burst at veraison. BMCGenomics,8:428
    Pirrello J, Jaimes-Miranda F, Sanchez-Ballesta MT, Tournier B, Khalil-Ahmad Q, Regad F, Latche A, PechJC, Bouzayen M.2006. Sl-ERF2, a tomato ethylene response factor involved in ethylene response andseed germination. Plant Cell Physiol,47:1195-1205
    Pre M, Atallah M, Champion A, De Vos M, Pieterse CM, Memelink J.2008. The AP2/ERF domaintranscription factor ORA59integrates jasmonic acid and ethylene signals in plant defense. PlantPhysiol,147:1347-1357
    Pu L, Li Q, Fan X, Yang W, Xue Y.2008. The R2R3MYB transcription factor GhMYB109is required forcotton fiber development. Genetics,180:811-820
    Puranik S, Bahadur RP, Srivastava PS, Prasad M.2011. Molecular cloning and characterization of amembrane associated NAC family gene, SiNAC from foxtail millet [Setaria italica (L.) P. Beauv]. MolBiotechnol,49:138-150
    Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S.2007. OsWRKY13mediates ricedisease resistance by regulating defense-related genes in salicylate-and jasmonate-dependentsignaling. Mol Plant Microbe Interact,20:492-499
    Qiu D, Xiao J, Xie W, Liu H, Li X, Xiong L, Wang S.2008. Rice gene network inferred from expressionprofiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Mol Plant,1:538-551
    Quan R, Hu S, Zhang Z, Zhang H, Huang R.2010. Overexpression of an ERF transcription factor TSRF1improves rice drought tolerance. Plant Biotechnol J,8:476-488
    Quattrocchio F, Wing J, van der Woude K, Souer E, de Vetten N, Mol J, Koes R.1999. Molecular analysisof the anthocyanin2gene of petunia and its role in the evolution of flower color. Plant Cell,11:1433-1444
    Repka V, Fischerova I, Silharova K.2004. Methyl jasmonate is a potent elicitor of multiple defenseresponses in grapevine leaves and cell-suspension cultures. Biologia Plantarum,48:273-283
    Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP.2002. Prediction of plant microRNAtargets. Cell,110:513-520
    Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, SamahaRR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G.2000.Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science,290:2105-2110
    Roetschi A, Si-Ammour A, Belbahri L, Mauch F, Mauch-Mani B.2001. Characterization of anArabidopsis-Phytophthora pathosystem: resistance requires a functional PAD2gene and isindependent of salicylic acid, ethylene and jasmonic acid signalling. Plant J,28:293-305
    Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD.1996. Systemic AcquiredResistance. Plant Cell,8:1809-1819
    Sa Q, Wang Y, Li W, Zhang L, Sun Y.2003. The promoter of an antifungal protein gene from Gastrodiaelata confers tissue-specific and fungus-inducible expression patterns and responds to both salicylicacid and jasmonic acid. Plant Cell Rep,22:79-84
    Santos-Rosa M, Poutaraud A, Merdinoglu D, Mestre P.2008. Development of a transient expression systemin grapevine via agro-infiltration. Plant Cell Reports,27:1053-1063
    Sarowar S, Kim YJ, Kim KD, Hwang BK, Ok SH, Shin JS.2009. Overexpression of lipid transfer protein(LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemicsignaling in tobacco. Plant Cell Rep,28:419-427
    Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM.2000.Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl AcadSci USA,97:11655-11660
    Schuler GD, Boguski MS, Stewart EA, Stein LD, Gyapay G, Rice K, White RE, Rodriguez-Tome P,Aggarwal A, Bajorek E, Bentolila S, Birren BB, Butler A, Castle AB, Chiannilkulchai N, Chu A, CleeC, Cowles S, Day PJ, Dibling T, Drouot N, Dunham I, Duprat S, East C, Edwards C, Fan JB, Fang N,Fizames C, Garrett C, Green L, Hadley D, Harris M, Harrison P, Brady S, Hicks A, Holloway E, Hui L,Hussain S, Louis-Dit-Sully C, Ma J, MacGilvery A, Mader C, Maratukulam A, Matise TC, McKusickKB, Morissette J, Mungall A, Muselet D, Nusbaum HC, Page DC, Peck A, Perkins S, Piercy M, Qin F,Quackenbush J, Ranby S, Reif T, Rozen S, Sanders C, She X, Silva J, Slonim DK, Soderlund C, SunWL, Tabar P, Thangarajah T, Vega-Czarny N, Vollrath D, Voyticky S, Wilmer T, Wu X, Adams MD,Auffray C, Walter NA, Brandon R, Dehejia A, Goodfellow PN, Houlgatte R, Hudson JR, Jr., Ide SE,Iorio KR, Lee WY, Seki N, Nagase T, Ishikawa K, Nomura N, Phillips C, Polymeropoulos MH,Sandusky M, Schmitt K, Berry R, Swanson K, Torres R, Venter JC, Sikela JM, Beckmann JS,Weissenbach J, Myers RM, Cox DR, James MR, Bentley D, Deloukas P, Lander ES, Hudson TJ.1996.A gene map of the human genome. Science,274:540-546
    Seo PJ, Kim MJ, Park JY, Kim SY, Jeon J, Lee YH, Kim J, Park CM.2010. Cold activation of a plasmamembrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis.Plant Journal,61:661-671
    Shan W, Marshall JS, Hardham AR.2004. Gene expression in germinated cysts of Phytophthora nicotianae.Mol Plant Pathol5:317-330
    Shan WX, Hardham AR.2004. Construction of a bacterial artificial chromosome library, determination ofgenome size, and characterization of an Hsp70gene family in Phytophthora nicotianae. FungalGenetics and Biology41:369-380
    Shi J, Wang Y, Zhu Z, Zhang C.2010. The EST analysis of a suppressive subtraction cDNA library ofChinese wild Vitis pseudoreticulata inoculated with Uncinula necator. Agricultural Sciences in China,9:233-241
    Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S, Takatsuji H.2007. Rice WRKY45plays acrucial role in benzothiadiazole-inducible blast resistance. Plant Cell,19:2064-2076
    Shinozaki K, Yamaguchi-Shinozaki K.1996. Molecular responses to drought and cold stress. Curr OpinBiotechnol,7:161-167
    Singh KB.1998. Transcriptional regulation in plants: the importance of combinatorial control. PlantPhysiol,118:1111-1120
    Song Y, Lin Y, Tong S, Hou H.2012. Molecular cloning, promoter analysis, and expression profile ofVvERF3b gene in Vitis vinifera. Biologia Plantarum,56:31-36
    Souer E, van Houwelingen A, Kloos D, Mol J, Koes R.1996. The no apical meristem gene of Petunia isrequired for pattern formation in embryos and flowers and is expressed at meristem and primordiaboundaries. Cell,85:159-170
    Staudt G.1997. Evaluation of resistance to grapevine Powdery mildew (Uncinula necator (Sehw.) Burr,anamorph Oidium tuckeri Berk.) in accessions of Vitis species. Vitis,36:151-154
    Stintzi A, Heitz T, Prasad V, Wiedemann-Merdinoglu S, Kauffmann S, Geoffroy P, Legrand M, Fritig B.1993. Plant pathogenesis-related proteins and their role in defense against pathogens. Biochimie,75:687-706
    Stracke R, Werber M, Weisshaar B.2001. The R2R3-MYB gene family in Arabidopsis thaliana. Curr OpinPlant Biol,4:447-456
    Suo J, Liang X, Pu L, Zhang Y, Xue Y.2003. Identification of GhMYB109encoding a R2R3MYBtranscription factor that expressed specifically in fiber initials and elongating fibers of cotton(Gossypium hirsutum L.). Biochim Biophys Acta,1630:25-34
    Thilmony RL, Chen ZT, Bressan RA, Martin GB.1995. Expression of the tomato Pto gene in tobaccoenhances resistance to Pseudomonas-syringae pv Tabaci expressing Avrpto. Plant Cell7:1529-1536
    Thirumoorthy N, Shyam Sunder A, Manisenthil Kumar K, Senthil Kumar M, Ganesh G, Chatterjee M.2011. A review of metallothionein isoforms and their role in pathophysiology. World J Surg Oncol,9:54
    Tian Y, Zhang HW, Pan XW, Chen XL, Zhang ZJ, Lu XY, Huang RF.2011. Overexpression of ethyleneresponse factor TERF2confers cold tolerance in rice seedlings. Transgenic Research,20:857-866
    Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K,Yamaguchi-Shinozaki K.2004. Isolation and functional analysis of Arabidopsis stress-inducible NACtranscription factors that bind to a drought-responsive cis-element in the early responsive todehydration stress1promoter. Plant Cell,16:2481-2498
    van der Fits L, Memelink J.2000. ORCA3, a jasmonate-responsive transcriptional regulator of plantprimary and secondary metabolism. Science289:295-297
    van Loon LC, Rep M, Pieterse CM.2006. Significance of inducible defense-related proteins in infectedplants. Annu Rev Phytopathol,44:135-162
    Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, VezzulliS, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT,Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C,Davenport C, Dematte L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T,Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, GrandoSM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P,Gutin A, Van de Peer Y, Salamini F, Viola R.2007. A high quality draft consensus sequence of thegenome of a heterozygous grapevine variety. PLoS One,2: e1326
    Vernie T, Moreau S, de Billy F, Plet J, Combier JP, Rogers C, Oldroyd G, Frugier F, Niebel A, Gamas P.2008. EFD Is an ERF transcription factor involved in the control of nodule number and differentiationin Medicago truncatula. Plant Cell,20:2696-2713
    Voinnet O, Pinto YM, Baulcombe DC.1999. Suppression of gene silencing: a general strategy used bydiverse DNA and RNA viruses of plants. Proc Natl Acad Sci USA,96:14147-14152
    Wang H, Huang Z, Chen Q, Zhang Z, Zhang H, Wu Y, Huang D, Huang R.2004a. Ectopic overexpressionof tomato JERF3in tobacco activates downstream gene expression and enhances salt tolerance. PlantMol Biol,55:183-192
    Wang X, Basnayake BM, Zhang H, Li G, Li W, Virk N, Mengiste T, Song F.2009. The Arabidopsis ATAF1,a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungaland bacterial pathogens. Mol Plant Microbe Interact,22:1227-1238
    Wang XC, Guo L, Shangguan LF, Wang C, Yang G, Qu SC, Fang JG.2012. Analysis of expressed sequencetags from grapevine flower and fruit and development of simple sequence repeat markers. Mol BiolRep
    Wang X P,Wang Y J, Zhang C H, Zhang J K.2007. Isolation and characterization of cDNA encodingstilbene synthases from Chinese wild Vitis pseudoreticulata.Vitis,46(3):104-109
    Wang Y, Liu Y, He P, Chen J, Lamikanra O, Lu J.1995. Evaluation of foliar resistance to Uncinula necatorin Chinese wild Vitis species. Vitis,34:159-164
    Weir I, Lu J, Cook H, Causier B, Schwarz-Sommer Z, Davies B.2004. CUPULIFORMIS establisheslateral organ boundaries in Antirrhinum. Development,131:915-922
    Willemsen V, Bauch M, Bennett T, Campilho A, Wolkenfelt H, Xu J, Haseloff J, Scheres B.2008. TheNAC domain transcription factors FEZ and SOMBRERO control the orientation of cell division planein Arabidopsis root stem cells. Dev Cell,15:913-922
    Wu K, Tian L, Hollingworth J, Brown DC, Miki B.2002. Functional analysis of tomato Pti4in Arabidopsis.Plant Physiology,128:30-37
    Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Xie Q.2009. Dual function ofArabidopsis ATAF1in abiotic and biotic stress responses. Cell Res,19:1279-1290
    Xia N, Zhang G, Liu XY, Deng L, Cai GL, Zhang Y, Wang XJ, Zhao J, Huang LL, Kang ZS.2010a.Characterization of a novel wheat NAC transcription factor gene involved in defense response againststripe rust pathogen infection and abiotic stresses. Mol Biol Rep,37:3703-3712
    Xia N, Zhang G, Sun Y, Zhu L, Xu L, Chen X, Liu B, Yu Y, Wang X, Huang L, Kang ZS.2010b.TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rust pathogen infectionand abiotic stresses. Physiological and Molecular Plant Pathology:394-402
    Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG.2001. Broad-spectrum mildewresistance in Arabidopsis thaliana mediated by RPW8. Science291:118-120
    Xiao S, Ellwood S, Findlay K, Oliver RP, Turner JG.1997. Characterization of three loci controllingresistance of Arabidopsis thaliana accession Ms-0to two powdery mildew diseases. Plant Journal12:757-768
    Xu W, Yu Y, Zhou Q, Ding J, Dai L, Xie X, Xu Y, Zhang C, Wang Y.2011. Expression pattern, genomicstructure, and promoter analysis of the gene encoding stilbene synthase from Chinese wild Vitispseudoreticulata. J Exp Bot,62:2745-2761
    Xu ZS, Xia LQ, Chen M, Cheng XG, Zhang RY, Li LC, Zhao YX, Lu Y, Ni ZY, Liu L, Qiu ZG, Ma YZ.2007a. Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor1(TaERF1) that increases multiple stress tolerance. Plant Molecular Biology,65:719-732
    Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M, Fukuda H, Demura T.2010.VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vesselformation in Arabidopsis. Plant Cell,22:1249-1263
    Yang CY, Hsu FC, Li JP, Wang NN, Shih MC.2011. The AP2/ERF transcription factor AtERF73/HRE1modulates ethylene responses during hypoxia in Arabidopsis. Plant Physiol,156:202-212
    Yang Y, Li R, Qi M.2000. In vivo analysis of plant promoters and transcription factors by agroinfiltrationof tobacco leaves. Plant J,22:543-551
    Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K.2005. Arabidopsis ERF4is a transcriptional repressorcapable of modulating ethylene and abscisic acid responses. Plant Mol Biol,58:585-596
    Yi SY, Kim JH, Joung YH, Lee S, Kim WT, Yu SH, Choi D.2004. The pepper transcription factor CaPF1confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol,136:2862-2874
    Yoshii M, Yamazaki M, Rakwal R, Kishi-Kaboshi M, Miyao A, Hirochika H.2010. The NAC transcriptionfactor RIM1of rice is a new regulator of jasmonate signaling. Plant J,61:804-815
    Yu D, Chen C, Chen Z.2001. Evidence for an important role of WRKY DNA binding proteins in theregulation of NPR1gene expression. Plant Cell,13:1527-1540
    Yu Y, Xu W, Wang S, Xu Y, Li H, Wang Y, Li S.2011. VpRFP1, a novel C4C4-type RING finger proteingene from Chinese wild Vitis pseudoreticulata, functions as a transcriptional activator in defenceresponse of grapevine. J Exp Bot,62:5671-5682
    Zhang GY, Chen M, Li LC, Xu ZS, Chen XP, Guo JM, Ma YZ.2009. Overexpression of the soybeanGmERF3gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, anddiseases in transgenic tobacco. Journal of Experimental Botany,60:3781-3796
    Zhang H, Huang Z, Xie B, Chen Q, Tian X, Zhang X, Lu X, Huang D, Huang R.2004a. The ethylene-,jasmonate-, abscisic acid-and NaCl-responsive tomato transcription factor JERF1modulatesexpression of GCC box-containing genes and salt tolerance in tobacco. Planta,220:262-270
    Zhang H, Li W, Chen J, Yang Y, Zhang Z, Wang XC, Huang R.2007a. Transcriptional activator TSRF1reversely regulates pathogen resistance and osmotic stress tolerance in tobacco. Plant Mol Biol,63:63-71
    Zhang HB, Zhang DB, Chen J, Yang YD, Huang ZJ, Huang DF, Wang XC, Huang RF.2004b. Tomatostress-responsive factor TSRF1interacts with ethylene responsive element GCC box and regulatespathogen resistance to Ralstonia solanacearum. Plant Molecular Biology,55:825-834
    Zhang J, Wang YJ, Wang XP.2003. An improved method for rapidly extracting total RNA from Vitis. JFruit Sci:178-181
    Zhang X, Zhang Z, Chen J, Chen Q, Wang XC, Huang R.2005. Expressing TERF1in tobacco enhancesdrought tolerance and abscisic acid sensitivity during seedling development. Planta,222:494-501
    Zhang Z, Huang R.2010. Enhanced tolerance to freezing in tobacco and tomato overexpressingtranscription factor TERF2/LeERF2is modulated by ethylene biosynthesis. Plant Mol Biol,73:241-249
    Zhang Z, Yao W, Dong N, Liang H, Liu H, Huang R.2007b. A novel ERF transcription activator in wheatand its induction kinetics after pathogen and hormone treatments. Journal of Experimental Botany,58:2993-3003
    Zhao Q, Gallego-Giraldo L, Wang H, Zeng Y, Ding SY, Chen F, Dixon RA.2010. An NAC transcriptionfactor orchestrates multiple features of cell wall development in Medicago truncatula. Plant J,63:100-114
    Zheng X, Chen B, Lu G, Han B.2009. Overexpression of a NAC transcription factor enhances rice droughtand salt tolerance. Biochem Biophys Res Commun,379:985-989
    Zheng Z, Qamar SA, Chen Z, Mengiste T.2006. Arabidopsis WRKY33transcription factor is required forresistance to necrotrophic fungal pathogens. Plant J,48:592-605
    Zheng ZY, Mosher SL, Fan BF, Klessig DF, Chen ZX.2007. Functional analysis of Arabidopsis WRKY25transcription factor in plant defense against Pseudomonas syringae. Bmc Plant Biology:7
    Zhong R, Demura T, Ye ZH.2006. SND1, a NAC domain transcription factor, is a key regulator ofsecondary wall synthesis in fibers of Arabidopsis. Plant Cell,18:3158-3170
    Zhong R, Richardson EA, Ye ZH.2007. Two NAC domain transcription factors, SND1and NST1, functionredundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta,225:1603-1611

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700